Why the output data result not the same for Random Forest The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) 2019 Moderator Election Q&A - Questionnaire 2019 Community Moderator Election ResultsRandom forest model gives same result for all test data, Next step?NLTK: Tuning LinearSVC classifier accuracy? - Looking for better approaches/advicesSKNN regression problemWhy `max_features=n_features` does not make the Random Forest independent of number of trees?Consistently inconsistent cross-validation results that are wildly different from original model accuracyWrong train/test split strategyTensorflow regression predicting 1 for all inputsIs a 100% model accuracy on out-of-sample data overfitting?ValueError: Error when checking target: expected dense_2 to have shape (1,) but got array with shape (0,)Random Forest, Duplicating Data increases Accuracy. Why?
How did passengers keep warm on sail ships?
What information about me do stores get via my credit card?
Why did Peik Lin say, "I'm not an animal"?
Can the Right Ascension and Argument of Perigee of a spacecraft's orbit keep varying by themselves with time?
Why are PDP-7-style microprogrammed instructions out of vogue?
One-dimensional Japanese puzzle
What aspect of planet Earth must be changed to prevent the industrial revolution?
Do working physicists consider Newtonian mechanics to be "falsified"?
"... to apply for a visa" or "... and applied for a visa"?
Simulating Exploding Dice
Working through the single responsibility principle (SRP) in Python when calls are expensive
Mortgage adviser recommends a longer term than necessary combined with overpayments
For what reasons would an animal species NOT cross a *horizontal* land bridge?
What force causes entropy to increase?
Is it ethical to upload a automatically generated paper to a non peer-reviewed site as part of a larger research?
My body leaves; my core can stay
Why not take a picture of a closer black hole?
Can the DM override racial traits?
Why doesn't a hydraulic lever violate conservation of energy?
Python - Fishing Simulator
How many cones with angle theta can I pack into the unit sphere?
Single author papers against my advisor's will?
Student Loan from years ago pops up and is taking my salary
Is there a writing software that you can sort scenes like slides in PowerPoint?
Why the output data result not the same for Random Forest
The 2019 Stack Overflow Developer Survey Results Are In
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)
2019 Moderator Election Q&A - Questionnaire
2019 Community Moderator Election ResultsRandom forest model gives same result for all test data, Next step?NLTK: Tuning LinearSVC classifier accuracy? - Looking for better approaches/advicesSKNN regression problemWhy `max_features=n_features` does not make the Random Forest independent of number of trees?Consistently inconsistent cross-validation results that are wildly different from original model accuracyWrong train/test split strategyTensorflow regression predicting 1 for all inputsIs a 100% model accuracy on out-of-sample data overfitting?ValueError: Error when checking target: expected dense_2 to have shape (1,) but got array with shape (0,)Random Forest, Duplicating Data increases Accuracy. Why?
$begingroup$
May I know how to modify my Python programming thus it will be get the same result as refer to the attached image file?
import numpy as np
from sklearn import datasets as data
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
def load_data(feature_len = 4):
return data.load_iris()['data'][:, :feature_len], data.load_iris()['target']
def tr_te_split(data, target, test_ratio = .2):
return train_test_split(data, target, test_size=test_ratio, random_state=0)
def build_model():
return DecisionTreeClassifier(criterion='entropy'), RandomForestClassifier(criterion='entropy', n_estimators=10, random_state=1)
def train(model, x, y):
model.fit(x, y)
print(" Training Accuracy = ".format(str(model.__class__).split('.')[-1].split("'")[0], model.score(x, y)))
return model
def evaluate(model, x, y):
print(" Testing Accuracy = n".format(str(model.__class__).split('.')[-1].split("'")[0], model.score(x, y)))
return accuracy_score(model.predict(x), y)
def main():
data, target = load_data()
tree_score = []
rf_score = []
for feature_len in range(1, data.shape[-1] + 1):
print("Use features.".format(feature_len))
data, target = load_data(feature_len)
x_tr, x_te, y_tr, y_te = tr_te_split(data, target, .4)
tree_model, rf_model = build_model()
tree_model_trained = train(tree_model, x_tr, y_tr)
tree_score.append(evaluate(tree_model_trained, x_te, y_te))
rf_model_trained = train(rf_model, x_tr, y_tr)
rf_score.append(evaluate(rf_model_trained, x_te, y_te))
# draw
tree_plt = plt
tree_plt.plot(tree_score)
tree_plt.xlabel('Number of features')
tree_plt.xticks([0,1,2,3],('1','2','3','4'))
tree_plt.ylabel('Accuracy')
tree_plt.title('Decision Tree')
tree_plt.show()
rf_plt = plt
rf_plt.plot(rf_score)
rf_plt.xlabel('Number of features')
rf_plt.xticks([0,1,2,3],('1','2','3','4'))
rf_plt.ylabel('Accuracy')
plt.yticks(np.arange(0.90, 0.95, 0.01))
rf_plt.title('Ransom Forest')
rf_plt.show()
if __name__ == '__main__':
main()
Please see the image file -
Please help me on this case
machine-learning python random-forest
New contributor
$endgroup$
add a comment |
$begingroup$
May I know how to modify my Python programming thus it will be get the same result as refer to the attached image file?
import numpy as np
from sklearn import datasets as data
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
def load_data(feature_len = 4):
return data.load_iris()['data'][:, :feature_len], data.load_iris()['target']
def tr_te_split(data, target, test_ratio = .2):
return train_test_split(data, target, test_size=test_ratio, random_state=0)
def build_model():
return DecisionTreeClassifier(criterion='entropy'), RandomForestClassifier(criterion='entropy', n_estimators=10, random_state=1)
def train(model, x, y):
model.fit(x, y)
print(" Training Accuracy = ".format(str(model.__class__).split('.')[-1].split("'")[0], model.score(x, y)))
return model
def evaluate(model, x, y):
print(" Testing Accuracy = n".format(str(model.__class__).split('.')[-1].split("'")[0], model.score(x, y)))
return accuracy_score(model.predict(x), y)
def main():
data, target = load_data()
tree_score = []
rf_score = []
for feature_len in range(1, data.shape[-1] + 1):
print("Use features.".format(feature_len))
data, target = load_data(feature_len)
x_tr, x_te, y_tr, y_te = tr_te_split(data, target, .4)
tree_model, rf_model = build_model()
tree_model_trained = train(tree_model, x_tr, y_tr)
tree_score.append(evaluate(tree_model_trained, x_te, y_te))
rf_model_trained = train(rf_model, x_tr, y_tr)
rf_score.append(evaluate(rf_model_trained, x_te, y_te))
# draw
tree_plt = plt
tree_plt.plot(tree_score)
tree_plt.xlabel('Number of features')
tree_plt.xticks([0,1,2,3],('1','2','3','4'))
tree_plt.ylabel('Accuracy')
tree_plt.title('Decision Tree')
tree_plt.show()
rf_plt = plt
rf_plt.plot(rf_score)
rf_plt.xlabel('Number of features')
rf_plt.xticks([0,1,2,3],('1','2','3','4'))
rf_plt.ylabel('Accuracy')
plt.yticks(np.arange(0.90, 0.95, 0.01))
rf_plt.title('Ransom Forest')
rf_plt.show()
if __name__ == '__main__':
main()
Please see the image file -
Please help me on this case
machine-learning python random-forest
New contributor
$endgroup$
add a comment |
$begingroup$
May I know how to modify my Python programming thus it will be get the same result as refer to the attached image file?
import numpy as np
from sklearn import datasets as data
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
def load_data(feature_len = 4):
return data.load_iris()['data'][:, :feature_len], data.load_iris()['target']
def tr_te_split(data, target, test_ratio = .2):
return train_test_split(data, target, test_size=test_ratio, random_state=0)
def build_model():
return DecisionTreeClassifier(criterion='entropy'), RandomForestClassifier(criterion='entropy', n_estimators=10, random_state=1)
def train(model, x, y):
model.fit(x, y)
print(" Training Accuracy = ".format(str(model.__class__).split('.')[-1].split("'")[0], model.score(x, y)))
return model
def evaluate(model, x, y):
print(" Testing Accuracy = n".format(str(model.__class__).split('.')[-1].split("'")[0], model.score(x, y)))
return accuracy_score(model.predict(x), y)
def main():
data, target = load_data()
tree_score = []
rf_score = []
for feature_len in range(1, data.shape[-1] + 1):
print("Use features.".format(feature_len))
data, target = load_data(feature_len)
x_tr, x_te, y_tr, y_te = tr_te_split(data, target, .4)
tree_model, rf_model = build_model()
tree_model_trained = train(tree_model, x_tr, y_tr)
tree_score.append(evaluate(tree_model_trained, x_te, y_te))
rf_model_trained = train(rf_model, x_tr, y_tr)
rf_score.append(evaluate(rf_model_trained, x_te, y_te))
# draw
tree_plt = plt
tree_plt.plot(tree_score)
tree_plt.xlabel('Number of features')
tree_plt.xticks([0,1,2,3],('1','2','3','4'))
tree_plt.ylabel('Accuracy')
tree_plt.title('Decision Tree')
tree_plt.show()
rf_plt = plt
rf_plt.plot(rf_score)
rf_plt.xlabel('Number of features')
rf_plt.xticks([0,1,2,3],('1','2','3','4'))
rf_plt.ylabel('Accuracy')
plt.yticks(np.arange(0.90, 0.95, 0.01))
rf_plt.title('Ransom Forest')
rf_plt.show()
if __name__ == '__main__':
main()
Please see the image file -
Please help me on this case
machine-learning python random-forest
New contributor
$endgroup$
May I know how to modify my Python programming thus it will be get the same result as refer to the attached image file?
import numpy as np
from sklearn import datasets as data
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
def load_data(feature_len = 4):
return data.load_iris()['data'][:, :feature_len], data.load_iris()['target']
def tr_te_split(data, target, test_ratio = .2):
return train_test_split(data, target, test_size=test_ratio, random_state=0)
def build_model():
return DecisionTreeClassifier(criterion='entropy'), RandomForestClassifier(criterion='entropy', n_estimators=10, random_state=1)
def train(model, x, y):
model.fit(x, y)
print(" Training Accuracy = ".format(str(model.__class__).split('.')[-1].split("'")[0], model.score(x, y)))
return model
def evaluate(model, x, y):
print(" Testing Accuracy = n".format(str(model.__class__).split('.')[-1].split("'")[0], model.score(x, y)))
return accuracy_score(model.predict(x), y)
def main():
data, target = load_data()
tree_score = []
rf_score = []
for feature_len in range(1, data.shape[-1] + 1):
print("Use features.".format(feature_len))
data, target = load_data(feature_len)
x_tr, x_te, y_tr, y_te = tr_te_split(data, target, .4)
tree_model, rf_model = build_model()
tree_model_trained = train(tree_model, x_tr, y_tr)
tree_score.append(evaluate(tree_model_trained, x_te, y_te))
rf_model_trained = train(rf_model, x_tr, y_tr)
rf_score.append(evaluate(rf_model_trained, x_te, y_te))
# draw
tree_plt = plt
tree_plt.plot(tree_score)
tree_plt.xlabel('Number of features')
tree_plt.xticks([0,1,2,3],('1','2','3','4'))
tree_plt.ylabel('Accuracy')
tree_plt.title('Decision Tree')
tree_plt.show()
rf_plt = plt
rf_plt.plot(rf_score)
rf_plt.xlabel('Number of features')
rf_plt.xticks([0,1,2,3],('1','2','3','4'))
rf_plt.ylabel('Accuracy')
plt.yticks(np.arange(0.90, 0.95, 0.01))
rf_plt.title('Ransom Forest')
rf_plt.show()
if __name__ == '__main__':
main()
Please see the image file -
Please help me on this case
machine-learning python random-forest
machine-learning python random-forest
New contributor
New contributor
New contributor
asked 3 mins ago
vokoyovokoyo
11
11
New contributor
New contributor
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "557"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
vokoyo is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f49224%2fwhy-the-output-data-result-not-the-same-for-random-forest%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
vokoyo is a new contributor. Be nice, and check out our Code of Conduct.
vokoyo is a new contributor. Be nice, and check out our Code of Conduct.
vokoyo is a new contributor. Be nice, and check out our Code of Conduct.
vokoyo is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Data Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f49224%2fwhy-the-output-data-result-not-the-same-for-random-forest%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown