why is the limit of this expression equal to 1? The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Finding the limit of the following expressionReforming series expression for limit of e$lim_x rightarrow inftyleft(fracpi2-tan^-1xright)^Largefrac1x$ Why aren't these two limits equal when they should be?What is the value of this limit?limit of an expressionUsing a definite integral find the value of $lim_nrightarrow infty (frac1n+frac1n+1+…+frac12n)$Why is the following limit operation valid?Is this expression on limit valid and/or meaningful?Why does this limit equal 0?A Problem on the Limit of an Integral

What was the last x86 CPU that did not have the x87 floating-point unit built in?

What information about me do stores get via my credit card?

What's the point in a preamp?

Are spiders unable to hurt humans, especially very small spiders?

Sub-subscripts in strings cause different spacings than subscripts

What is the padding with red substance inside of steak packaging?

Why did Peik Lin say, "I'm not an animal"?

Why are there uneven bright areas in this photo of black hole?

Can withdrawing asylum be illegal?

Is it ok to offer lower paid work as a trial period before negotiating for a full-time job?

Am I ethically obligated to go into work on an off day if the reason is sudden?

how can a perfect fourth interval be considered either consonant or dissonant?

If I score a critical hit on an 18 or higher, what are my chances of getting a critical hit if I roll 3d20?

How did the audience guess the pentatonic scale in Bobby McFerrin's presentation?

How to determine omitted units in a publication

How did passengers keep warm on sail ships?

Working through the single responsibility principle (SRP) in Python when calls are expensive

Why can't wing-mounted spoilers be used to steepen approaches?

What can I do if neighbor is blocking my solar panels intentionally?

Drawing arrows from one table cell reference to another

How to handle characters who are more educated than the author?

What aspect of planet Earth must be changed to prevent the industrial revolution?

Deal with toxic manager when you can't quit

Match Roman Numerals



why is the limit of this expression equal to 1?



The 2019 Stack Overflow Developer Survey Results Are In
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Finding the limit of the following expressionReforming series expression for limit of e$lim_x rightarrow inftyleft(fracpi2-tan^-1xright)^Largefrac1x$ Why aren't these two limits equal when they should be?What is the value of this limit?limit of an expressionUsing a definite integral find the value of $lim_nrightarrow infty (frac1n+frac1n+1+…+frac12n)$Why is the following limit operation valid?Is this expression on limit valid and/or meaningful?Why does this limit equal 0?A Problem on the Limit of an Integral










1












$begingroup$


I found something which I find confusing.



$$
lim_nrightarrow infty fracn!n^k(n-k)! =1
$$



It was something I encountered while learning probability on this webpage.










share|cite|improve this question











$endgroup$
















    1












    $begingroup$


    I found something which I find confusing.



    $$
    lim_nrightarrow infty fracn!n^k(n-k)! =1
    $$



    It was something I encountered while learning probability on this webpage.










    share|cite|improve this question











    $endgroup$














      1












      1








      1


      2



      $begingroup$


      I found something which I find confusing.



      $$
      lim_nrightarrow infty fracn!n^k(n-k)! =1
      $$



      It was something I encountered while learning probability on this webpage.










      share|cite|improve this question











      $endgroup$




      I found something which I find confusing.



      $$
      lim_nrightarrow infty fracn!n^k(n-k)! =1
      $$



      It was something I encountered while learning probability on this webpage.







      limits






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 2 hours ago







      billyandr

















      asked 2 hours ago









      billyandrbillyandr

      155




      155




















          2 Answers
          2






          active

          oldest

          votes


















          5












          $begingroup$

          It is rather obvious if you cancel the factorials:



          $$fracn!n^k(n-k)! =fracoverbracen(n-1)cdots (n-k+1)^k; factorsn^k= 1cdot left(1-frac1nright)cdots left(1-frack-1nright)stackreln to inftylongrightarrow 1$$






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            Thank you so much. I didn't know it was right there under my eyes.
            $endgroup$
            – billyandr
            1 hour ago










          • $begingroup$
            You are welcome. This "not seeing the obvious" just happens once in a while, I think, to all who do maths. So, it is good to have a math platform like this one. :-)
            $endgroup$
            – trancelocation
            1 hour ago



















          2












          $begingroup$

          $$a_n=fracn!n^k(n-k)! implies log(a_n)=log(n!)-k log(n)-log((n-k)!)$$



          Use Stirling approximation and continue with Taylor series to get
          $$log(a_n)=frack(1-k)2 n+Oleft(frac1n^2right)$$ Continue with Taylor
          $$a_n=e^log(a_n)=1+frack(1-k)2 n+Oleft(frac1n^2right)$$






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            This has already a slight touch of overkill, hasn't it? :-)
            $endgroup$
            – trancelocation
            1 hour ago










          • $begingroup$
            @trancelocation. You are totally right for the limit. One of my manias is to always look at the approach to the limit. Have a look at matheducators.stackexchange.com/questions/8339/… . Cheers :-)
            $endgroup$
            – Claude Leibovici
            1 hour ago












          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3185830%2fwhy-is-the-limit-of-this-expression-equal-to-1%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          5












          $begingroup$

          It is rather obvious if you cancel the factorials:



          $$fracn!n^k(n-k)! =fracoverbracen(n-1)cdots (n-k+1)^k; factorsn^k= 1cdot left(1-frac1nright)cdots left(1-frack-1nright)stackreln to inftylongrightarrow 1$$






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            Thank you so much. I didn't know it was right there under my eyes.
            $endgroup$
            – billyandr
            1 hour ago










          • $begingroup$
            You are welcome. This "not seeing the obvious" just happens once in a while, I think, to all who do maths. So, it is good to have a math platform like this one. :-)
            $endgroup$
            – trancelocation
            1 hour ago
















          5












          $begingroup$

          It is rather obvious if you cancel the factorials:



          $$fracn!n^k(n-k)! =fracoverbracen(n-1)cdots (n-k+1)^k; factorsn^k= 1cdot left(1-frac1nright)cdots left(1-frack-1nright)stackreln to inftylongrightarrow 1$$






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            Thank you so much. I didn't know it was right there under my eyes.
            $endgroup$
            – billyandr
            1 hour ago










          • $begingroup$
            You are welcome. This "not seeing the obvious" just happens once in a while, I think, to all who do maths. So, it is good to have a math platform like this one. :-)
            $endgroup$
            – trancelocation
            1 hour ago














          5












          5








          5





          $begingroup$

          It is rather obvious if you cancel the factorials:



          $$fracn!n^k(n-k)! =fracoverbracen(n-1)cdots (n-k+1)^k; factorsn^k= 1cdot left(1-frac1nright)cdots left(1-frack-1nright)stackreln to inftylongrightarrow 1$$






          share|cite|improve this answer









          $endgroup$



          It is rather obvious if you cancel the factorials:



          $$fracn!n^k(n-k)! =fracoverbracen(n-1)cdots (n-k+1)^k; factorsn^k= 1cdot left(1-frac1nright)cdots left(1-frack-1nright)stackreln to inftylongrightarrow 1$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 1 hour ago









          trancelocationtrancelocation

          14.1k1829




          14.1k1829











          • $begingroup$
            Thank you so much. I didn't know it was right there under my eyes.
            $endgroup$
            – billyandr
            1 hour ago










          • $begingroup$
            You are welcome. This "not seeing the obvious" just happens once in a while, I think, to all who do maths. So, it is good to have a math platform like this one. :-)
            $endgroup$
            – trancelocation
            1 hour ago

















          • $begingroup$
            Thank you so much. I didn't know it was right there under my eyes.
            $endgroup$
            – billyandr
            1 hour ago










          • $begingroup$
            You are welcome. This "not seeing the obvious" just happens once in a while, I think, to all who do maths. So, it is good to have a math platform like this one. :-)
            $endgroup$
            – trancelocation
            1 hour ago
















          $begingroup$
          Thank you so much. I didn't know it was right there under my eyes.
          $endgroup$
          – billyandr
          1 hour ago




          $begingroup$
          Thank you so much. I didn't know it was right there under my eyes.
          $endgroup$
          – billyandr
          1 hour ago












          $begingroup$
          You are welcome. This "not seeing the obvious" just happens once in a while, I think, to all who do maths. So, it is good to have a math platform like this one. :-)
          $endgroup$
          – trancelocation
          1 hour ago





          $begingroup$
          You are welcome. This "not seeing the obvious" just happens once in a while, I think, to all who do maths. So, it is good to have a math platform like this one. :-)
          $endgroup$
          – trancelocation
          1 hour ago












          2












          $begingroup$

          $$a_n=fracn!n^k(n-k)! implies log(a_n)=log(n!)-k log(n)-log((n-k)!)$$



          Use Stirling approximation and continue with Taylor series to get
          $$log(a_n)=frack(1-k)2 n+Oleft(frac1n^2right)$$ Continue with Taylor
          $$a_n=e^log(a_n)=1+frack(1-k)2 n+Oleft(frac1n^2right)$$






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            This has already a slight touch of overkill, hasn't it? :-)
            $endgroup$
            – trancelocation
            1 hour ago










          • $begingroup$
            @trancelocation. You are totally right for the limit. One of my manias is to always look at the approach to the limit. Have a look at matheducators.stackexchange.com/questions/8339/… . Cheers :-)
            $endgroup$
            – Claude Leibovici
            1 hour ago
















          2












          $begingroup$

          $$a_n=fracn!n^k(n-k)! implies log(a_n)=log(n!)-k log(n)-log((n-k)!)$$



          Use Stirling approximation and continue with Taylor series to get
          $$log(a_n)=frack(1-k)2 n+Oleft(frac1n^2right)$$ Continue with Taylor
          $$a_n=e^log(a_n)=1+frack(1-k)2 n+Oleft(frac1n^2right)$$






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            This has already a slight touch of overkill, hasn't it? :-)
            $endgroup$
            – trancelocation
            1 hour ago










          • $begingroup$
            @trancelocation. You are totally right for the limit. One of my manias is to always look at the approach to the limit. Have a look at matheducators.stackexchange.com/questions/8339/… . Cheers :-)
            $endgroup$
            – Claude Leibovici
            1 hour ago














          2












          2








          2





          $begingroup$

          $$a_n=fracn!n^k(n-k)! implies log(a_n)=log(n!)-k log(n)-log((n-k)!)$$



          Use Stirling approximation and continue with Taylor series to get
          $$log(a_n)=frack(1-k)2 n+Oleft(frac1n^2right)$$ Continue with Taylor
          $$a_n=e^log(a_n)=1+frack(1-k)2 n+Oleft(frac1n^2right)$$






          share|cite|improve this answer









          $endgroup$



          $$a_n=fracn!n^k(n-k)! implies log(a_n)=log(n!)-k log(n)-log((n-k)!)$$



          Use Stirling approximation and continue with Taylor series to get
          $$log(a_n)=frack(1-k)2 n+Oleft(frac1n^2right)$$ Continue with Taylor
          $$a_n=e^log(a_n)=1+frack(1-k)2 n+Oleft(frac1n^2right)$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 1 hour ago









          Claude LeiboviciClaude Leibovici

          125k1158135




          125k1158135











          • $begingroup$
            This has already a slight touch of overkill, hasn't it? :-)
            $endgroup$
            – trancelocation
            1 hour ago










          • $begingroup$
            @trancelocation. You are totally right for the limit. One of my manias is to always look at the approach to the limit. Have a look at matheducators.stackexchange.com/questions/8339/… . Cheers :-)
            $endgroup$
            – Claude Leibovici
            1 hour ago

















          • $begingroup$
            This has already a slight touch of overkill, hasn't it? :-)
            $endgroup$
            – trancelocation
            1 hour ago










          • $begingroup$
            @trancelocation. You are totally right for the limit. One of my manias is to always look at the approach to the limit. Have a look at matheducators.stackexchange.com/questions/8339/… . Cheers :-)
            $endgroup$
            – Claude Leibovici
            1 hour ago
















          $begingroup$
          This has already a slight touch of overkill, hasn't it? :-)
          $endgroup$
          – trancelocation
          1 hour ago




          $begingroup$
          This has already a slight touch of overkill, hasn't it? :-)
          $endgroup$
          – trancelocation
          1 hour ago












          $begingroup$
          @trancelocation. You are totally right for the limit. One of my manias is to always look at the approach to the limit. Have a look at matheducators.stackexchange.com/questions/8339/… . Cheers :-)
          $endgroup$
          – Claude Leibovici
          1 hour ago





          $begingroup$
          @trancelocation. You are totally right for the limit. One of my manias is to always look at the approach to the limit. Have a look at matheducators.stackexchange.com/questions/8339/… . Cheers :-)
          $endgroup$
          – Claude Leibovici
          1 hour ago


















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3185830%2fwhy-is-the-limit-of-this-expression-equal-to-1%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          ValueError: Error when checking input: expected conv2d_13_input to have shape (3, 150, 150) but got array with shape (150, 150, 3)2019 Community Moderator ElectionError when checking : expected dense_1_input to have shape (None, 5) but got array with shape (200, 1)Error 'Expected 2D array, got 1D array instead:'ValueError: Error when checking input: expected lstm_41_input to have 3 dimensions, but got array with shape (40000,100)ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)ValueError: Error when checking target: expected dense_2 to have shape (1,) but got array with shape (0,)Keras exception: ValueError: Error when checking input: expected conv2d_1_input to have shape (150, 150, 3) but got array with shape (256, 256, 3)Steps taking too long to completewhen checking input: expected dense_1_input to have shape (13328,) but got array with shape (317,)ValueError: Error when checking target: expected dense_3 to have shape (None, 1) but got array with shape (7715, 40000)Keras exception: Error when checking input: expected dense_input to have shape (2,) but got array with shape (1,)

          Ружовы пелікан Змест Знешні выгляд | Пашырэнне | Асаблівасці біялогіі | Літаратура | НавігацыяДагледжаная версіяправерана1 зменаДагледжаная версіяправерана1 змена/ 22697590 Сістэматыкана ВіківідахВыявына Вікісховішчы174693363011049382

          Illegal assignment from SObject to ContactFetching String, Id from Map - Illegal Assignment Id to Field / ObjectError: Compile Error: Illegal assignment from String to BooleanError: List has no rows for assignment to SObjectError on Test Class - System.QueryException: List has no rows for assignment to SObjectRemote action problemDML requires SObject or SObject list type error“Illegal assignment from List to List”Test Class Fail: Batch Class: System.QueryException: List has no rows for assignment to SObjectMapping to a user'List has no rows for assignment to SObject' Mystery