Clustering efficiency in a discrete time-series The 2019 Stack Overflow Developer Survey Results Are In Unicorn Meta Zoo #1: Why another podcast? Announcing the arrival of Valued Associate #679: Cesar Manara 2019 Moderator Election Q&A - Questionnaire 2019 Community Moderator Election ResultsCan you use clustering to pick out signals in noisy data?Classify Customers based on 2 features AND a Time series of eventsClustering based on partial information?Sample selection through clusteringMultidimensional Dynamic Time Warping Implementation in Python - confirm?how to compare different sets of time series dataWhy use SOM for clustering?Difference between Time series clustering and Time series SegmentationWhat is an efficient clustering approach for grouping multivariate timeseries data into optimally persistent states?Clustering credit card accounts based on their balance trajectories

First use of “packing” as in carrying a gun

Windows 10: How to Lock (not sleep) laptop on lid close?

Why not take a picture of a closer black hole?

Are spiders unable to hurt humans, especially very small spiders?

How to read αἱμύλιος or when to aspirate

Huge performance difference of the command find with and without using %M option to show permissions

Am I ethically obligated to go into work on an off day if the reason is sudden?

Is there a writing software that you can sort scenes like slides in PowerPoint?

What do I do when my TA workload is more than expected?

What force causes entropy to increase?

Circular reasoning in L'Hopital's rule

Is this wall load bearing? Blueprints and photos attached

Why doesn't a hydraulic lever violate conservation of energy?

Make it rain characters

Could an empire control the whole planet with today's comunication methods?

Sort list of array linked objects by keys and values

Is there a way to generate uniformly distributed points on a sphere from a fixed amount of random real numbers per point?

Do I have Disadvantage attacking with an off-hand weapon?

Loose spokes after only a few rides

Single author papers against my advisor's will?

should truth entail possible truth

Do working physicists consider Newtonian mechanics to be "falsified"?

Identify 80s or 90s comics with ripped creatures (not dwarves)

What is the padding with red substance inside of steak packaging?



Clustering efficiency in a discrete time-series



The 2019 Stack Overflow Developer Survey Results Are In
Unicorn Meta Zoo #1: Why another podcast?
Announcing the arrival of Valued Associate #679: Cesar Manara
2019 Moderator Election Q&A - Questionnaire
2019 Community Moderator Election ResultsCan you use clustering to pick out signals in noisy data?Classify Customers based on 2 features AND a Time series of eventsClustering based on partial information?Sample selection through clusteringMultidimensional Dynamic Time Warping Implementation in Python - confirm?how to compare different sets of time series dataWhy use SOM for clustering?Difference between Time series clustering and Time series SegmentationWhat is an efficient clustering approach for grouping multivariate timeseries data into optimally persistent states?Clustering credit card accounts based on their balance trajectories










5












$begingroup$


Is it possible to identify the point in time where the cluster separation is at its most in a discrete time series clustering?



Say I have 4 clusters of discrete time series and I want to pick a point in time where I can tell with the least bias which cluster it belongs to after a kmeans clustering, what other criteria than classification success can U use to identify my cluster separation performance?










share|improve this question











$endgroup$




bumped to the homepage by Community 41 mins ago


This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.



















    5












    $begingroup$


    Is it possible to identify the point in time where the cluster separation is at its most in a discrete time series clustering?



    Say I have 4 clusters of discrete time series and I want to pick a point in time where I can tell with the least bias which cluster it belongs to after a kmeans clustering, what other criteria than classification success can U use to identify my cluster separation performance?










    share|improve this question











    $endgroup$




    bumped to the homepage by Community 41 mins ago


    This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.

















      5












      5








      5


      1



      $begingroup$


      Is it possible to identify the point in time where the cluster separation is at its most in a discrete time series clustering?



      Say I have 4 clusters of discrete time series and I want to pick a point in time where I can tell with the least bias which cluster it belongs to after a kmeans clustering, what other criteria than classification success can U use to identify my cluster separation performance?










      share|improve this question











      $endgroup$




      Is it possible to identify the point in time where the cluster separation is at its most in a discrete time series clustering?



      Say I have 4 clusters of discrete time series and I want to pick a point in time where I can tell with the least bias which cluster it belongs to after a kmeans clustering, what other criteria than classification success can U use to identify my cluster separation performance?







      clustering time-series k-means






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Jan 12 '17 at 8:47









      Kasra Manshaei

      3,7991135




      3,7991135










      asked Apr 11 '16 at 5:22









      WazaaWazaa

      261




      261





      bumped to the homepage by Community 41 mins ago


      This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.







      bumped to the homepage by Community 41 mins ago


      This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          Let me start with an important point; what other criteria than classification success can U use to identify my cluster separation performance?:



          1. Classification as an indicator for clustering performance has an internal paradox. If you have the classification the clustering question does not apply anymore. These two concept are coming form two totally different philosophies so I would say be careful if you have already understood the concepts (what you say may make sense in semi-supervised learning which is not in your tags so I assume there is a misunderstanding).

          2. Clustering has no performance evaluation! this is the problem I see most of data scientists struggling with. In practice you may define a good criterion (but honestly, what is good?!!) and deliver your solution, but in research schema there is no evaluation for clustering as the question itself is not well-defined i.e. you never have label to be sure who is who so you need to define closeness of points from which the problem starts; how close is called closeness?!!

          3. Be careful about Curse of Dimensionality while using k-means for time-series clustering (I'm not sure how you do it).

          After these points let's have a look at your question.



          What are time-series? If time-series are pretty non-stationary or simply speaking is the dynamic behind variation is complicated enough, then there is not a one-to-one map for time-series characteristics and time points (imagine a simple ECG signal. It's pretty simple but if you explore research community you will find super sophisticated methods for feature extraction on ECGs. I'm pretty confident finding a time point at which ECGs differ is almost impossible.). You may extract features from your time series or embed it into some n-dimensional manifolds and look at it. In best case you may find some time-related features which describe your time-series and you may find some time-related criteria at which time-series differ (however I'd say it's not likely to find them).



          Assuming time-series are pretty well-behaved (!!) with a simple dynamic (should be super simple). Then a solution might be to define a distance function of time-series which outputs the pair-wise distances of all time-series as a single score. Then the maximum of this function returns the time-point at which these time-series are pretty distinguishable.



          If you provide more information on your data I might be able to give a more detailed precise answer.



          Good Luck!






          share|improve this answer









          $endgroup$













            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "557"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f11131%2fclustering-efficiency-in-a-discrete-time-series%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            Let me start with an important point; what other criteria than classification success can U use to identify my cluster separation performance?:



            1. Classification as an indicator for clustering performance has an internal paradox. If you have the classification the clustering question does not apply anymore. These two concept are coming form two totally different philosophies so I would say be careful if you have already understood the concepts (what you say may make sense in semi-supervised learning which is not in your tags so I assume there is a misunderstanding).

            2. Clustering has no performance evaluation! this is the problem I see most of data scientists struggling with. In practice you may define a good criterion (but honestly, what is good?!!) and deliver your solution, but in research schema there is no evaluation for clustering as the question itself is not well-defined i.e. you never have label to be sure who is who so you need to define closeness of points from which the problem starts; how close is called closeness?!!

            3. Be careful about Curse of Dimensionality while using k-means for time-series clustering (I'm not sure how you do it).

            After these points let's have a look at your question.



            What are time-series? If time-series are pretty non-stationary or simply speaking is the dynamic behind variation is complicated enough, then there is not a one-to-one map for time-series characteristics and time points (imagine a simple ECG signal. It's pretty simple but if you explore research community you will find super sophisticated methods for feature extraction on ECGs. I'm pretty confident finding a time point at which ECGs differ is almost impossible.). You may extract features from your time series or embed it into some n-dimensional manifolds and look at it. In best case you may find some time-related features which describe your time-series and you may find some time-related criteria at which time-series differ (however I'd say it's not likely to find them).



            Assuming time-series are pretty well-behaved (!!) with a simple dynamic (should be super simple). Then a solution might be to define a distance function of time-series which outputs the pair-wise distances of all time-series as a single score. Then the maximum of this function returns the time-point at which these time-series are pretty distinguishable.



            If you provide more information on your data I might be able to give a more detailed precise answer.



            Good Luck!






            share|improve this answer









            $endgroup$

















              0












              $begingroup$

              Let me start with an important point; what other criteria than classification success can U use to identify my cluster separation performance?:



              1. Classification as an indicator for clustering performance has an internal paradox. If you have the classification the clustering question does not apply anymore. These two concept are coming form two totally different philosophies so I would say be careful if you have already understood the concepts (what you say may make sense in semi-supervised learning which is not in your tags so I assume there is a misunderstanding).

              2. Clustering has no performance evaluation! this is the problem I see most of data scientists struggling with. In practice you may define a good criterion (but honestly, what is good?!!) and deliver your solution, but in research schema there is no evaluation for clustering as the question itself is not well-defined i.e. you never have label to be sure who is who so you need to define closeness of points from which the problem starts; how close is called closeness?!!

              3. Be careful about Curse of Dimensionality while using k-means for time-series clustering (I'm not sure how you do it).

              After these points let's have a look at your question.



              What are time-series? If time-series are pretty non-stationary or simply speaking is the dynamic behind variation is complicated enough, then there is not a one-to-one map for time-series characteristics and time points (imagine a simple ECG signal. It's pretty simple but if you explore research community you will find super sophisticated methods for feature extraction on ECGs. I'm pretty confident finding a time point at which ECGs differ is almost impossible.). You may extract features from your time series or embed it into some n-dimensional manifolds and look at it. In best case you may find some time-related features which describe your time-series and you may find some time-related criteria at which time-series differ (however I'd say it's not likely to find them).



              Assuming time-series are pretty well-behaved (!!) with a simple dynamic (should be super simple). Then a solution might be to define a distance function of time-series which outputs the pair-wise distances of all time-series as a single score. Then the maximum of this function returns the time-point at which these time-series are pretty distinguishable.



              If you provide more information on your data I might be able to give a more detailed precise answer.



              Good Luck!






              share|improve this answer









              $endgroup$















                0












                0








                0





                $begingroup$

                Let me start with an important point; what other criteria than classification success can U use to identify my cluster separation performance?:



                1. Classification as an indicator for clustering performance has an internal paradox. If you have the classification the clustering question does not apply anymore. These two concept are coming form two totally different philosophies so I would say be careful if you have already understood the concepts (what you say may make sense in semi-supervised learning which is not in your tags so I assume there is a misunderstanding).

                2. Clustering has no performance evaluation! this is the problem I see most of data scientists struggling with. In practice you may define a good criterion (but honestly, what is good?!!) and deliver your solution, but in research schema there is no evaluation for clustering as the question itself is not well-defined i.e. you never have label to be sure who is who so you need to define closeness of points from which the problem starts; how close is called closeness?!!

                3. Be careful about Curse of Dimensionality while using k-means for time-series clustering (I'm not sure how you do it).

                After these points let's have a look at your question.



                What are time-series? If time-series are pretty non-stationary or simply speaking is the dynamic behind variation is complicated enough, then there is not a one-to-one map for time-series characteristics and time points (imagine a simple ECG signal. It's pretty simple but if you explore research community you will find super sophisticated methods for feature extraction on ECGs. I'm pretty confident finding a time point at which ECGs differ is almost impossible.). You may extract features from your time series or embed it into some n-dimensional manifolds and look at it. In best case you may find some time-related features which describe your time-series and you may find some time-related criteria at which time-series differ (however I'd say it's not likely to find them).



                Assuming time-series are pretty well-behaved (!!) with a simple dynamic (should be super simple). Then a solution might be to define a distance function of time-series which outputs the pair-wise distances of all time-series as a single score. Then the maximum of this function returns the time-point at which these time-series are pretty distinguishable.



                If you provide more information on your data I might be able to give a more detailed precise answer.



                Good Luck!






                share|improve this answer









                $endgroup$



                Let me start with an important point; what other criteria than classification success can U use to identify my cluster separation performance?:



                1. Classification as an indicator for clustering performance has an internal paradox. If you have the classification the clustering question does not apply anymore. These two concept are coming form two totally different philosophies so I would say be careful if you have already understood the concepts (what you say may make sense in semi-supervised learning which is not in your tags so I assume there is a misunderstanding).

                2. Clustering has no performance evaluation! this is the problem I see most of data scientists struggling with. In practice you may define a good criterion (but honestly, what is good?!!) and deliver your solution, but in research schema there is no evaluation for clustering as the question itself is not well-defined i.e. you never have label to be sure who is who so you need to define closeness of points from which the problem starts; how close is called closeness?!!

                3. Be careful about Curse of Dimensionality while using k-means for time-series clustering (I'm not sure how you do it).

                After these points let's have a look at your question.



                What are time-series? If time-series are pretty non-stationary or simply speaking is the dynamic behind variation is complicated enough, then there is not a one-to-one map for time-series characteristics and time points (imagine a simple ECG signal. It's pretty simple but if you explore research community you will find super sophisticated methods for feature extraction on ECGs. I'm pretty confident finding a time point at which ECGs differ is almost impossible.). You may extract features from your time series or embed it into some n-dimensional manifolds and look at it. In best case you may find some time-related features which describe your time-series and you may find some time-related criteria at which time-series differ (however I'd say it's not likely to find them).



                Assuming time-series are pretty well-behaved (!!) with a simple dynamic (should be super simple). Then a solution might be to define a distance function of time-series which outputs the pair-wise distances of all time-series as a single score. Then the maximum of this function returns the time-point at which these time-series are pretty distinguishable.



                If you provide more information on your data I might be able to give a more detailed precise answer.



                Good Luck!







                share|improve this answer












                share|improve this answer



                share|improve this answer










                answered Jan 12 '17 at 9:14









                Kasra ManshaeiKasra Manshaei

                3,7991135




                3,7991135



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Data Science Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f11131%2fclustering-efficiency-in-a-discrete-time-series%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Францішак Багушэвіч Змест Сям'я | Біяграфія | Творчасць | Мова Багушэвіча | Ацэнкі дзейнасці | Цікавыя факты | Спадчына | Выбраная бібліяграфія | Ушанаванне памяці | У філатэліі | Зноскі | Літаратура | Спасылкі | НавігацыяЛяхоўскі У. Рупіўся дзеля Бога і людзей: Жыццёвы шлях Лявона Вітан-Дубейкаўскага // Вольскі і Памідораў з песняй пра немца Адвакат, паэт, народны заступнік Ашмянскі веснікВ Минске появится площадь Богушевича и улица Сырокомли, Белорусская деловая газета, 19 июля 2001 г.Айцец беларускай нацыянальнай ідэі паўстаў у бронзе Сяргей Аляксандравіч Адашкевіч (1918, Мінск). 80-я гады. Бюст «Францішак Багушэвіч».Яўген Мікалаевіч Ціхановіч. «Партрэт Францішка Багушэвіча»Мікола Мікалаевіч Купава. «Партрэт зачынальніка новай беларускай літаратуры Францішка Багушэвіча»Уладзімір Іванавіч Мелехаў. На помніку «Змагарам за родную мову» Барэльеф «Францішак Багушэвіч»Памяць пра Багушэвіча на Віленшчыне Страчаная сталіца. Беларускія шыльды на вуліцах Вільні«Krynica». Ideologia i przywódcy białoruskiego katolicyzmuФранцішак БагушэвічТворы на knihi.comТворы Францішка Багушэвіча на bellib.byСодаль Уладзімір. Францішак Багушэвіч на Лідчыне;Луцкевіч Антон. Жыцьцё і творчасьць Фр. Багушэвіча ў успамінах ягоных сучасьнікаў // Запісы Беларускага Навуковага таварыства. Вільня, 1938. Сшытак 1. С. 16-34.Большая российская1188761710000 0000 5537 633Xn9209310021619551927869394п

                    Беларусь Змест Назва Гісторыя Геаграфія Сімволіка Дзяржаўны лад Палітычныя партыі Міжнароднае становішча і знешняя палітыка Адміністрацыйны падзел Насельніцтва Эканоміка Культура і грамадства Сацыяльная сфера Узброеныя сілы Заўвагі Літаратура Спасылкі НавігацыяHGЯOiТоп-2011 г. (па версіі ej.by)Топ-2013 г. (па версіі ej.by)Топ-2016 г. (па версіі ej.by)Топ-2017 г. (па версіі ej.by)Нацыянальны статыстычны камітэт Рэспублікі БеларусьШчыльнасць насельніцтва па краінахhttp://naviny.by/rubrics/society/2011/09/16/ic_articles_116_175144/А. Калечыц, У. Ксяндзоў. Спробы засялення краю неандэртальскім чалавекам.І ў Менску былі мамантыА. Калечыц, У. Ксяндзоў. Старажытны каменны век (палеаліт). Першапачатковае засяленне тэрыторыіГ. Штыхаў. Балты і славяне ў VI—VIII стст.М. Клімаў. Полацкае княства ў IX—XI стст.Г. Штыхаў, В. Ляўко. Палітычная гісторыя Полацкай зямліГ. Штыхаў. Дзяржаўны лад у землях-княствахГ. Штыхаў. Дзяржаўны лад у землях-княствахБеларускія землі ў складзе Вялікага Княства ЛітоўскагаЛюблінская унія 1569 г."The Early Stages of Independence"Zapomniane prawdy25 гадоў таму было аб'яўлена, што Язэп Пілсудскі — беларус (фота)Наша вадаДакументы ЧАЭС: Забруджванне тэрыторыі Беларусі « ЧАЭС Зона адчужэнняСведения о политических партиях, зарегистрированных в Республике Беларусь // Министерство юстиции Республики БеларусьСтатыстычны бюлетэнь „Полаўзроставая структура насельніцтва Рэспублікі Беларусь на 1 студзеня 2012 года і сярэднегадовая колькасць насельніцтва за 2011 год“Индекс человеческого развития Беларуси — не было бы нижеБеларусь занимает первое место в СНГ по индексу развития с учетом гендерного факцёраНацыянальны статыстычны камітэт Рэспублікі БеларусьКанстытуцыя РБ. Артыкул 17Трансфармацыйныя задачы БеларусіВыйсце з крызісу — далейшае рэфармаванне Беларускі рубель — сусветны лідар па дэвальвацыяхПра змену коштаў у кастрычніку 2011 г.Бядней за беларусаў у СНД толькі таджыкіСярэдні заробак у верасні дасягнуў 2,26 мільёна рублёўЭканомікаГаласуем за ТОП-100 беларускай прозыСучасныя беларускія мастакіАрхитектура Беларуси BELARUS.BYА. Каханоўскі. Культура Беларусі ўсярэдзіне XVII—XVIII ст.Анталогія беларускай народнай песні, гуказапісы спеваўБеларускія Музычныя IнструментыБеларускі рок, які мы страцілі. Топ-10 гуртоў«Мясцовы час» — нязгаслая легенда беларускай рок-музыкіСЯРГЕЙ БУДКІН. МЫ НЯ ЗНАЕМ СВАЁЙ МУЗЫКІМ. А. Каладзінскі. НАРОДНЫ ТЭАТРМагнацкія культурныя цэнтрыПублічная дыскусія «Беларуская новая пьеса: без беларускай мовы ці беларуская?»Беларускія драматургі па-ранейшаму лепш ставяцца за мяжой, чым на радзіме«Працэс незалежнага кіно пайшоў, і дзяржаву турбуе яго непадкантрольнасць»Беларускія філосафы ў пошуках прасторыВсе идём в библиотекуАрхіваванаАб Нацыянальнай праграме даследавання і выкарыстання касмічнай прасторы ў мірных мэтах на 2008—2012 гадыУ космас — разам.У суседнім з Барысаўскім раёне пабудуюць Камандна-вымяральны пунктСвяты і абрады беларусаў«Мірныя бульбашы з малой краіны» — 5 непраўдзівых стэрэатыпаў пра БеларусьМ. Раманюк. Беларускае народнае адзеннеУ Беларусі скарачаецца колькасць злачынстваўЛукашэнка незадаволены мінскімі ўладамі Крадзяжы складаюць у Мінску каля 70% злачынстваў Узровень злачыннасці ў Мінскай вобласці — адзін з самых высокіх у краіне Генпракуратура аналізуе стан са злачыннасцю ў Беларусі па каэфіцыенце злачыннасці У Беларусі стабілізавалася крымінагеннае становішча, лічыць генпракурорЗамежнікі сталі здзяйсняць у Беларусі больш злачынстваўМУС Беларусі турбуе рост рэцыдыўнай злачыннасціЯ з ЖЭСа. Дазволіце вас абкрасці! Рэйтынг усіх службаў і падраздзяленняў ГУУС Мінгарвыканкама вырасАб КДБ РБГісторыя Аператыўна-аналітычнага цэнтра РБГісторыя ДКФРТаможняagentura.ruБеларусьBelarus.by — Афіцыйны сайт Рэспублікі БеларусьСайт урада БеларусіRadzima.org — Збор архітэктурных помнікаў, гісторыя Беларусі«Глобус Беларуси»Гербы и флаги БеларусиАсаблівасці каменнага веку на БеларусіА. Калечыц, У. Ксяндзоў. Старажытны каменны век (палеаліт). Першапачатковае засяленне тэрыторыіУ. Ксяндзоў. Сярэдні каменны век (мезаліт). Засяленне краю плямёнамі паляўнічых, рыбакоў і збіральнікаўА. Калечыц, М. Чарняўскі. Плямёны на тэрыторыі Беларусі ў новым каменным веку (неаліце)А. Калечыц, У. Ксяндзоў, М. Чарняўскі. Гаспадарчыя заняткі ў каменным векуЭ. Зайкоўскі. Духоўная культура ў каменным векуАсаблівасці бронзавага веку на БеларусіФарміраванне супольнасцей ранняга перыяду бронзавага векуФотографии БеларусиРоля беларускіх зямель ва ўтварэнні і ўмацаванні ВКЛВ. Фадзеева. З гісторыі развіцця беларускай народнай вышыўкіDMOZGran catalanaБольшая российскаяBritannica (анлайн)Швейцарскі гістарычны15325917611952699xDA123282154079143-90000 0001 2171 2080n9112870100577502ge128882171858027501086026362074122714179пппппп

                    ValueError: Expected n_neighbors <= n_samples, but n_samples = 1, n_neighbors = 6 (SMOTE) The 2019 Stack Overflow Developer Survey Results Are InCan SMOTE be applied over sequence of words (sentences)?ValueError when doing validation with random forestsSMOTE and multi class oversamplingLogic behind SMOTE-NC?ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)SmoteBoost: Should SMOTE be ran individually for each iteration/tree in the boosting?solving multi-class imbalance classification using smote and OSSUsing SMOTE for Synthetic Data generation to improve performance on unbalanced dataproblem of entry format for a simple model in KerasSVM SMOTE fit_resample() function runs forever with no result