Are there continuous functions who are the same in an interval but differ in at least one other point? The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Function which is continuous everywhere in its domain, but differentiable only at one pointAre there non-periodic continuous functions with this property?Derivative defined at some point but not continuous there?Are the two statements about continuous functions equivalent?Prove or disprove: for any two given functions, one must be upper bounding the otherIf a function is derivable in a point then there exists an open interval around the point in which the function is continuousIs there a function on a compact interval that is differentiable but not Lipschitz continuous?Are there continuous functions for which the epsilon-delta property doesn't hold?Show that two continuous functions that are surjective over the same interval intersectProve a non-constant continuous function on a compact interval must admit at least one non-local extremum

How to make Illustrator type tool selection automatically adapt with text length

Using dividends to reduce short term capital gains?

Match Roman Numerals

Can withdrawing asylum be illegal?

One-dimensional Japanese puzzle

What force causes entropy to increase?

Why are PDP-7-style microprogrammed instructions out of vogue?

What can I do if neighbor is blocking my solar panels intentionally?

Can I visit the Trinity College (Cambridge) library and see some of their rare books

Does Parliament need to approve the new Brexit delay to 31 October 2019?

The following signatures were invalid: EXPKEYSIG 1397BC53640DB551

Homework question about an engine pulling a train

Can a flute soloist sit?

Can the DM override racial traits?

Working through the single responsibility principle (SRP) in Python when calls are expensive

Drawing vertical/oblique lines in Metrical tree (tikz-qtree, tipa)

How did the audience guess the pentatonic scale in Bobby McFerrin's presentation?

"... to apply for a visa" or "... and applied for a visa"?

Is there a writing software that you can sort scenes like slides in PowerPoint?

Why doesn't a hydraulic lever violate conservation of energy?

How to handle characters who are more educated than the author?

Is it ethical to upload a automatically generated paper to a non peer-reviewed site as part of a larger research?

What aspect of planet Earth must be changed to prevent the industrial revolution?

Store Dynamic-accessible hidden metadata in a cell



Are there continuous functions who are the same in an interval but differ in at least one other point?



The 2019 Stack Overflow Developer Survey Results Are In
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Function which is continuous everywhere in its domain, but differentiable only at one pointAre there non-periodic continuous functions with this property?Derivative defined at some point but not continuous there?Are the two statements about continuous functions equivalent?Prove or disprove: for any two given functions, one must be upper bounding the otherIf a function is derivable in a point then there exists an open interval around the point in which the function is continuousIs there a function on a compact interval that is differentiable but not Lipschitz continuous?Are there continuous functions for which the epsilon-delta property doesn't hold?Show that two continuous functions that are surjective over the same interval intersectProve a non-constant continuous function on a compact interval must admit at least one non-local extremum










2












$begingroup$


You are given a function $f: mathbbRrightarrow mathbbR$. Every derivative $fracd^ndx^n(f(x)), ,n >0$ of the function is continuous.



Is there a function $g: mathbbRrightarrow mathbbR$, for which every derivative $fracd^ndx^n(g(x)), ,n >0$ is also continuous, such that:
$$forall xin[a,b]: , g(x) = f(x)land , exists x notin [a,b]: f(x) neq g(x),, a neq b$$



Thanks!










share|cite|improve this question











$endgroup$
















    2












    $begingroup$


    You are given a function $f: mathbbRrightarrow mathbbR$. Every derivative $fracd^ndx^n(f(x)), ,n >0$ of the function is continuous.



    Is there a function $g: mathbbRrightarrow mathbbR$, for which every derivative $fracd^ndx^n(g(x)), ,n >0$ is also continuous, such that:
    $$forall xin[a,b]: , g(x) = f(x)land , exists x notin [a,b]: f(x) neq g(x),, a neq b$$



    Thanks!










    share|cite|improve this question











    $endgroup$














      2












      2








      2





      $begingroup$


      You are given a function $f: mathbbRrightarrow mathbbR$. Every derivative $fracd^ndx^n(f(x)), ,n >0$ of the function is continuous.



      Is there a function $g: mathbbRrightarrow mathbbR$, for which every derivative $fracd^ndx^n(g(x)), ,n >0$ is also continuous, such that:
      $$forall xin[a,b]: , g(x) = f(x)land , exists x notin [a,b]: f(x) neq g(x),, a neq b$$



      Thanks!










      share|cite|improve this question











      $endgroup$




      You are given a function $f: mathbbRrightarrow mathbbR$. Every derivative $fracd^ndx^n(f(x)), ,n >0$ of the function is continuous.



      Is there a function $g: mathbbRrightarrow mathbbR$, for which every derivative $fracd^ndx^n(g(x)), ,n >0$ is also continuous, such that:
      $$forall xin[a,b]: , g(x) = f(x)land , exists x notin [a,b]: f(x) neq g(x),, a neq b$$



      Thanks!







      real-analysis calculus






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 1 hour ago









      ZeroXLR

      1,528519




      1,528519










      asked 3 hours ago









      TVSuchtyTVSuchty

      325




      325




















          2 Answers
          2






          active

          oldest

          votes


















          6












          $begingroup$

          Define the real functions $f$ and $g$ thus:
          $$
          f(x) = begincases expBig(-frac1(x - 1)^2Big) &textif x > 1 \
          0 &textif x in [-1, 1] \
          expBig(-frac1(x + 1)^2Big) &textif x < -1
          endcases
          $$
          and
          $g(x) = 0$. $f$ and $g$ are both $0$ on $[-1, 1]$ but they differ in value everywhere else.



          Obviously $g$ is continuously differentiable infinitely many times as it is a constant function. You can also check that $f$ is continuously differentiable infinitely many times at $x = -1$ and $x = 1$ by applying L'Hôpital's rule inductively. Checking this is a fine exercise in Real Analysis; you should try it. Here is a first taste of it:
          beginalign*
          lim_x to 1^+fracdf(x)dx &= limlimits_x to 1^+frac2expbig(- frac1(x - 1)^2big)(x - 1)^3 \
          &= 2lim_x to 1^+fracfrac1(x - 1)^3expbig(frac1(x - 1)^2big) quadtextthis limit is of the form fracinftyinfty text so L'Hôpital applies \
          &= 2 lim_x to 1^+fracfracddx(x - 1)^-3fracddxexpbig(frac1(x - 1)^2big) text by L'Hôpital \
          &= 2 lim_x to 1^+frac-3(x - 1)^-4-2expbig(frac1(x - 1)^2big)(x - 1)^-3 \
          &= 3lim_x to 1^+frac(x - 1)^-1expbig(frac1(x - 1)^2big) quadtextagain, this has the form fracinftyinfty text so L'Hôpital applies \
          &= 3 lim_x to 1^+fracfracddx(x - 1)^-1fracddxexpbig(frac1(x - 1)^2big) text by L'Hôpital \
          &= 3 lim_x to 1^+frac-(x - 1)^-2-2expbig(frac1(x - 1)^2big)(x - 1)^-3 \
          &= frac32 lim_x to 1^+fracx - 1expbig(frac1(x - 1)^2big) \
          &= frac32 lim_x to 1^+ Big[(x - 1)expBig(-frac1(x - 1)^2Big)Big] \
          &= frac32 Big[lim_x to 1^+ (x - 1)Big] Big[lim_x to 1^+ expBig(-frac1(x - 1)^2Big)Big] = frac32 times 0 times 0 = 0
          endalign*
          That was a long calculation but take my word: it can be repeated inductively to show that $limlimits_x to 1+fracd^nfdx^n = 0$ for all $n in mathbbZ_+!$ At all other points i.e. on $(-infty, -1) cup (-1, 1) cup (1, infty)$, $f$ is infinitely differentiable because exponentials and constant functions are infinitely differentiable.



          Bonus Fact:



          Both $fracd^n f(x)dx^n$ and $fracd^n g(x)dx^n$ also have the same value $0$ on $[-1, 1]$ for all positive integers $n$!






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Well Done! Unfortunately, I am a high school student and never heard of L'Hôpitals Rule. EDIT: This function is actually amazing, never saw something like this before.
            $endgroup$
            – TVSuchty
            3 hours ago







          • 1




            $begingroup$
            It basically says under certain conditions, $limlimits_x to a(f(x) / g(x)) = limlimits_x to a(fracd f(x)dx / fracd g(x)dx)$. en.wikipedia.org/wiki/L%27H%C3%B4pital%27s_rule
            $endgroup$
            – ZeroXLR
            3 hours ago











          • $begingroup$
            I am stunned. Do you know of more complex solutions?
            $endgroup$
            – TVSuchty
            2 hours ago










          • $begingroup$
            @TVSuchty If you are asking questions like this at high school and are studying math seriously, you will very soon learn about this rule (and a whole host of other rules from Calculus). Take a re-look at that function afterwards.
            $endgroup$
            – ZeroXLR
            2 hours ago










          • $begingroup$
            I look forward to. Thank you for your assistance.
            $endgroup$
            – TVSuchty
            2 hours ago


















          0












          $begingroup$

          Taylors theorem implies that if two functions are the same in one interval, they must be the same everywhere. This is because when you look at one point in the interval, the nth derivatives of both will be equal. Thus, their Taylor series centered at that point will be equal. Then you can move away from the center and find the Taylor series of both centered around another point to get more information about the function, and they will still be equal. So anywhere you look, the two functions will be equal. (This applies for all analytic functions, not so much for piecewise functions)






          share|cite|improve this answer









          $endgroup$













            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3185630%2fare-there-continuous-functions-who-are-the-same-in-an-interval-but-differ-in-at%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            6












            $begingroup$

            Define the real functions $f$ and $g$ thus:
            $$
            f(x) = begincases expBig(-frac1(x - 1)^2Big) &textif x > 1 \
            0 &textif x in [-1, 1] \
            expBig(-frac1(x + 1)^2Big) &textif x < -1
            endcases
            $$
            and
            $g(x) = 0$. $f$ and $g$ are both $0$ on $[-1, 1]$ but they differ in value everywhere else.



            Obviously $g$ is continuously differentiable infinitely many times as it is a constant function. You can also check that $f$ is continuously differentiable infinitely many times at $x = -1$ and $x = 1$ by applying L'Hôpital's rule inductively. Checking this is a fine exercise in Real Analysis; you should try it. Here is a first taste of it:
            beginalign*
            lim_x to 1^+fracdf(x)dx &= limlimits_x to 1^+frac2expbig(- frac1(x - 1)^2big)(x - 1)^3 \
            &= 2lim_x to 1^+fracfrac1(x - 1)^3expbig(frac1(x - 1)^2big) quadtextthis limit is of the form fracinftyinfty text so L'Hôpital applies \
            &= 2 lim_x to 1^+fracfracddx(x - 1)^-3fracddxexpbig(frac1(x - 1)^2big) text by L'Hôpital \
            &= 2 lim_x to 1^+frac-3(x - 1)^-4-2expbig(frac1(x - 1)^2big)(x - 1)^-3 \
            &= 3lim_x to 1^+frac(x - 1)^-1expbig(frac1(x - 1)^2big) quadtextagain, this has the form fracinftyinfty text so L'Hôpital applies \
            &= 3 lim_x to 1^+fracfracddx(x - 1)^-1fracddxexpbig(frac1(x - 1)^2big) text by L'Hôpital \
            &= 3 lim_x to 1^+frac-(x - 1)^-2-2expbig(frac1(x - 1)^2big)(x - 1)^-3 \
            &= frac32 lim_x to 1^+fracx - 1expbig(frac1(x - 1)^2big) \
            &= frac32 lim_x to 1^+ Big[(x - 1)expBig(-frac1(x - 1)^2Big)Big] \
            &= frac32 Big[lim_x to 1^+ (x - 1)Big] Big[lim_x to 1^+ expBig(-frac1(x - 1)^2Big)Big] = frac32 times 0 times 0 = 0
            endalign*
            That was a long calculation but take my word: it can be repeated inductively to show that $limlimits_x to 1+fracd^nfdx^n = 0$ for all $n in mathbbZ_+!$ At all other points i.e. on $(-infty, -1) cup (-1, 1) cup (1, infty)$, $f$ is infinitely differentiable because exponentials and constant functions are infinitely differentiable.



            Bonus Fact:



            Both $fracd^n f(x)dx^n$ and $fracd^n g(x)dx^n$ also have the same value $0$ on $[-1, 1]$ for all positive integers $n$!






            share|cite|improve this answer











            $endgroup$












            • $begingroup$
              Well Done! Unfortunately, I am a high school student and never heard of L'Hôpitals Rule. EDIT: This function is actually amazing, never saw something like this before.
              $endgroup$
              – TVSuchty
              3 hours ago







            • 1




              $begingroup$
              It basically says under certain conditions, $limlimits_x to a(f(x) / g(x)) = limlimits_x to a(fracd f(x)dx / fracd g(x)dx)$. en.wikipedia.org/wiki/L%27H%C3%B4pital%27s_rule
              $endgroup$
              – ZeroXLR
              3 hours ago











            • $begingroup$
              I am stunned. Do you know of more complex solutions?
              $endgroup$
              – TVSuchty
              2 hours ago










            • $begingroup$
              @TVSuchty If you are asking questions like this at high school and are studying math seriously, you will very soon learn about this rule (and a whole host of other rules from Calculus). Take a re-look at that function afterwards.
              $endgroup$
              – ZeroXLR
              2 hours ago










            • $begingroup$
              I look forward to. Thank you for your assistance.
              $endgroup$
              – TVSuchty
              2 hours ago















            6












            $begingroup$

            Define the real functions $f$ and $g$ thus:
            $$
            f(x) = begincases expBig(-frac1(x - 1)^2Big) &textif x > 1 \
            0 &textif x in [-1, 1] \
            expBig(-frac1(x + 1)^2Big) &textif x < -1
            endcases
            $$
            and
            $g(x) = 0$. $f$ and $g$ are both $0$ on $[-1, 1]$ but they differ in value everywhere else.



            Obviously $g$ is continuously differentiable infinitely many times as it is a constant function. You can also check that $f$ is continuously differentiable infinitely many times at $x = -1$ and $x = 1$ by applying L'Hôpital's rule inductively. Checking this is a fine exercise in Real Analysis; you should try it. Here is a first taste of it:
            beginalign*
            lim_x to 1^+fracdf(x)dx &= limlimits_x to 1^+frac2expbig(- frac1(x - 1)^2big)(x - 1)^3 \
            &= 2lim_x to 1^+fracfrac1(x - 1)^3expbig(frac1(x - 1)^2big) quadtextthis limit is of the form fracinftyinfty text so L'Hôpital applies \
            &= 2 lim_x to 1^+fracfracddx(x - 1)^-3fracddxexpbig(frac1(x - 1)^2big) text by L'Hôpital \
            &= 2 lim_x to 1^+frac-3(x - 1)^-4-2expbig(frac1(x - 1)^2big)(x - 1)^-3 \
            &= 3lim_x to 1^+frac(x - 1)^-1expbig(frac1(x - 1)^2big) quadtextagain, this has the form fracinftyinfty text so L'Hôpital applies \
            &= 3 lim_x to 1^+fracfracddx(x - 1)^-1fracddxexpbig(frac1(x - 1)^2big) text by L'Hôpital \
            &= 3 lim_x to 1^+frac-(x - 1)^-2-2expbig(frac1(x - 1)^2big)(x - 1)^-3 \
            &= frac32 lim_x to 1^+fracx - 1expbig(frac1(x - 1)^2big) \
            &= frac32 lim_x to 1^+ Big[(x - 1)expBig(-frac1(x - 1)^2Big)Big] \
            &= frac32 Big[lim_x to 1^+ (x - 1)Big] Big[lim_x to 1^+ expBig(-frac1(x - 1)^2Big)Big] = frac32 times 0 times 0 = 0
            endalign*
            That was a long calculation but take my word: it can be repeated inductively to show that $limlimits_x to 1+fracd^nfdx^n = 0$ for all $n in mathbbZ_+!$ At all other points i.e. on $(-infty, -1) cup (-1, 1) cup (1, infty)$, $f$ is infinitely differentiable because exponentials and constant functions are infinitely differentiable.



            Bonus Fact:



            Both $fracd^n f(x)dx^n$ and $fracd^n g(x)dx^n$ also have the same value $0$ on $[-1, 1]$ for all positive integers $n$!






            share|cite|improve this answer











            $endgroup$












            • $begingroup$
              Well Done! Unfortunately, I am a high school student and never heard of L'Hôpitals Rule. EDIT: This function is actually amazing, never saw something like this before.
              $endgroup$
              – TVSuchty
              3 hours ago







            • 1




              $begingroup$
              It basically says under certain conditions, $limlimits_x to a(f(x) / g(x)) = limlimits_x to a(fracd f(x)dx / fracd g(x)dx)$. en.wikipedia.org/wiki/L%27H%C3%B4pital%27s_rule
              $endgroup$
              – ZeroXLR
              3 hours ago











            • $begingroup$
              I am stunned. Do you know of more complex solutions?
              $endgroup$
              – TVSuchty
              2 hours ago










            • $begingroup$
              @TVSuchty If you are asking questions like this at high school and are studying math seriously, you will very soon learn about this rule (and a whole host of other rules from Calculus). Take a re-look at that function afterwards.
              $endgroup$
              – ZeroXLR
              2 hours ago










            • $begingroup$
              I look forward to. Thank you for your assistance.
              $endgroup$
              – TVSuchty
              2 hours ago













            6












            6








            6





            $begingroup$

            Define the real functions $f$ and $g$ thus:
            $$
            f(x) = begincases expBig(-frac1(x - 1)^2Big) &textif x > 1 \
            0 &textif x in [-1, 1] \
            expBig(-frac1(x + 1)^2Big) &textif x < -1
            endcases
            $$
            and
            $g(x) = 0$. $f$ and $g$ are both $0$ on $[-1, 1]$ but they differ in value everywhere else.



            Obviously $g$ is continuously differentiable infinitely many times as it is a constant function. You can also check that $f$ is continuously differentiable infinitely many times at $x = -1$ and $x = 1$ by applying L'Hôpital's rule inductively. Checking this is a fine exercise in Real Analysis; you should try it. Here is a first taste of it:
            beginalign*
            lim_x to 1^+fracdf(x)dx &= limlimits_x to 1^+frac2expbig(- frac1(x - 1)^2big)(x - 1)^3 \
            &= 2lim_x to 1^+fracfrac1(x - 1)^3expbig(frac1(x - 1)^2big) quadtextthis limit is of the form fracinftyinfty text so L'Hôpital applies \
            &= 2 lim_x to 1^+fracfracddx(x - 1)^-3fracddxexpbig(frac1(x - 1)^2big) text by L'Hôpital \
            &= 2 lim_x to 1^+frac-3(x - 1)^-4-2expbig(frac1(x - 1)^2big)(x - 1)^-3 \
            &= 3lim_x to 1^+frac(x - 1)^-1expbig(frac1(x - 1)^2big) quadtextagain, this has the form fracinftyinfty text so L'Hôpital applies \
            &= 3 lim_x to 1^+fracfracddx(x - 1)^-1fracddxexpbig(frac1(x - 1)^2big) text by L'Hôpital \
            &= 3 lim_x to 1^+frac-(x - 1)^-2-2expbig(frac1(x - 1)^2big)(x - 1)^-3 \
            &= frac32 lim_x to 1^+fracx - 1expbig(frac1(x - 1)^2big) \
            &= frac32 lim_x to 1^+ Big[(x - 1)expBig(-frac1(x - 1)^2Big)Big] \
            &= frac32 Big[lim_x to 1^+ (x - 1)Big] Big[lim_x to 1^+ expBig(-frac1(x - 1)^2Big)Big] = frac32 times 0 times 0 = 0
            endalign*
            That was a long calculation but take my word: it can be repeated inductively to show that $limlimits_x to 1+fracd^nfdx^n = 0$ for all $n in mathbbZ_+!$ At all other points i.e. on $(-infty, -1) cup (-1, 1) cup (1, infty)$, $f$ is infinitely differentiable because exponentials and constant functions are infinitely differentiable.



            Bonus Fact:



            Both $fracd^n f(x)dx^n$ and $fracd^n g(x)dx^n$ also have the same value $0$ on $[-1, 1]$ for all positive integers $n$!






            share|cite|improve this answer











            $endgroup$



            Define the real functions $f$ and $g$ thus:
            $$
            f(x) = begincases expBig(-frac1(x - 1)^2Big) &textif x > 1 \
            0 &textif x in [-1, 1] \
            expBig(-frac1(x + 1)^2Big) &textif x < -1
            endcases
            $$
            and
            $g(x) = 0$. $f$ and $g$ are both $0$ on $[-1, 1]$ but they differ in value everywhere else.



            Obviously $g$ is continuously differentiable infinitely many times as it is a constant function. You can also check that $f$ is continuously differentiable infinitely many times at $x = -1$ and $x = 1$ by applying L'Hôpital's rule inductively. Checking this is a fine exercise in Real Analysis; you should try it. Here is a first taste of it:
            beginalign*
            lim_x to 1^+fracdf(x)dx &= limlimits_x to 1^+frac2expbig(- frac1(x - 1)^2big)(x - 1)^3 \
            &= 2lim_x to 1^+fracfrac1(x - 1)^3expbig(frac1(x - 1)^2big) quadtextthis limit is of the form fracinftyinfty text so L'Hôpital applies \
            &= 2 lim_x to 1^+fracfracddx(x - 1)^-3fracddxexpbig(frac1(x - 1)^2big) text by L'Hôpital \
            &= 2 lim_x to 1^+frac-3(x - 1)^-4-2expbig(frac1(x - 1)^2big)(x - 1)^-3 \
            &= 3lim_x to 1^+frac(x - 1)^-1expbig(frac1(x - 1)^2big) quadtextagain, this has the form fracinftyinfty text so L'Hôpital applies \
            &= 3 lim_x to 1^+fracfracddx(x - 1)^-1fracddxexpbig(frac1(x - 1)^2big) text by L'Hôpital \
            &= 3 lim_x to 1^+frac-(x - 1)^-2-2expbig(frac1(x - 1)^2big)(x - 1)^-3 \
            &= frac32 lim_x to 1^+fracx - 1expbig(frac1(x - 1)^2big) \
            &= frac32 lim_x to 1^+ Big[(x - 1)expBig(-frac1(x - 1)^2Big)Big] \
            &= frac32 Big[lim_x to 1^+ (x - 1)Big] Big[lim_x to 1^+ expBig(-frac1(x - 1)^2Big)Big] = frac32 times 0 times 0 = 0
            endalign*
            That was a long calculation but take my word: it can be repeated inductively to show that $limlimits_x to 1+fracd^nfdx^n = 0$ for all $n in mathbbZ_+!$ At all other points i.e. on $(-infty, -1) cup (-1, 1) cup (1, infty)$, $f$ is infinitely differentiable because exponentials and constant functions are infinitely differentiable.



            Bonus Fact:



            Both $fracd^n f(x)dx^n$ and $fracd^n g(x)dx^n$ also have the same value $0$ on $[-1, 1]$ for all positive integers $n$!







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited 2 hours ago

























            answered 3 hours ago









            ZeroXLRZeroXLR

            1,528519




            1,528519











            • $begingroup$
              Well Done! Unfortunately, I am a high school student and never heard of L'Hôpitals Rule. EDIT: This function is actually amazing, never saw something like this before.
              $endgroup$
              – TVSuchty
              3 hours ago







            • 1




              $begingroup$
              It basically says under certain conditions, $limlimits_x to a(f(x) / g(x)) = limlimits_x to a(fracd f(x)dx / fracd g(x)dx)$. en.wikipedia.org/wiki/L%27H%C3%B4pital%27s_rule
              $endgroup$
              – ZeroXLR
              3 hours ago











            • $begingroup$
              I am stunned. Do you know of more complex solutions?
              $endgroup$
              – TVSuchty
              2 hours ago










            • $begingroup$
              @TVSuchty If you are asking questions like this at high school and are studying math seriously, you will very soon learn about this rule (and a whole host of other rules from Calculus). Take a re-look at that function afterwards.
              $endgroup$
              – ZeroXLR
              2 hours ago










            • $begingroup$
              I look forward to. Thank you for your assistance.
              $endgroup$
              – TVSuchty
              2 hours ago
















            • $begingroup$
              Well Done! Unfortunately, I am a high school student and never heard of L'Hôpitals Rule. EDIT: This function is actually amazing, never saw something like this before.
              $endgroup$
              – TVSuchty
              3 hours ago







            • 1




              $begingroup$
              It basically says under certain conditions, $limlimits_x to a(f(x) / g(x)) = limlimits_x to a(fracd f(x)dx / fracd g(x)dx)$. en.wikipedia.org/wiki/L%27H%C3%B4pital%27s_rule
              $endgroup$
              – ZeroXLR
              3 hours ago











            • $begingroup$
              I am stunned. Do you know of more complex solutions?
              $endgroup$
              – TVSuchty
              2 hours ago










            • $begingroup$
              @TVSuchty If you are asking questions like this at high school and are studying math seriously, you will very soon learn about this rule (and a whole host of other rules from Calculus). Take a re-look at that function afterwards.
              $endgroup$
              – ZeroXLR
              2 hours ago










            • $begingroup$
              I look forward to. Thank you for your assistance.
              $endgroup$
              – TVSuchty
              2 hours ago















            $begingroup$
            Well Done! Unfortunately, I am a high school student and never heard of L'Hôpitals Rule. EDIT: This function is actually amazing, never saw something like this before.
            $endgroup$
            – TVSuchty
            3 hours ago





            $begingroup$
            Well Done! Unfortunately, I am a high school student and never heard of L'Hôpitals Rule. EDIT: This function is actually amazing, never saw something like this before.
            $endgroup$
            – TVSuchty
            3 hours ago





            1




            1




            $begingroup$
            It basically says under certain conditions, $limlimits_x to a(f(x) / g(x)) = limlimits_x to a(fracd f(x)dx / fracd g(x)dx)$. en.wikipedia.org/wiki/L%27H%C3%B4pital%27s_rule
            $endgroup$
            – ZeroXLR
            3 hours ago





            $begingroup$
            It basically says under certain conditions, $limlimits_x to a(f(x) / g(x)) = limlimits_x to a(fracd f(x)dx / fracd g(x)dx)$. en.wikipedia.org/wiki/L%27H%C3%B4pital%27s_rule
            $endgroup$
            – ZeroXLR
            3 hours ago













            $begingroup$
            I am stunned. Do you know of more complex solutions?
            $endgroup$
            – TVSuchty
            2 hours ago




            $begingroup$
            I am stunned. Do you know of more complex solutions?
            $endgroup$
            – TVSuchty
            2 hours ago












            $begingroup$
            @TVSuchty If you are asking questions like this at high school and are studying math seriously, you will very soon learn about this rule (and a whole host of other rules from Calculus). Take a re-look at that function afterwards.
            $endgroup$
            – ZeroXLR
            2 hours ago




            $begingroup$
            @TVSuchty If you are asking questions like this at high school and are studying math seriously, you will very soon learn about this rule (and a whole host of other rules from Calculus). Take a re-look at that function afterwards.
            $endgroup$
            – ZeroXLR
            2 hours ago












            $begingroup$
            I look forward to. Thank you for your assistance.
            $endgroup$
            – TVSuchty
            2 hours ago




            $begingroup$
            I look forward to. Thank you for your assistance.
            $endgroup$
            – TVSuchty
            2 hours ago











            0












            $begingroup$

            Taylors theorem implies that if two functions are the same in one interval, they must be the same everywhere. This is because when you look at one point in the interval, the nth derivatives of both will be equal. Thus, their Taylor series centered at that point will be equal. Then you can move away from the center and find the Taylor series of both centered around another point to get more information about the function, and they will still be equal. So anywhere you look, the two functions will be equal. (This applies for all analytic functions, not so much for piecewise functions)






            share|cite|improve this answer









            $endgroup$

















              0












              $begingroup$

              Taylors theorem implies that if two functions are the same in one interval, they must be the same everywhere. This is because when you look at one point in the interval, the nth derivatives of both will be equal. Thus, their Taylor series centered at that point will be equal. Then you can move away from the center and find the Taylor series of both centered around another point to get more information about the function, and they will still be equal. So anywhere you look, the two functions will be equal. (This applies for all analytic functions, not so much for piecewise functions)






              share|cite|improve this answer









              $endgroup$















                0












                0








                0





                $begingroup$

                Taylors theorem implies that if two functions are the same in one interval, they must be the same everywhere. This is because when you look at one point in the interval, the nth derivatives of both will be equal. Thus, their Taylor series centered at that point will be equal. Then you can move away from the center and find the Taylor series of both centered around another point to get more information about the function, and they will still be equal. So anywhere you look, the two functions will be equal. (This applies for all analytic functions, not so much for piecewise functions)






                share|cite|improve this answer









                $endgroup$



                Taylors theorem implies that if two functions are the same in one interval, they must be the same everywhere. This is because when you look at one point in the interval, the nth derivatives of both will be equal. Thus, their Taylor series centered at that point will be equal. Then you can move away from the center and find the Taylor series of both centered around another point to get more information about the function, and they will still be equal. So anywhere you look, the two functions will be equal. (This applies for all analytic functions, not so much for piecewise functions)







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 1 hour ago









                uhhhhidkuhhhhidk

                1266




                1266



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3185630%2fare-there-continuous-functions-who-are-the-same-in-an-interval-but-differ-in-at%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Францішак Багушэвіч Змест Сям'я | Біяграфія | Творчасць | Мова Багушэвіча | Ацэнкі дзейнасці | Цікавыя факты | Спадчына | Выбраная бібліяграфія | Ушанаванне памяці | У філатэліі | Зноскі | Літаратура | Спасылкі | НавігацыяЛяхоўскі У. Рупіўся дзеля Бога і людзей: Жыццёвы шлях Лявона Вітан-Дубейкаўскага // Вольскі і Памідораў з песняй пра немца Адвакат, паэт, народны заступнік Ашмянскі веснікВ Минске появится площадь Богушевича и улица Сырокомли, Белорусская деловая газета, 19 июля 2001 г.Айцец беларускай нацыянальнай ідэі паўстаў у бронзе Сяргей Аляксандравіч Адашкевіч (1918, Мінск). 80-я гады. Бюст «Францішак Багушэвіч».Яўген Мікалаевіч Ціхановіч. «Партрэт Францішка Багушэвіча»Мікола Мікалаевіч Купава. «Партрэт зачынальніка новай беларускай літаратуры Францішка Багушэвіча»Уладзімір Іванавіч Мелехаў. На помніку «Змагарам за родную мову» Барэльеф «Францішак Багушэвіч»Памяць пра Багушэвіча на Віленшчыне Страчаная сталіца. Беларускія шыльды на вуліцах Вільні«Krynica». Ideologia i przywódcy białoruskiego katolicyzmuФранцішак БагушэвічТворы на knihi.comТворы Францішка Багушэвіча на bellib.byСодаль Уладзімір. Францішак Багушэвіч на Лідчыне;Луцкевіч Антон. Жыцьцё і творчасьць Фр. Багушэвіча ў успамінах ягоных сучасьнікаў // Запісы Беларускага Навуковага таварыства. Вільня, 1938. Сшытак 1. С. 16-34.Большая российская1188761710000 0000 5537 633Xn9209310021619551927869394п

                    Беларусь Змест Назва Гісторыя Геаграфія Сімволіка Дзяржаўны лад Палітычныя партыі Міжнароднае становішча і знешняя палітыка Адміністрацыйны падзел Насельніцтва Эканоміка Культура і грамадства Сацыяльная сфера Узброеныя сілы Заўвагі Літаратура Спасылкі НавігацыяHGЯOiТоп-2011 г. (па версіі ej.by)Топ-2013 г. (па версіі ej.by)Топ-2016 г. (па версіі ej.by)Топ-2017 г. (па версіі ej.by)Нацыянальны статыстычны камітэт Рэспублікі БеларусьШчыльнасць насельніцтва па краінахhttp://naviny.by/rubrics/society/2011/09/16/ic_articles_116_175144/А. Калечыц, У. Ксяндзоў. Спробы засялення краю неандэртальскім чалавекам.І ў Менску былі мамантыА. Калечыц, У. Ксяндзоў. Старажытны каменны век (палеаліт). Першапачатковае засяленне тэрыторыіГ. Штыхаў. Балты і славяне ў VI—VIII стст.М. Клімаў. Полацкае княства ў IX—XI стст.Г. Штыхаў, В. Ляўко. Палітычная гісторыя Полацкай зямліГ. Штыхаў. Дзяржаўны лад у землях-княствахГ. Штыхаў. Дзяржаўны лад у землях-княствахБеларускія землі ў складзе Вялікага Княства ЛітоўскагаЛюблінская унія 1569 г."The Early Stages of Independence"Zapomniane prawdy25 гадоў таму было аб'яўлена, што Язэп Пілсудскі — беларус (фота)Наша вадаДакументы ЧАЭС: Забруджванне тэрыторыі Беларусі « ЧАЭС Зона адчужэнняСведения о политических партиях, зарегистрированных в Республике Беларусь // Министерство юстиции Республики БеларусьСтатыстычны бюлетэнь „Полаўзроставая структура насельніцтва Рэспублікі Беларусь на 1 студзеня 2012 года і сярэднегадовая колькасць насельніцтва за 2011 год“Индекс человеческого развития Беларуси — не было бы нижеБеларусь занимает первое место в СНГ по индексу развития с учетом гендерного факцёраНацыянальны статыстычны камітэт Рэспублікі БеларусьКанстытуцыя РБ. Артыкул 17Трансфармацыйныя задачы БеларусіВыйсце з крызісу — далейшае рэфармаванне Беларускі рубель — сусветны лідар па дэвальвацыяхПра змену коштаў у кастрычніку 2011 г.Бядней за беларусаў у СНД толькі таджыкіСярэдні заробак у верасні дасягнуў 2,26 мільёна рублёўЭканомікаГаласуем за ТОП-100 беларускай прозыСучасныя беларускія мастакіАрхитектура Беларуси BELARUS.BYА. Каханоўскі. Культура Беларусі ўсярэдзіне XVII—XVIII ст.Анталогія беларускай народнай песні, гуказапісы спеваўБеларускія Музычныя IнструментыБеларускі рок, які мы страцілі. Топ-10 гуртоў«Мясцовы час» — нязгаслая легенда беларускай рок-музыкіСЯРГЕЙ БУДКІН. МЫ НЯ ЗНАЕМ СВАЁЙ МУЗЫКІМ. А. Каладзінскі. НАРОДНЫ ТЭАТРМагнацкія культурныя цэнтрыПублічная дыскусія «Беларуская новая пьеса: без беларускай мовы ці беларуская?»Беларускія драматургі па-ранейшаму лепш ставяцца за мяжой, чым на радзіме«Працэс незалежнага кіно пайшоў, і дзяржаву турбуе яго непадкантрольнасць»Беларускія філосафы ў пошуках прасторыВсе идём в библиотекуАрхіваванаАб Нацыянальнай праграме даследавання і выкарыстання касмічнай прасторы ў мірных мэтах на 2008—2012 гадыУ космас — разам.У суседнім з Барысаўскім раёне пабудуюць Камандна-вымяральны пунктСвяты і абрады беларусаў«Мірныя бульбашы з малой краіны» — 5 непраўдзівых стэрэатыпаў пра БеларусьМ. Раманюк. Беларускае народнае адзеннеУ Беларусі скарачаецца колькасць злачынстваўЛукашэнка незадаволены мінскімі ўладамі Крадзяжы складаюць у Мінску каля 70% злачынстваў Узровень злачыннасці ў Мінскай вобласці — адзін з самых высокіх у краіне Генпракуратура аналізуе стан са злачыннасцю ў Беларусі па каэфіцыенце злачыннасці У Беларусі стабілізавалася крымінагеннае становішча, лічыць генпракурорЗамежнікі сталі здзяйсняць у Беларусі больш злачынстваўМУС Беларусі турбуе рост рэцыдыўнай злачыннасціЯ з ЖЭСа. Дазволіце вас абкрасці! Рэйтынг усіх службаў і падраздзяленняў ГУУС Мінгарвыканкама вырасАб КДБ РБГісторыя Аператыўна-аналітычнага цэнтра РБГісторыя ДКФРТаможняagentura.ruБеларусьBelarus.by — Афіцыйны сайт Рэспублікі БеларусьСайт урада БеларусіRadzima.org — Збор архітэктурных помнікаў, гісторыя Беларусі«Глобус Беларуси»Гербы и флаги БеларусиАсаблівасці каменнага веку на БеларусіА. Калечыц, У. Ксяндзоў. Старажытны каменны век (палеаліт). Першапачатковае засяленне тэрыторыіУ. Ксяндзоў. Сярэдні каменны век (мезаліт). Засяленне краю плямёнамі паляўнічых, рыбакоў і збіральнікаўА. Калечыц, М. Чарняўскі. Плямёны на тэрыторыі Беларусі ў новым каменным веку (неаліце)А. Калечыц, У. Ксяндзоў, М. Чарняўскі. Гаспадарчыя заняткі ў каменным векуЭ. Зайкоўскі. Духоўная культура ў каменным векуАсаблівасці бронзавага веку на БеларусіФарміраванне супольнасцей ранняга перыяду бронзавага векуФотографии БеларусиРоля беларускіх зямель ва ўтварэнні і ўмацаванні ВКЛВ. Фадзеева. З гісторыі развіцця беларускай народнай вышыўкіDMOZGran catalanaБольшая российскаяBritannica (анлайн)Швейцарскі гістарычны15325917611952699xDA123282154079143-90000 0001 2171 2080n9112870100577502ge128882171858027501086026362074122714179пппппп

                    ValueError: Expected n_neighbors <= n_samples, but n_samples = 1, n_neighbors = 6 (SMOTE) The 2019 Stack Overflow Developer Survey Results Are InCan SMOTE be applied over sequence of words (sentences)?ValueError when doing validation with random forestsSMOTE and multi class oversamplingLogic behind SMOTE-NC?ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)SmoteBoost: Should SMOTE be ran individually for each iteration/tree in the boosting?solving multi-class imbalance classification using smote and OSSUsing SMOTE for Synthetic Data generation to improve performance on unbalanced dataproblem of entry format for a simple model in KerasSVM SMOTE fit_resample() function runs forever with no result