ValueError: Error when checking input: expected conv2d_13_input to have shape (3, 150, 150) but got array with shape (150, 150, 3)2019 Community Moderator ElectionError when checking : expected dense_1_input to have shape (None, 5) but got array with shape (200, 1)Error 'Expected 2D array, got 1D array instead:'ValueError: Error when checking input: expected lstm_41_input to have 3 dimensions, but got array with shape (40000,100)ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)ValueError: Error when checking target: expected dense_2 to have shape (1,) but got array with shape (0,)Keras exception: ValueError: Error when checking input: expected conv2d_1_input to have shape (150, 150, 3) but got array with shape (256, 256, 3)Steps taking too long to completewhen checking input: expected dense_1_input to have shape (13328,) but got array with shape (317,)ValueError: Error when checking target: expected dense_3 to have shape (None, 1) but got array with shape (7715, 40000)Keras exception: Error when checking input: expected dense_input to have shape (2,) but got array with shape (1,)

Do I have a twin with permutated remainders?

Maximum likelihood parameters deviate from posterior distributions

How is the claim "I am in New York only if I am in America" the same as "If I am in New York, then I am in America?

What's that red-plus icon near a text?

Theorems that impeded progress

How can I prevent hyper evolved versions of regular creatures from wiping out their cousins?

Today is the Center

Modeling an IP Address

Alternative to sending password over mail?

Pattern match does not work in bash script

Why "Having chlorophyll without photosynthesis is actually very dangerous" and "like living with a bomb"?

Fully-Firstable Anagram Sets

RSA: Danger of using p to create q

Did Shadowfax go to Valinor?

US citizen flying to France today and my passport expires in less than 2 months

How do I draw and define two right triangles next to each other?

How does strength of boric acid solution increase in presence of salicylic acid?

Is it possible to run Internet Explorer on OS X El Capitan?

Filter any system log file by date or date range

Why can't we play rap on piano?

Languages that we cannot (dis)prove to be Context-Free

tikz convert color string to hex value

What does it mean to describe someone as a butt steak?

Why doesn't H₄O²⁺ exist?



ValueError: Error when checking input: expected conv2d_13_input to have shape (3, 150, 150) but got array with shape (150, 150, 3)



2019 Community Moderator ElectionError when checking : expected dense_1_input to have shape (None, 5) but got array with shape (200, 1)Error 'Expected 2D array, got 1D array instead:'ValueError: Error when checking input: expected lstm_41_input to have 3 dimensions, but got array with shape (40000,100)ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)ValueError: Error when checking target: expected dense_2 to have shape (1,) but got array with shape (0,)Keras exception: ValueError: Error when checking input: expected conv2d_1_input to have shape (150, 150, 3) but got array with shape (256, 256, 3)Steps taking too long to completewhen checking input: expected dense_1_input to have shape (13328,) but got array with shape (317,)ValueError: Error when checking target: expected dense_3 to have shape (None, 1) but got array with shape (7715, 40000)Keras exception: Error when checking input: expected dense_input to have shape (2,) but got array with shape (1,)










0












$begingroup$


Well i am trying to train the model , unfortunately i keep ending up with this ValueError. How should i approach to fix this? should i use numpy.resize or cv2.resize to change the dimensions to (3,150,150). If so , where would i resize is it in the generator?



train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2)

test_datagen = ImageDataGenerator(rescale=1./255)

from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense

model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=(3, 150, 150),padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))

model.add(Conv2D(32, (3, 3),padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))

model.add(Conv2D(64, (3, 3),padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))

model.add(Flatten()) # this converts our 3D feature maps to 1D feature vectors
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('sigmoid'))

model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])

batch_size = 64

# this is a generator that will read pictures found in
# subfolers of 'data/train', and indefinitely generate
# batches of augmented image data
train_generator = train_datagen.flow_from_directory(
'C:\Users\Zahid\Desktop\Dataset\train', # this is the target directory
target_size=(150, 150), # all images will be resized to 150x150
batch_size=batch_size,
color_mode='rgb',
class_mode='binary') # since we use binary_crossentropy loss, we need binary labels

# this is a similar generator, for validation data
validation_generator = test_datagen.flow_from_directory(
'C:\Users\Zahid\Desktop\Dataset\val',
target_size=(150, 150),
batch_size=batch_size,
color_mode='rgb',
class_mode='binary')

model.fit_generator(
train_generator,
steps_per_epoch=2000 // batch_size,
epochs=50,
validation_data=validation_generator,
validation_steps=800 // batch_size)
model.save_weights('first_try.h5')









share|improve this question







New contributor




Zahid Ahmed is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$
















    0












    $begingroup$


    Well i am trying to train the model , unfortunately i keep ending up with this ValueError. How should i approach to fix this? should i use numpy.resize or cv2.resize to change the dimensions to (3,150,150). If so , where would i resize is it in the generator?



    train_datagen = ImageDataGenerator(
    rescale=1./255,
    shear_range=0.2,
    zoom_range=0.2)

    test_datagen = ImageDataGenerator(rescale=1./255)

    from keras.models import Sequential
    from keras.layers import Conv2D, MaxPooling2D
    from keras.layers import Activation, Dropout, Flatten, Dense

    model = Sequential()
    model.add(Conv2D(32, (3, 3), input_shape=(3, 150, 150),padding='same'))
    model.add(Activation('relu'))
    model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))

    model.add(Conv2D(32, (3, 3),padding='same'))
    model.add(Activation('relu'))
    model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))

    model.add(Conv2D(64, (3, 3),padding='same'))
    model.add(Activation('relu'))
    model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))

    model.add(Flatten()) # this converts our 3D feature maps to 1D feature vectors
    model.add(Dense(64))
    model.add(Activation('relu'))
    model.add(Dropout(0.5))
    model.add(Dense(1))
    model.add(Activation('sigmoid'))

    model.compile(loss='binary_crossentropy',
    optimizer='rmsprop',
    metrics=['accuracy'])

    batch_size = 64

    # this is a generator that will read pictures found in
    # subfolers of 'data/train', and indefinitely generate
    # batches of augmented image data
    train_generator = train_datagen.flow_from_directory(
    'C:\Users\Zahid\Desktop\Dataset\train', # this is the target directory
    target_size=(150, 150), # all images will be resized to 150x150
    batch_size=batch_size,
    color_mode='rgb',
    class_mode='binary') # since we use binary_crossentropy loss, we need binary labels

    # this is a similar generator, for validation data
    validation_generator = test_datagen.flow_from_directory(
    'C:\Users\Zahid\Desktop\Dataset\val',
    target_size=(150, 150),
    batch_size=batch_size,
    color_mode='rgb',
    class_mode='binary')

    model.fit_generator(
    train_generator,
    steps_per_epoch=2000 // batch_size,
    epochs=50,
    validation_data=validation_generator,
    validation_steps=800 // batch_size)
    model.save_weights('first_try.h5')









    share|improve this question







    New contributor




    Zahid Ahmed is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$














      0












      0








      0





      $begingroup$


      Well i am trying to train the model , unfortunately i keep ending up with this ValueError. How should i approach to fix this? should i use numpy.resize or cv2.resize to change the dimensions to (3,150,150). If so , where would i resize is it in the generator?



      train_datagen = ImageDataGenerator(
      rescale=1./255,
      shear_range=0.2,
      zoom_range=0.2)

      test_datagen = ImageDataGenerator(rescale=1./255)

      from keras.models import Sequential
      from keras.layers import Conv2D, MaxPooling2D
      from keras.layers import Activation, Dropout, Flatten, Dense

      model = Sequential()
      model.add(Conv2D(32, (3, 3), input_shape=(3, 150, 150),padding='same'))
      model.add(Activation('relu'))
      model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))

      model.add(Conv2D(32, (3, 3),padding='same'))
      model.add(Activation('relu'))
      model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))

      model.add(Conv2D(64, (3, 3),padding='same'))
      model.add(Activation('relu'))
      model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))

      model.add(Flatten()) # this converts our 3D feature maps to 1D feature vectors
      model.add(Dense(64))
      model.add(Activation('relu'))
      model.add(Dropout(0.5))
      model.add(Dense(1))
      model.add(Activation('sigmoid'))

      model.compile(loss='binary_crossentropy',
      optimizer='rmsprop',
      metrics=['accuracy'])

      batch_size = 64

      # this is a generator that will read pictures found in
      # subfolers of 'data/train', and indefinitely generate
      # batches of augmented image data
      train_generator = train_datagen.flow_from_directory(
      'C:\Users\Zahid\Desktop\Dataset\train', # this is the target directory
      target_size=(150, 150), # all images will be resized to 150x150
      batch_size=batch_size,
      color_mode='rgb',
      class_mode='binary') # since we use binary_crossentropy loss, we need binary labels

      # this is a similar generator, for validation data
      validation_generator = test_datagen.flow_from_directory(
      'C:\Users\Zahid\Desktop\Dataset\val',
      target_size=(150, 150),
      batch_size=batch_size,
      color_mode='rgb',
      class_mode='binary')

      model.fit_generator(
      train_generator,
      steps_per_epoch=2000 // batch_size,
      epochs=50,
      validation_data=validation_generator,
      validation_steps=800 // batch_size)
      model.save_weights('first_try.h5')









      share|improve this question







      New contributor




      Zahid Ahmed is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      Well i am trying to train the model , unfortunately i keep ending up with this ValueError. How should i approach to fix this? should i use numpy.resize or cv2.resize to change the dimensions to (3,150,150). If so , where would i resize is it in the generator?



      train_datagen = ImageDataGenerator(
      rescale=1./255,
      shear_range=0.2,
      zoom_range=0.2)

      test_datagen = ImageDataGenerator(rescale=1./255)

      from keras.models import Sequential
      from keras.layers import Conv2D, MaxPooling2D
      from keras.layers import Activation, Dropout, Flatten, Dense

      model = Sequential()
      model.add(Conv2D(32, (3, 3), input_shape=(3, 150, 150),padding='same'))
      model.add(Activation('relu'))
      model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))

      model.add(Conv2D(32, (3, 3),padding='same'))
      model.add(Activation('relu'))
      model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))

      model.add(Conv2D(64, (3, 3),padding='same'))
      model.add(Activation('relu'))
      model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))

      model.add(Flatten()) # this converts our 3D feature maps to 1D feature vectors
      model.add(Dense(64))
      model.add(Activation('relu'))
      model.add(Dropout(0.5))
      model.add(Dense(1))
      model.add(Activation('sigmoid'))

      model.compile(loss='binary_crossentropy',
      optimizer='rmsprop',
      metrics=['accuracy'])

      batch_size = 64

      # this is a generator that will read pictures found in
      # subfolers of 'data/train', and indefinitely generate
      # batches of augmented image data
      train_generator = train_datagen.flow_from_directory(
      'C:\Users\Zahid\Desktop\Dataset\train', # this is the target directory
      target_size=(150, 150), # all images will be resized to 150x150
      batch_size=batch_size,
      color_mode='rgb',
      class_mode='binary') # since we use binary_crossentropy loss, we need binary labels

      # this is a similar generator, for validation data
      validation_generator = test_datagen.flow_from_directory(
      'C:\Users\Zahid\Desktop\Dataset\val',
      target_size=(150, 150),
      batch_size=batch_size,
      color_mode='rgb',
      class_mode='binary')

      model.fit_generator(
      train_generator,
      steps_per_epoch=2000 // batch_size,
      epochs=50,
      validation_data=validation_generator,
      validation_steps=800 // batch_size)
      model.save_weights('first_try.h5')






      neural-network keras dataset neural






      share|improve this question







      New contributor




      Zahid Ahmed is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|improve this question







      New contributor




      Zahid Ahmed is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|improve this question




      share|improve this question






      New contributor




      Zahid Ahmed is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 50 mins ago









      Zahid AhmedZahid Ahmed

      1




      1




      New contributor




      Zahid Ahmed is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Zahid Ahmed is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Zahid Ahmed is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          Change this:



          model.add(Conv2D(32, (3, 3), input_shape=(3, 150, 150),padding='same'))


          to this:



          model.add(Conv2D(32, (3, 3), input_shape=(150, 150, 3),padding='same'))


          And read the doc: https://keras.io/layers/convolutional/#conv2d



          In particular the section about data_format:




          data_format: A string, one of "channels_last" or "channels_first". The ordering of the dimensions in the inputs. "channels_last" corresponds to inputs with shape (batch, height, width, channels) while "channels_first" corresponds to inputs with shape (batch, channels, height, width). It defaults to the image_data_format value found in your Keras config file at ~/.keras/keras.json. If you never set it, then it will be "channels_last".







          share|improve this answer









          $endgroup$












          • $begingroup$
            Thank you so much :)
            $endgroup$
            – Zahid Ahmed
            38 mins ago











          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "557"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );






          Zahid Ahmed is a new contributor. Be nice, and check out our Code of Conduct.









          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f48731%2fvalueerror-error-when-checking-input-expected-conv2d-13-input-to-have-shape-3%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          Change this:



          model.add(Conv2D(32, (3, 3), input_shape=(3, 150, 150),padding='same'))


          to this:



          model.add(Conv2D(32, (3, 3), input_shape=(150, 150, 3),padding='same'))


          And read the doc: https://keras.io/layers/convolutional/#conv2d



          In particular the section about data_format:




          data_format: A string, one of "channels_last" or "channels_first". The ordering of the dimensions in the inputs. "channels_last" corresponds to inputs with shape (batch, height, width, channels) while "channels_first" corresponds to inputs with shape (batch, channels, height, width). It defaults to the image_data_format value found in your Keras config file at ~/.keras/keras.json. If you never set it, then it will be "channels_last".







          share|improve this answer









          $endgroup$












          • $begingroup$
            Thank you so much :)
            $endgroup$
            – Zahid Ahmed
            38 mins ago















          1












          $begingroup$

          Change this:



          model.add(Conv2D(32, (3, 3), input_shape=(3, 150, 150),padding='same'))


          to this:



          model.add(Conv2D(32, (3, 3), input_shape=(150, 150, 3),padding='same'))


          And read the doc: https://keras.io/layers/convolutional/#conv2d



          In particular the section about data_format:




          data_format: A string, one of "channels_last" or "channels_first". The ordering of the dimensions in the inputs. "channels_last" corresponds to inputs with shape (batch, height, width, channels) while "channels_first" corresponds to inputs with shape (batch, channels, height, width). It defaults to the image_data_format value found in your Keras config file at ~/.keras/keras.json. If you never set it, then it will be "channels_last".







          share|improve this answer









          $endgroup$












          • $begingroup$
            Thank you so much :)
            $endgroup$
            – Zahid Ahmed
            38 mins ago













          1












          1








          1





          $begingroup$

          Change this:



          model.add(Conv2D(32, (3, 3), input_shape=(3, 150, 150),padding='same'))


          to this:



          model.add(Conv2D(32, (3, 3), input_shape=(150, 150, 3),padding='same'))


          And read the doc: https://keras.io/layers/convolutional/#conv2d



          In particular the section about data_format:




          data_format: A string, one of "channels_last" or "channels_first". The ordering of the dimensions in the inputs. "channels_last" corresponds to inputs with shape (batch, height, width, channels) while "channels_first" corresponds to inputs with shape (batch, channels, height, width). It defaults to the image_data_format value found in your Keras config file at ~/.keras/keras.json. If you never set it, then it will be "channels_last".







          share|improve this answer









          $endgroup$



          Change this:



          model.add(Conv2D(32, (3, 3), input_shape=(3, 150, 150),padding='same'))


          to this:



          model.add(Conv2D(32, (3, 3), input_shape=(150, 150, 3),padding='same'))


          And read the doc: https://keras.io/layers/convolutional/#conv2d



          In particular the section about data_format:




          data_format: A string, one of "channels_last" or "channels_first". The ordering of the dimensions in the inputs. "channels_last" corresponds to inputs with shape (batch, height, width, channels) while "channels_first" corresponds to inputs with shape (batch, channels, height, width). It defaults to the image_data_format value found in your Keras config file at ~/.keras/keras.json. If you never set it, then it will be "channels_last".








          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered 42 mins ago









          qmeeusqmeeus

          18118




          18118











          • $begingroup$
            Thank you so much :)
            $endgroup$
            – Zahid Ahmed
            38 mins ago
















          • $begingroup$
            Thank you so much :)
            $endgroup$
            – Zahid Ahmed
            38 mins ago















          $begingroup$
          Thank you so much :)
          $endgroup$
          – Zahid Ahmed
          38 mins ago




          $begingroup$
          Thank you so much :)
          $endgroup$
          – Zahid Ahmed
          38 mins ago










          Zahid Ahmed is a new contributor. Be nice, and check out our Code of Conduct.









          draft saved

          draft discarded


















          Zahid Ahmed is a new contributor. Be nice, and check out our Code of Conduct.












          Zahid Ahmed is a new contributor. Be nice, and check out our Code of Conduct.











          Zahid Ahmed is a new contributor. Be nice, and check out our Code of Conduct.














          Thanks for contributing an answer to Data Science Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f48731%2fvalueerror-error-when-checking-input-expected-conv2d-13-input-to-have-shape-3%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Ружовы пелікан Змест Знешні выгляд | Пашырэнне | Асаблівасці біялогіі | Літаратура | НавігацыяДагледжаная версіяправерана1 зменаДагледжаная версіяправерана1 змена/ 22697590 Сістэматыкана ВіківідахВыявына Вікісховішчы174693363011049382

          Illegal assignment from SObject to ContactFetching String, Id from Map - Illegal Assignment Id to Field / ObjectError: Compile Error: Illegal assignment from String to BooleanError: List has no rows for assignment to SObjectError on Test Class - System.QueryException: List has no rows for assignment to SObjectRemote action problemDML requires SObject or SObject list type error“Illegal assignment from List to List”Test Class Fail: Batch Class: System.QueryException: List has no rows for assignment to SObjectMapping to a user'List has no rows for assignment to SObject' Mystery