Training a LSTM on a time serie containing multiple inputs for each timestep2019 Community Moderator ElectionTime series prediction using ARIMA vs LSTMLSTM with multiple entries per time stepLSTM - How to prepare train from a dataset which contains multiple observations for different eventsHow to learn from time series with multiple values for each time pointsForecasting vs non-forecasting predition for time series anomaly detectionMulti-Step Forecast for Multivariate Time Series (LSTM) KerasIs there an R tutorial of using LSTM for multivariate time series forecasting?Train LSTM model with multiple time seriesHow to reshape data for LSTM training in multivariate sequence predictionLSTM Time series prediction for multiple multivariate series
What are the differences between the usage of 'it' and 'they'?
Fencing style for blades that can attack from a distance
Why are 150k or 200k jobs considered good when there are 300k+ births a month?
"to be prejudice towards/against someone" vs "to be prejudiced against/towards someone"
What do the dots in this tr command do: tr .............A-Z A-ZA-Z <<< "JVPQBOV" (with 13 dots)
What does it mean to describe someone as a butt steak?
Prove that NP is closed under karp reduction?
Are the number of citations and number of published articles the most important criteria for a tenure promotion?
How do I create uniquely male characters?
The use of multiple foreign keys on same column in SQL Server
Is it unprofessional to ask if a job posting on GlassDoor is real?
Why was the small council so happy for Tyrion to become the Master of Coin?
What's the point of deactivating Num Lock on login screens?
Adding span tags within wp_list_pages list items
Email Account under attack (really) - anything I can do?
Can a Warlock become Neutral Good?
Smoothness of finite-dimensional functional calculus
Why not use SQL instead of GraphQL?
Test if tikzmark exists on same page
How is the claim "I am in New York only if I am in America" the same as "If I am in New York, then I am in America?
Why, historically, did Gödel think CH was false?
Why Is Death Allowed In the Matrix?
Which models of the Boeing 737 are still in production?
Why are electrically insulating heatsinks so rare? Is it just cost?
Training a LSTM on a time serie containing multiple inputs for each timestep
2019 Community Moderator ElectionTime series prediction using ARIMA vs LSTMLSTM with multiple entries per time stepLSTM - How to prepare train from a dataset which contains multiple observations for different eventsHow to learn from time series with multiple values for each time pointsForecasting vs non-forecasting predition for time series anomaly detectionMulti-Step Forecast for Multivariate Time Series (LSTM) KerasIs there an R tutorial of using LSTM for multivariate time series forecasting?Train LSTM model with multiple time seriesHow to reshape data for LSTM training in multivariate sequence predictionLSTM Time series prediction for multiple multivariate series
$begingroup$
I am trying to train a LSTM in order to use it for forecasting : the problem is basically a multivariate multi-steps time series problem.
It is simply an experiment to see how statistical models (ARIMA, Holts-Winters, ...) and neural networks compare for a given problem.
As my dataset is perfectly fit for a statistical model, I am having trouble when trying to format it to train the LSTM as I have multiple entries for one timestep (corresponding to different entities) and I don't really know how to deal with it since the sequence is no longer tied by the time of observation. Let's say my dataset looks like the following example :
time | ent | obs
1 --- 1 ------ 5
2 --- 1 ------ 6
2 --- 5 ------ 1
3 --- 2 ------ 7
3 --- 5 ------ 4
As you can see, not every entity have an entry for any given time, and one timestep can have multiple entries.
I thought of training the LSTM for each entity but I would have too few data for most of them. Some threads gave me the idea to separate each entity into batches but the number of observations is not constant so it wouldn't work for me.
How do you think I am supposed to tackle this problem ?
time-series lstm preprocessing forecasting
New contributor
$endgroup$
add a comment |
$begingroup$
I am trying to train a LSTM in order to use it for forecasting : the problem is basically a multivariate multi-steps time series problem.
It is simply an experiment to see how statistical models (ARIMA, Holts-Winters, ...) and neural networks compare for a given problem.
As my dataset is perfectly fit for a statistical model, I am having trouble when trying to format it to train the LSTM as I have multiple entries for one timestep (corresponding to different entities) and I don't really know how to deal with it since the sequence is no longer tied by the time of observation. Let's say my dataset looks like the following example :
time | ent | obs
1 --- 1 ------ 5
2 --- 1 ------ 6
2 --- 5 ------ 1
3 --- 2 ------ 7
3 --- 5 ------ 4
As you can see, not every entity have an entry for any given time, and one timestep can have multiple entries.
I thought of training the LSTM for each entity but I would have too few data for most of them. Some threads gave me the idea to separate each entity into batches but the number of observations is not constant so it wouldn't work for me.
How do you think I am supposed to tackle this problem ?
time-series lstm preprocessing forecasting
New contributor
$endgroup$
add a comment |
$begingroup$
I am trying to train a LSTM in order to use it for forecasting : the problem is basically a multivariate multi-steps time series problem.
It is simply an experiment to see how statistical models (ARIMA, Holts-Winters, ...) and neural networks compare for a given problem.
As my dataset is perfectly fit for a statistical model, I am having trouble when trying to format it to train the LSTM as I have multiple entries for one timestep (corresponding to different entities) and I don't really know how to deal with it since the sequence is no longer tied by the time of observation. Let's say my dataset looks like the following example :
time | ent | obs
1 --- 1 ------ 5
2 --- 1 ------ 6
2 --- 5 ------ 1
3 --- 2 ------ 7
3 --- 5 ------ 4
As you can see, not every entity have an entry for any given time, and one timestep can have multiple entries.
I thought of training the LSTM for each entity but I would have too few data for most of them. Some threads gave me the idea to separate each entity into batches but the number of observations is not constant so it wouldn't work for me.
How do you think I am supposed to tackle this problem ?
time-series lstm preprocessing forecasting
New contributor
$endgroup$
I am trying to train a LSTM in order to use it for forecasting : the problem is basically a multivariate multi-steps time series problem.
It is simply an experiment to see how statistical models (ARIMA, Holts-Winters, ...) and neural networks compare for a given problem.
As my dataset is perfectly fit for a statistical model, I am having trouble when trying to format it to train the LSTM as I have multiple entries for one timestep (corresponding to different entities) and I don't really know how to deal with it since the sequence is no longer tied by the time of observation. Let's say my dataset looks like the following example :
time | ent | obs
1 --- 1 ------ 5
2 --- 1 ------ 6
2 --- 5 ------ 1
3 --- 2 ------ 7
3 --- 5 ------ 4
As you can see, not every entity have an entry for any given time, and one timestep can have multiple entries.
I thought of training the LSTM for each entity but I would have too few data for most of them. Some threads gave me the idea to separate each entity into batches but the number of observations is not constant so it wouldn't work for me.
How do you think I am supposed to tackle this problem ?
time-series lstm preprocessing forecasting
time-series lstm preprocessing forecasting
New contributor
New contributor
New contributor
asked 4 hours ago
naifmehnaifmeh
11
11
New contributor
New contributor
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The answer to this question highly depends on what relationship between the variables you are interested in.
If you are interested in the relationship between time and observation-value, treating the entities as different batches could make sense, under the assumption that the role of individual entities doesn't really matter to you. In this case, you would, for example, add the mean of each entity (or the overall mean) to all entities with missing values to get a constant number of observations per entity. But you could also simply average all values in each timestamp and include other features as min & max. This would most probably deliver better results.
If you are interested in the relationship between entities and observation-value, this is a matter of missing data in time series. There are a lot of techniques that can help you with that from simply imputing the mean to more sophisticated methods like a Kalman filter. However, in the end, you will have to ask yourself why these observations are missing and choose the appropriate method. But since you are using time-dependent models in your experiment, I assume, this is not of interest to you.
If you are interested in the interrelationship of all three variables, you are dealing with panel data. In this case, I don't see a reasonable possibility to model this with an LSTM. Maybe another RNN-architecture could work, however, the only paper I found was Tensorial Recurrent Neural Networks for Longitudinal Data Analysis from Mingyuan et.al. But in the end, it would not matter, since an ARIMA-model also isn't appropriate for panel data. Usually, you use a Difference-In-Differences approach for that kind of data. In this case, I would suggest changing the dataset for your experiment.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "557"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
naifmeh is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f48775%2ftraining-a-lstm-on-a-time-serie-containing-multiple-inputs-for-each-timestep%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The answer to this question highly depends on what relationship between the variables you are interested in.
If you are interested in the relationship between time and observation-value, treating the entities as different batches could make sense, under the assumption that the role of individual entities doesn't really matter to you. In this case, you would, for example, add the mean of each entity (or the overall mean) to all entities with missing values to get a constant number of observations per entity. But you could also simply average all values in each timestamp and include other features as min & max. This would most probably deliver better results.
If you are interested in the relationship between entities and observation-value, this is a matter of missing data in time series. There are a lot of techniques that can help you with that from simply imputing the mean to more sophisticated methods like a Kalman filter. However, in the end, you will have to ask yourself why these observations are missing and choose the appropriate method. But since you are using time-dependent models in your experiment, I assume, this is not of interest to you.
If you are interested in the interrelationship of all three variables, you are dealing with panel data. In this case, I don't see a reasonable possibility to model this with an LSTM. Maybe another RNN-architecture could work, however, the only paper I found was Tensorial Recurrent Neural Networks for Longitudinal Data Analysis from Mingyuan et.al. But in the end, it would not matter, since an ARIMA-model also isn't appropriate for panel data. Usually, you use a Difference-In-Differences approach for that kind of data. In this case, I would suggest changing the dataset for your experiment.
$endgroup$
add a comment |
$begingroup$
The answer to this question highly depends on what relationship between the variables you are interested in.
If you are interested in the relationship between time and observation-value, treating the entities as different batches could make sense, under the assumption that the role of individual entities doesn't really matter to you. In this case, you would, for example, add the mean of each entity (or the overall mean) to all entities with missing values to get a constant number of observations per entity. But you could also simply average all values in each timestamp and include other features as min & max. This would most probably deliver better results.
If you are interested in the relationship between entities and observation-value, this is a matter of missing data in time series. There are a lot of techniques that can help you with that from simply imputing the mean to more sophisticated methods like a Kalman filter. However, in the end, you will have to ask yourself why these observations are missing and choose the appropriate method. But since you are using time-dependent models in your experiment, I assume, this is not of interest to you.
If you are interested in the interrelationship of all three variables, you are dealing with panel data. In this case, I don't see a reasonable possibility to model this with an LSTM. Maybe another RNN-architecture could work, however, the only paper I found was Tensorial Recurrent Neural Networks for Longitudinal Data Analysis from Mingyuan et.al. But in the end, it would not matter, since an ARIMA-model also isn't appropriate for panel data. Usually, you use a Difference-In-Differences approach for that kind of data. In this case, I would suggest changing the dataset for your experiment.
$endgroup$
add a comment |
$begingroup$
The answer to this question highly depends on what relationship between the variables you are interested in.
If you are interested in the relationship between time and observation-value, treating the entities as different batches could make sense, under the assumption that the role of individual entities doesn't really matter to you. In this case, you would, for example, add the mean of each entity (or the overall mean) to all entities with missing values to get a constant number of observations per entity. But you could also simply average all values in each timestamp and include other features as min & max. This would most probably deliver better results.
If you are interested in the relationship between entities and observation-value, this is a matter of missing data in time series. There are a lot of techniques that can help you with that from simply imputing the mean to more sophisticated methods like a Kalman filter. However, in the end, you will have to ask yourself why these observations are missing and choose the appropriate method. But since you are using time-dependent models in your experiment, I assume, this is not of interest to you.
If you are interested in the interrelationship of all three variables, you are dealing with panel data. In this case, I don't see a reasonable possibility to model this with an LSTM. Maybe another RNN-architecture could work, however, the only paper I found was Tensorial Recurrent Neural Networks for Longitudinal Data Analysis from Mingyuan et.al. But in the end, it would not matter, since an ARIMA-model also isn't appropriate for panel data. Usually, you use a Difference-In-Differences approach for that kind of data. In this case, I would suggest changing the dataset for your experiment.
$endgroup$
The answer to this question highly depends on what relationship between the variables you are interested in.
If you are interested in the relationship between time and observation-value, treating the entities as different batches could make sense, under the assumption that the role of individual entities doesn't really matter to you. In this case, you would, for example, add the mean of each entity (or the overall mean) to all entities with missing values to get a constant number of observations per entity. But you could also simply average all values in each timestamp and include other features as min & max. This would most probably deliver better results.
If you are interested in the relationship between entities and observation-value, this is a matter of missing data in time series. There are a lot of techniques that can help you with that from simply imputing the mean to more sophisticated methods like a Kalman filter. However, in the end, you will have to ask yourself why these observations are missing and choose the appropriate method. But since you are using time-dependent models in your experiment, I assume, this is not of interest to you.
If you are interested in the interrelationship of all three variables, you are dealing with panel data. In this case, I don't see a reasonable possibility to model this with an LSTM. Maybe another RNN-architecture could work, however, the only paper I found was Tensorial Recurrent Neural Networks for Longitudinal Data Analysis from Mingyuan et.al. But in the end, it would not matter, since an ARIMA-model also isn't appropriate for panel data. Usually, you use a Difference-In-Differences approach for that kind of data. In this case, I would suggest changing the dataset for your experiment.
edited 1 hour ago
answered 2 hours ago
georg_ungeorg_un
836
836
add a comment |
add a comment |
naifmeh is a new contributor. Be nice, and check out our Code of Conduct.
naifmeh is a new contributor. Be nice, and check out our Code of Conduct.
naifmeh is a new contributor. Be nice, and check out our Code of Conduct.
naifmeh is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Data Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f48775%2ftraining-a-lstm-on-a-time-serie-containing-multiple-inputs-for-each-timestep%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown