Diffirent results in a function approximation problem using MLPRegressor and Keras2019 Community Moderator ElectionMulti-class text classification with LSTM in KerasBinary text classification problem with small label-dataset using kerasKeras : problem in fitting modelHow to obtain with a recurrent neural network the Xor function using keras?Fraud detection using auto-encoders and KerasKeras Loss Function for Multidimensional Regression ProblemUsing Keras to Predict a Function Following a Normal DistributionUsing a custom R generator function with fit_generator (Keras, R)Keras Attention Guided CNN problemKeras inconsistent training results

What is the offset in a seaplane's hull?

How does one intimidate enemies without having the capacity for violence?

How can bays and straits be determined in a procedurally generated map?

Is this a crack on the carbon frame?

How could an uplifted falcon's brain work?

Accidentally leaked the solution to an assignment, what to do now? (I'm the prof)

Watching something be written to a file live with tail

Smoothness of finite-dimensional functional calculus

Problem of parity - Can we draw a closed path made up of 20 line segments...

What do you call a Matrix-like slowdown and camera movement effect?

Why doesn't Newton's third law mean a person bounces back to where they started when they hit the ground?

What typically incentivizes a professor to change jobs to a lower ranking university?

"You are your self first supporter", a more proper way to say it

Why does Kotter return in Welcome Back Kotter?

tikz: show 0 at the axis origin

How is it possible to have an ability score that is less than 3?

Why "Having chlorophyll without photosynthesis is actually very dangerous" and "like living with a bomb"?

A newer friend of my brother's gave him a load of baseball cards that are supposedly extremely valuable. Is this a scam?

Arthur Somervell: 1000 Exercises - Meaning of this notation

Why did the Germans forbid the possession of pet pigeons in Rostov-on-Don in 1941?

Risk of getting Chronic Wasting Disease (CWD) in the United States?

In Japanese, what’s the difference between “Tonari ni” (となりに) and “Tsugi” (つぎ)? When would you use one over the other?

How did the USSR manage to innovate in an environment characterized by government censorship and high bureaucracy?

How to write a macro that is braces sensitive?



Diffirent results in a function approximation problem using MLPRegressor and Keras



2019 Community Moderator ElectionMulti-class text classification with LSTM in KerasBinary text classification problem with small label-dataset using kerasKeras : problem in fitting modelHow to obtain with a recurrent neural network the Xor function using keras?Fraud detection using auto-encoders and KerasKeras Loss Function for Multidimensional Regression ProblemUsing Keras to Predict a Function Following a Normal DistributionUsing a custom R generator function with fit_generator (Keras, R)Keras Attention Guided CNN problemKeras inconsistent training results










0












$begingroup$


I have different results in a function approximation problem. I am trying to approximate a sine wave using MLPRegressor and Keras (um dense layer)
Here is the code for the MLPRegressor:



import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.neural_network import MLPRegressor
from sklearn.metrics import mean_squared_error

#Cria um dataset
X_train = np.arange(0.0, 1, 0.01).reshape(-1, 1)
noise= np.random.normal(0,0.1,100).reshape(-1,1)



y_train = np.sin(2*np.pi*X_train)
y_train=y_train + noise
y_train=y_train.ravel() # transfoprma em 1D array

#X_train = np.arange(0.0, 1, 0.01).reshape(-1, 1)
#y_train = np.sin(2 * np.pi * X_train).ravel()


# Experimentos
#hidden_layer sizes : 1,3, 100
#max_iter=10,100,1000
#
nn = MLPRegressor(
hidden_layer_sizes=(3,), activation='tanh', solver='lbfgs', alpha=0.000, batch_size='auto',
learning_rate='constant', learning_rate_init=0.01, power_t=0.5, max_iter=80, shuffle=True,
random_state=0, tol=0.0001, verbose=True, warm_start=False, momentum=0.0, nesterovs_momentum=False,
early_stopping=False, validation_fraction=0.0, beta_1=0.9, beta_2=0.999, epsilon=1e-08)

#Treina a Rede
n = nn.fit(X_train, y_train)

#previsoes na rede no conjunto de treinamento
predict_train =nn.predict(X_train)

#Plota o treinamento
fig = plt.figure()
ax1 = fig.add_subplot(111)
ax1.scatter(X_train, y_train, s=5, c='b', marker="o", label='real')
ax1.plot(X_train,predict_train, c='r', label='NN Prediction')


#Conjunto de Teste
X_test = np.arange(0.0, 1, 0.01).reshape(-1, 1)
y_test = np.sin(2*np.pi*X_test) + np.random.normal(0,0.2,100).reshape(-1,1)
y_test=y_test.ravel()


#Calcula as previsoes no conjunto de teste

predict_test= nn.predict(X_test)

fig = plt.figure()
ax1 = fig.add_subplot(111)
ax1.scatter(X_test, y_test, s=5, c='b', marker="o", label='real')
ax1.plot(X_test,predict_test, c='r', label='NN Prediction')

plt.legend()
plt.show()

print('MSE training : :.3f'.format(mean_squared_error(y_train, predict_train)))
print('MSE testing : :.3f'.format(mean_squared_error(y_test, predict_test)))


Using MLPRegressor, I found satisfactory results with just 3 neurons. However, when I try to use Keras, I can not get reasonably results. The code is very similar with the exception of the optmizer and the activation function. Here is the code for Keras:



import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

import keras
from keras.models import Sequential
from keras.layers import Dense
from sklearn.metrics import mean_squared_error





#
#Cria um dataset

#Cria um dataset
X_train = np.arange(0.0, 1, 0.01).reshape(-1, 1)
noise= np.random.normal(0,0.1,100).reshape(-1,1)



y_train = np.sin(2*np.pi*X_train)
y_train=y_train + noise
y_train=y_train.ravel() # transfoprma em 1D array


#Construir a Rede
nn = Sequential() # sequencia de camada
#activation
# sigmoid, tanh, relu, linear
# units: numero de neuronios na camada
#primeira camada escondida tem input_dim
nn.add(Dense(units = 100, activation = 'relu',
kernel_initializer = 'random_uniform', input_dim = 1))
nn.add(Dense(units = 1, activation = 'linear'))

# Algorritmo de aprendizado
#sgd = keras.optimizers.SGD(lr=0.1, decay=0, momentum=0, nesterov=False)
adam=keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False)

#determina a funcao de custo e a metrica utilizada
nn.compile(loss = 'mean_squared_error', optimizer = adam,
metrics = ['mean_squared_error'])
history= nn.fit(X_train, y_train, batch_size = 1, epochs = 1000)

#previsoes na rede no conjunto de treinamento
predict_train =nn.predict(X_train)



#Plota o treinamento
fig = plt.figure()
ax1 = fig.add_subplot(111)
ax1.scatter(X_train, y_train, s=5, c='b', marker="o", label='real')
ax1.plot(X_train,predict_train, c='r', label='NN Prediction')


#Conjunto de Teste
X_test = np.arange(0.0, 1, 0.01).reshape(-1, 1)
y_test = np.sin(2*np.pi*X_test) + np.random.normal(0,0.2,100).reshape(-1,1)
y_test=y_test.ravel()


#Calcula as previsoes no conjunto de teste

predict_test= nn.predict(X_test)

fig = plt.figure()
ax1 = fig.add_subplot(111)
ax1.scatter(X_test, y_test, s=5, c='b', marker="o", label='real')
ax1.plot(X_test,predict_test, c='r', label='NN Prediction')

plt.legend()
plt.show()

print('MSE training : :.3f'.format(mean_squared_error(y_train, predict_train)))
print('MSE testing : :.3f'.format(mean_squared_error(y_test, predict_test)))


I already tried sgd as optimizer and also tanh for activation function. I do not undestand what I am missing, that is why I cann make the code for function approximation using Keras work.










share|improve this question







New contributor




Jorge Amaral is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$
















    0












    $begingroup$


    I have different results in a function approximation problem. I am trying to approximate a sine wave using MLPRegressor and Keras (um dense layer)
    Here is the code for the MLPRegressor:



    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    from sklearn.neural_network import MLPRegressor
    from sklearn.metrics import mean_squared_error

    #Cria um dataset
    X_train = np.arange(0.0, 1, 0.01).reshape(-1, 1)
    noise= np.random.normal(0,0.1,100).reshape(-1,1)



    y_train = np.sin(2*np.pi*X_train)
    y_train=y_train + noise
    y_train=y_train.ravel() # transfoprma em 1D array

    #X_train = np.arange(0.0, 1, 0.01).reshape(-1, 1)
    #y_train = np.sin(2 * np.pi * X_train).ravel()


    # Experimentos
    #hidden_layer sizes : 1,3, 100
    #max_iter=10,100,1000
    #
    nn = MLPRegressor(
    hidden_layer_sizes=(3,), activation='tanh', solver='lbfgs', alpha=0.000, batch_size='auto',
    learning_rate='constant', learning_rate_init=0.01, power_t=0.5, max_iter=80, shuffle=True,
    random_state=0, tol=0.0001, verbose=True, warm_start=False, momentum=0.0, nesterovs_momentum=False,
    early_stopping=False, validation_fraction=0.0, beta_1=0.9, beta_2=0.999, epsilon=1e-08)

    #Treina a Rede
    n = nn.fit(X_train, y_train)

    #previsoes na rede no conjunto de treinamento
    predict_train =nn.predict(X_train)

    #Plota o treinamento
    fig = plt.figure()
    ax1 = fig.add_subplot(111)
    ax1.scatter(X_train, y_train, s=5, c='b', marker="o", label='real')
    ax1.plot(X_train,predict_train, c='r', label='NN Prediction')


    #Conjunto de Teste
    X_test = np.arange(0.0, 1, 0.01).reshape(-1, 1)
    y_test = np.sin(2*np.pi*X_test) + np.random.normal(0,0.2,100).reshape(-1,1)
    y_test=y_test.ravel()


    #Calcula as previsoes no conjunto de teste

    predict_test= nn.predict(X_test)

    fig = plt.figure()
    ax1 = fig.add_subplot(111)
    ax1.scatter(X_test, y_test, s=5, c='b', marker="o", label='real')
    ax1.plot(X_test,predict_test, c='r', label='NN Prediction')

    plt.legend()
    plt.show()

    print('MSE training : :.3f'.format(mean_squared_error(y_train, predict_train)))
    print('MSE testing : :.3f'.format(mean_squared_error(y_test, predict_test)))


    Using MLPRegressor, I found satisfactory results with just 3 neurons. However, when I try to use Keras, I can not get reasonably results. The code is very similar with the exception of the optmizer and the activation function. Here is the code for Keras:



    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt

    import keras
    from keras.models import Sequential
    from keras.layers import Dense
    from sklearn.metrics import mean_squared_error





    #
    #Cria um dataset

    #Cria um dataset
    X_train = np.arange(0.0, 1, 0.01).reshape(-1, 1)
    noise= np.random.normal(0,0.1,100).reshape(-1,1)



    y_train = np.sin(2*np.pi*X_train)
    y_train=y_train + noise
    y_train=y_train.ravel() # transfoprma em 1D array


    #Construir a Rede
    nn = Sequential() # sequencia de camada
    #activation
    # sigmoid, tanh, relu, linear
    # units: numero de neuronios na camada
    #primeira camada escondida tem input_dim
    nn.add(Dense(units = 100, activation = 'relu',
    kernel_initializer = 'random_uniform', input_dim = 1))
    nn.add(Dense(units = 1, activation = 'linear'))

    # Algorritmo de aprendizado
    #sgd = keras.optimizers.SGD(lr=0.1, decay=0, momentum=0, nesterov=False)
    adam=keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False)

    #determina a funcao de custo e a metrica utilizada
    nn.compile(loss = 'mean_squared_error', optimizer = adam,
    metrics = ['mean_squared_error'])
    history= nn.fit(X_train, y_train, batch_size = 1, epochs = 1000)

    #previsoes na rede no conjunto de treinamento
    predict_train =nn.predict(X_train)



    #Plota o treinamento
    fig = plt.figure()
    ax1 = fig.add_subplot(111)
    ax1.scatter(X_train, y_train, s=5, c='b', marker="o", label='real')
    ax1.plot(X_train,predict_train, c='r', label='NN Prediction')


    #Conjunto de Teste
    X_test = np.arange(0.0, 1, 0.01).reshape(-1, 1)
    y_test = np.sin(2*np.pi*X_test) + np.random.normal(0,0.2,100).reshape(-1,1)
    y_test=y_test.ravel()


    #Calcula as previsoes no conjunto de teste

    predict_test= nn.predict(X_test)

    fig = plt.figure()
    ax1 = fig.add_subplot(111)
    ax1.scatter(X_test, y_test, s=5, c='b', marker="o", label='real')
    ax1.plot(X_test,predict_test, c='r', label='NN Prediction')

    plt.legend()
    plt.show()

    print('MSE training : :.3f'.format(mean_squared_error(y_train, predict_train)))
    print('MSE testing : :.3f'.format(mean_squared_error(y_test, predict_test)))


    I already tried sgd as optimizer and also tanh for activation function. I do not undestand what I am missing, that is why I cann make the code for function approximation using Keras work.










    share|improve this question







    New contributor




    Jorge Amaral is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$














      0












      0








      0





      $begingroup$


      I have different results in a function approximation problem. I am trying to approximate a sine wave using MLPRegressor and Keras (um dense layer)
      Here is the code for the MLPRegressor:



      import numpy as np
      import pandas as pd
      import matplotlib.pyplot as plt
      from sklearn.neural_network import MLPRegressor
      from sklearn.metrics import mean_squared_error

      #Cria um dataset
      X_train = np.arange(0.0, 1, 0.01).reshape(-1, 1)
      noise= np.random.normal(0,0.1,100).reshape(-1,1)



      y_train = np.sin(2*np.pi*X_train)
      y_train=y_train + noise
      y_train=y_train.ravel() # transfoprma em 1D array

      #X_train = np.arange(0.0, 1, 0.01).reshape(-1, 1)
      #y_train = np.sin(2 * np.pi * X_train).ravel()


      # Experimentos
      #hidden_layer sizes : 1,3, 100
      #max_iter=10,100,1000
      #
      nn = MLPRegressor(
      hidden_layer_sizes=(3,), activation='tanh', solver='lbfgs', alpha=0.000, batch_size='auto',
      learning_rate='constant', learning_rate_init=0.01, power_t=0.5, max_iter=80, shuffle=True,
      random_state=0, tol=0.0001, verbose=True, warm_start=False, momentum=0.0, nesterovs_momentum=False,
      early_stopping=False, validation_fraction=0.0, beta_1=0.9, beta_2=0.999, epsilon=1e-08)

      #Treina a Rede
      n = nn.fit(X_train, y_train)

      #previsoes na rede no conjunto de treinamento
      predict_train =nn.predict(X_train)

      #Plota o treinamento
      fig = plt.figure()
      ax1 = fig.add_subplot(111)
      ax1.scatter(X_train, y_train, s=5, c='b', marker="o", label='real')
      ax1.plot(X_train,predict_train, c='r', label='NN Prediction')


      #Conjunto de Teste
      X_test = np.arange(0.0, 1, 0.01).reshape(-1, 1)
      y_test = np.sin(2*np.pi*X_test) + np.random.normal(0,0.2,100).reshape(-1,1)
      y_test=y_test.ravel()


      #Calcula as previsoes no conjunto de teste

      predict_test= nn.predict(X_test)

      fig = plt.figure()
      ax1 = fig.add_subplot(111)
      ax1.scatter(X_test, y_test, s=5, c='b', marker="o", label='real')
      ax1.plot(X_test,predict_test, c='r', label='NN Prediction')

      plt.legend()
      plt.show()

      print('MSE training : :.3f'.format(mean_squared_error(y_train, predict_train)))
      print('MSE testing : :.3f'.format(mean_squared_error(y_test, predict_test)))


      Using MLPRegressor, I found satisfactory results with just 3 neurons. However, when I try to use Keras, I can not get reasonably results. The code is very similar with the exception of the optmizer and the activation function. Here is the code for Keras:



      import numpy as np
      import pandas as pd
      import matplotlib.pyplot as plt

      import keras
      from keras.models import Sequential
      from keras.layers import Dense
      from sklearn.metrics import mean_squared_error





      #
      #Cria um dataset

      #Cria um dataset
      X_train = np.arange(0.0, 1, 0.01).reshape(-1, 1)
      noise= np.random.normal(0,0.1,100).reshape(-1,1)



      y_train = np.sin(2*np.pi*X_train)
      y_train=y_train + noise
      y_train=y_train.ravel() # transfoprma em 1D array


      #Construir a Rede
      nn = Sequential() # sequencia de camada
      #activation
      # sigmoid, tanh, relu, linear
      # units: numero de neuronios na camada
      #primeira camada escondida tem input_dim
      nn.add(Dense(units = 100, activation = 'relu',
      kernel_initializer = 'random_uniform', input_dim = 1))
      nn.add(Dense(units = 1, activation = 'linear'))

      # Algorritmo de aprendizado
      #sgd = keras.optimizers.SGD(lr=0.1, decay=0, momentum=0, nesterov=False)
      adam=keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False)

      #determina a funcao de custo e a metrica utilizada
      nn.compile(loss = 'mean_squared_error', optimizer = adam,
      metrics = ['mean_squared_error'])
      history= nn.fit(X_train, y_train, batch_size = 1, epochs = 1000)

      #previsoes na rede no conjunto de treinamento
      predict_train =nn.predict(X_train)



      #Plota o treinamento
      fig = plt.figure()
      ax1 = fig.add_subplot(111)
      ax1.scatter(X_train, y_train, s=5, c='b', marker="o", label='real')
      ax1.plot(X_train,predict_train, c='r', label='NN Prediction')


      #Conjunto de Teste
      X_test = np.arange(0.0, 1, 0.01).reshape(-1, 1)
      y_test = np.sin(2*np.pi*X_test) + np.random.normal(0,0.2,100).reshape(-1,1)
      y_test=y_test.ravel()


      #Calcula as previsoes no conjunto de teste

      predict_test= nn.predict(X_test)

      fig = plt.figure()
      ax1 = fig.add_subplot(111)
      ax1.scatter(X_test, y_test, s=5, c='b', marker="o", label='real')
      ax1.plot(X_test,predict_test, c='r', label='NN Prediction')

      plt.legend()
      plt.show()

      print('MSE training : :.3f'.format(mean_squared_error(y_train, predict_train)))
      print('MSE testing : :.3f'.format(mean_squared_error(y_test, predict_test)))


      I already tried sgd as optimizer and also tanh for activation function. I do not undestand what I am missing, that is why I cann make the code for function approximation using Keras work.










      share|improve this question







      New contributor




      Jorge Amaral is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      I have different results in a function approximation problem. I am trying to approximate a sine wave using MLPRegressor and Keras (um dense layer)
      Here is the code for the MLPRegressor:



      import numpy as np
      import pandas as pd
      import matplotlib.pyplot as plt
      from sklearn.neural_network import MLPRegressor
      from sklearn.metrics import mean_squared_error

      #Cria um dataset
      X_train = np.arange(0.0, 1, 0.01).reshape(-1, 1)
      noise= np.random.normal(0,0.1,100).reshape(-1,1)



      y_train = np.sin(2*np.pi*X_train)
      y_train=y_train + noise
      y_train=y_train.ravel() # transfoprma em 1D array

      #X_train = np.arange(0.0, 1, 0.01).reshape(-1, 1)
      #y_train = np.sin(2 * np.pi * X_train).ravel()


      # Experimentos
      #hidden_layer sizes : 1,3, 100
      #max_iter=10,100,1000
      #
      nn = MLPRegressor(
      hidden_layer_sizes=(3,), activation='tanh', solver='lbfgs', alpha=0.000, batch_size='auto',
      learning_rate='constant', learning_rate_init=0.01, power_t=0.5, max_iter=80, shuffle=True,
      random_state=0, tol=0.0001, verbose=True, warm_start=False, momentum=0.0, nesterovs_momentum=False,
      early_stopping=False, validation_fraction=0.0, beta_1=0.9, beta_2=0.999, epsilon=1e-08)

      #Treina a Rede
      n = nn.fit(X_train, y_train)

      #previsoes na rede no conjunto de treinamento
      predict_train =nn.predict(X_train)

      #Plota o treinamento
      fig = plt.figure()
      ax1 = fig.add_subplot(111)
      ax1.scatter(X_train, y_train, s=5, c='b', marker="o", label='real')
      ax1.plot(X_train,predict_train, c='r', label='NN Prediction')


      #Conjunto de Teste
      X_test = np.arange(0.0, 1, 0.01).reshape(-1, 1)
      y_test = np.sin(2*np.pi*X_test) + np.random.normal(0,0.2,100).reshape(-1,1)
      y_test=y_test.ravel()


      #Calcula as previsoes no conjunto de teste

      predict_test= nn.predict(X_test)

      fig = plt.figure()
      ax1 = fig.add_subplot(111)
      ax1.scatter(X_test, y_test, s=5, c='b', marker="o", label='real')
      ax1.plot(X_test,predict_test, c='r', label='NN Prediction')

      plt.legend()
      plt.show()

      print('MSE training : :.3f'.format(mean_squared_error(y_train, predict_train)))
      print('MSE testing : :.3f'.format(mean_squared_error(y_test, predict_test)))


      Using MLPRegressor, I found satisfactory results with just 3 neurons. However, when I try to use Keras, I can not get reasonably results. The code is very similar with the exception of the optmizer and the activation function. Here is the code for Keras:



      import numpy as np
      import pandas as pd
      import matplotlib.pyplot as plt

      import keras
      from keras.models import Sequential
      from keras.layers import Dense
      from sklearn.metrics import mean_squared_error





      #
      #Cria um dataset

      #Cria um dataset
      X_train = np.arange(0.0, 1, 0.01).reshape(-1, 1)
      noise= np.random.normal(0,0.1,100).reshape(-1,1)



      y_train = np.sin(2*np.pi*X_train)
      y_train=y_train + noise
      y_train=y_train.ravel() # transfoprma em 1D array


      #Construir a Rede
      nn = Sequential() # sequencia de camada
      #activation
      # sigmoid, tanh, relu, linear
      # units: numero de neuronios na camada
      #primeira camada escondida tem input_dim
      nn.add(Dense(units = 100, activation = 'relu',
      kernel_initializer = 'random_uniform', input_dim = 1))
      nn.add(Dense(units = 1, activation = 'linear'))

      # Algorritmo de aprendizado
      #sgd = keras.optimizers.SGD(lr=0.1, decay=0, momentum=0, nesterov=False)
      adam=keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False)

      #determina a funcao de custo e a metrica utilizada
      nn.compile(loss = 'mean_squared_error', optimizer = adam,
      metrics = ['mean_squared_error'])
      history= nn.fit(X_train, y_train, batch_size = 1, epochs = 1000)

      #previsoes na rede no conjunto de treinamento
      predict_train =nn.predict(X_train)



      #Plota o treinamento
      fig = plt.figure()
      ax1 = fig.add_subplot(111)
      ax1.scatter(X_train, y_train, s=5, c='b', marker="o", label='real')
      ax1.plot(X_train,predict_train, c='r', label='NN Prediction')


      #Conjunto de Teste
      X_test = np.arange(0.0, 1, 0.01).reshape(-1, 1)
      y_test = np.sin(2*np.pi*X_test) + np.random.normal(0,0.2,100).reshape(-1,1)
      y_test=y_test.ravel()


      #Calcula as previsoes no conjunto de teste

      predict_test= nn.predict(X_test)

      fig = plt.figure()
      ax1 = fig.add_subplot(111)
      ax1.scatter(X_test, y_test, s=5, c='b', marker="o", label='real')
      ax1.plot(X_test,predict_test, c='r', label='NN Prediction')

      plt.legend()
      plt.show()

      print('MSE training : :.3f'.format(mean_squared_error(y_train, predict_train)))
      print('MSE testing : :.3f'.format(mean_squared_error(y_test, predict_test)))


      I already tried sgd as optimizer and also tanh for activation function. I do not undestand what I am missing, that is why I cann make the code for function approximation using Keras work.







      keras mlp






      share|improve this question







      New contributor




      Jorge Amaral is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|improve this question







      New contributor




      Jorge Amaral is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|improve this question




      share|improve this question






      New contributor




      Jorge Amaral is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 5 hours ago









      Jorge AmaralJorge Amaral

      1




      1




      New contributor




      Jorge Amaral is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Jorge Amaral is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Jorge Amaral is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




















          0






          active

          oldest

          votes












          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "557"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );






          Jorge Amaral is a new contributor. Be nice, and check out our Code of Conduct.









          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f48773%2fdiffirent-results-in-a-function-approximation-problem-using-mlpregressor-and-ker%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          Jorge Amaral is a new contributor. Be nice, and check out our Code of Conduct.









          draft saved

          draft discarded


















          Jorge Amaral is a new contributor. Be nice, and check out our Code of Conduct.












          Jorge Amaral is a new contributor. Be nice, and check out our Code of Conduct.











          Jorge Amaral is a new contributor. Be nice, and check out our Code of Conduct.














          Thanks for contributing an answer to Data Science Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f48773%2fdiffirent-results-in-a-function-approximation-problem-using-mlpregressor-and-ker%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          ValueError: Error when checking input: expected conv2d_13_input to have shape (3, 150, 150) but got array with shape (150, 150, 3)2019 Community Moderator ElectionError when checking : expected dense_1_input to have shape (None, 5) but got array with shape (200, 1)Error 'Expected 2D array, got 1D array instead:'ValueError: Error when checking input: expected lstm_41_input to have 3 dimensions, but got array with shape (40000,100)ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)ValueError: Error when checking target: expected dense_2 to have shape (1,) but got array with shape (0,)Keras exception: ValueError: Error when checking input: expected conv2d_1_input to have shape (150, 150, 3) but got array with shape (256, 256, 3)Steps taking too long to completewhen checking input: expected dense_1_input to have shape (13328,) but got array with shape (317,)ValueError: Error when checking target: expected dense_3 to have shape (None, 1) but got array with shape (7715, 40000)Keras exception: Error when checking input: expected dense_input to have shape (2,) but got array with shape (1,)

          Ружовы пелікан Змест Знешні выгляд | Пашырэнне | Асаблівасці біялогіі | Літаратура | НавігацыяДагледжаная версіяправерана1 зменаДагледжаная версіяправерана1 змена/ 22697590 Сістэматыкана ВіківідахВыявына Вікісховішчы174693363011049382

          Illegal assignment from SObject to ContactFetching String, Id from Map - Illegal Assignment Id to Field / ObjectError: Compile Error: Illegal assignment from String to BooleanError: List has no rows for assignment to SObjectError on Test Class - System.QueryException: List has no rows for assignment to SObjectRemote action problemDML requires SObject or SObject list type error“Illegal assignment from List to List”Test Class Fail: Batch Class: System.QueryException: List has no rows for assignment to SObjectMapping to a user'List has no rows for assignment to SObject' Mystery