Eigenvalues of two symmetric $4times 4$ matrices: why is one negative of the other?Congruence of invertible skew symmetric matricesEigenvalues of a general block hermitian matrixEigenvalues of Overlapping block diagonal matricesBuilding matrices from eigenvalueseigenvalues for certain hermitian matricesEigenvalues and eigenspaces in a symmetric matrixThe matrix of an endomorphismProve that the span of $M_1, M_2, M_3$ is the set of all symmetric $2times2$ matrices.Looking for properties of, or formulae for eigenvalues of a symmetric matrix reminiscent of Toeplitz matricesDo hermitian matrices commute when they occupy they same elements but have different values?
Why Is Death Allowed In the Matrix?
Why does Kotter return in Welcome Back Kotter?
Fully-Firstable Anagram Sets
How to say job offer in Mandarin/Cantonese?
Have astronauts in space suits ever taken selfies? If so, how?
A newer friend of my brother's gave him a load of baseball cards that are supposedly extremely valuable. Is this a scam?
Fencing style for blades that can attack from a distance
Is it possible to do 50 km distance without any previous training?
To string or not to string
How to write a macro that is braces sensitive?
What are these boxed doors outside store fronts in New York?
What would happen to a modern skyscraper if it rains micro blackholes?
Prove that NP is closed under karp reduction?
Example of a continuous function that don't have a continuous extension
Smoothness of finite-dimensional functional calculus
The use of multiple foreign keys on same column in SQL Server
What is the word for reserving something for yourself before others do?
Why do I get two different answers for this counting problem?
How do I create uniquely male characters?
How much RAM could one put in a typical 80386 setup?
"You are your self first supporter", a more proper way to say it
What typically incentivizes a professor to change jobs to a lower ranking university?
Is it unprofessional to ask if a job posting on GlassDoor is real?
Dragon forelimb placement
Eigenvalues of two symmetric $4times 4$ matrices: why is one negative of the other?
Congruence of invertible skew symmetric matricesEigenvalues of a general block hermitian matrixEigenvalues of Overlapping block diagonal matricesBuilding matrices from eigenvalueseigenvalues for certain hermitian matricesEigenvalues and eigenspaces in a symmetric matrixThe matrix of an endomorphismProve that the span of $M_1, M_2, M_3$ is the set of all symmetric $2times2$ matrices.Looking for properties of, or formulae for eigenvalues of a symmetric matrix reminiscent of Toeplitz matricesDo hermitian matrices commute when they occupy they same elements but have different values?
$begingroup$
Consider the following symmetric matrix:
$$
M_0 =
beginpmatrix
0 & 1 & 2 & 0 \
1 & 0 & 4 & 3 \
2 & 4 & 0 & 1 \
0 & 3 & 1 & 0
endpmatrix
$$
and a very similar matrix:
$$
M_1 =
beginpmatrix
0 & 1 & 2 & 0 \
1 & 0 & -4 & 3 \
2 & -4 & 0 & 1 \
0 & 3 & 1 & 0
endpmatrix
$$
To my surprise, the eigenspectrum of $M_0$ and $(-M_1)$ are the same! Why would this be the case?
I also tried playing around with the values a little; for example, if the center block is $beginpmatrix1 & pm 4 \ pm 4 & 1endpmatrix$ instead, then they do not share the same eigenvalues.
Context: I was considering the Hermitian matrix of this form ($M_2$ below) and noted that this has the same property as the matrix $M_0$ from above. Thus, presumably, it has nothing to do with the fact that the middle block is complex.
$$
M_2 =
beginpmatrix
0 & 1 & 2 & 0 \
1 & 0 & e^ix & 3 \
2 & e^-ix & 0 & 1 \
0 & 3 & 1 & 0
endpmatrix
$$
ps. I will accept any answer which explains the phenomenon between the real matrices. I think that would give a hint as to why $M_2$ / Hermitian matrices have the same property.
Thanks.
linear-algebra matrices eigenvalues-eigenvectors symmetric-matrices
$endgroup$
add a comment |
$begingroup$
Consider the following symmetric matrix:
$$
M_0 =
beginpmatrix
0 & 1 & 2 & 0 \
1 & 0 & 4 & 3 \
2 & 4 & 0 & 1 \
0 & 3 & 1 & 0
endpmatrix
$$
and a very similar matrix:
$$
M_1 =
beginpmatrix
0 & 1 & 2 & 0 \
1 & 0 & -4 & 3 \
2 & -4 & 0 & 1 \
0 & 3 & 1 & 0
endpmatrix
$$
To my surprise, the eigenspectrum of $M_0$ and $(-M_1)$ are the same! Why would this be the case?
I also tried playing around with the values a little; for example, if the center block is $beginpmatrix1 & pm 4 \ pm 4 & 1endpmatrix$ instead, then they do not share the same eigenvalues.
Context: I was considering the Hermitian matrix of this form ($M_2$ below) and noted that this has the same property as the matrix $M_0$ from above. Thus, presumably, it has nothing to do with the fact that the middle block is complex.
$$
M_2 =
beginpmatrix
0 & 1 & 2 & 0 \
1 & 0 & e^ix & 3 \
2 & e^-ix & 0 & 1 \
0 & 3 & 1 & 0
endpmatrix
$$
ps. I will accept any answer which explains the phenomenon between the real matrices. I think that would give a hint as to why $M_2$ / Hermitian matrices have the same property.
Thanks.
linear-algebra matrices eigenvalues-eigenvectors symmetric-matrices
$endgroup$
$begingroup$
It's because of all the conveniently placed zeroes.
$endgroup$
– M. Vinay
1 hour ago
$begingroup$
@M.Vinay Yes, seems that way. Is there a name for such matrices or any property sticking out to you right now which would explain why this is true for symmetric matrices of this kind?
$endgroup$
– Troy
1 hour ago
1
$begingroup$
In my answer as currently written, I've shown that this holds for a slightly more general case (the matrix doesn't have to be symmetric/Hermitian, and may be real or complex). But I'd like to generalise still further, to higher orders. And also try to find a more big-picture explanation, as you say.
$endgroup$
– M. Vinay
1 hour ago
2
$begingroup$
In case this helps: this would be "hollow" (zeroes at the diagonal) "pentadiagonal" or "band" symmetric matrix.
$endgroup$
– leonbloy
1 hour ago
$begingroup$
@leonbloy that certainly narrows down the search for me, thanks for the input!
$endgroup$
– Troy
1 hour ago
add a comment |
$begingroup$
Consider the following symmetric matrix:
$$
M_0 =
beginpmatrix
0 & 1 & 2 & 0 \
1 & 0 & 4 & 3 \
2 & 4 & 0 & 1 \
0 & 3 & 1 & 0
endpmatrix
$$
and a very similar matrix:
$$
M_1 =
beginpmatrix
0 & 1 & 2 & 0 \
1 & 0 & -4 & 3 \
2 & -4 & 0 & 1 \
0 & 3 & 1 & 0
endpmatrix
$$
To my surprise, the eigenspectrum of $M_0$ and $(-M_1)$ are the same! Why would this be the case?
I also tried playing around with the values a little; for example, if the center block is $beginpmatrix1 & pm 4 \ pm 4 & 1endpmatrix$ instead, then they do not share the same eigenvalues.
Context: I was considering the Hermitian matrix of this form ($M_2$ below) and noted that this has the same property as the matrix $M_0$ from above. Thus, presumably, it has nothing to do with the fact that the middle block is complex.
$$
M_2 =
beginpmatrix
0 & 1 & 2 & 0 \
1 & 0 & e^ix & 3 \
2 & e^-ix & 0 & 1 \
0 & 3 & 1 & 0
endpmatrix
$$
ps. I will accept any answer which explains the phenomenon between the real matrices. I think that would give a hint as to why $M_2$ / Hermitian matrices have the same property.
Thanks.
linear-algebra matrices eigenvalues-eigenvectors symmetric-matrices
$endgroup$
Consider the following symmetric matrix:
$$
M_0 =
beginpmatrix
0 & 1 & 2 & 0 \
1 & 0 & 4 & 3 \
2 & 4 & 0 & 1 \
0 & 3 & 1 & 0
endpmatrix
$$
and a very similar matrix:
$$
M_1 =
beginpmatrix
0 & 1 & 2 & 0 \
1 & 0 & -4 & 3 \
2 & -4 & 0 & 1 \
0 & 3 & 1 & 0
endpmatrix
$$
To my surprise, the eigenspectrum of $M_0$ and $(-M_1)$ are the same! Why would this be the case?
I also tried playing around with the values a little; for example, if the center block is $beginpmatrix1 & pm 4 \ pm 4 & 1endpmatrix$ instead, then they do not share the same eigenvalues.
Context: I was considering the Hermitian matrix of this form ($M_2$ below) and noted that this has the same property as the matrix $M_0$ from above. Thus, presumably, it has nothing to do with the fact that the middle block is complex.
$$
M_2 =
beginpmatrix
0 & 1 & 2 & 0 \
1 & 0 & e^ix & 3 \
2 & e^-ix & 0 & 1 \
0 & 3 & 1 & 0
endpmatrix
$$
ps. I will accept any answer which explains the phenomenon between the real matrices. I think that would give a hint as to why $M_2$ / Hermitian matrices have the same property.
Thanks.
linear-algebra matrices eigenvalues-eigenvectors symmetric-matrices
linear-algebra matrices eigenvalues-eigenvectors symmetric-matrices
edited 27 mins ago
M. Vinay
7,33322136
7,33322136
asked 2 hours ago
TroyTroy
4281519
4281519
$begingroup$
It's because of all the conveniently placed zeroes.
$endgroup$
– M. Vinay
1 hour ago
$begingroup$
@M.Vinay Yes, seems that way. Is there a name for such matrices or any property sticking out to you right now which would explain why this is true for symmetric matrices of this kind?
$endgroup$
– Troy
1 hour ago
1
$begingroup$
In my answer as currently written, I've shown that this holds for a slightly more general case (the matrix doesn't have to be symmetric/Hermitian, and may be real or complex). But I'd like to generalise still further, to higher orders. And also try to find a more big-picture explanation, as you say.
$endgroup$
– M. Vinay
1 hour ago
2
$begingroup$
In case this helps: this would be "hollow" (zeroes at the diagonal) "pentadiagonal" or "band" symmetric matrix.
$endgroup$
– leonbloy
1 hour ago
$begingroup$
@leonbloy that certainly narrows down the search for me, thanks for the input!
$endgroup$
– Troy
1 hour ago
add a comment |
$begingroup$
It's because of all the conveniently placed zeroes.
$endgroup$
– M. Vinay
1 hour ago
$begingroup$
@M.Vinay Yes, seems that way. Is there a name for such matrices or any property sticking out to you right now which would explain why this is true for symmetric matrices of this kind?
$endgroup$
– Troy
1 hour ago
1
$begingroup$
In my answer as currently written, I've shown that this holds for a slightly more general case (the matrix doesn't have to be symmetric/Hermitian, and may be real or complex). But I'd like to generalise still further, to higher orders. And also try to find a more big-picture explanation, as you say.
$endgroup$
– M. Vinay
1 hour ago
2
$begingroup$
In case this helps: this would be "hollow" (zeroes at the diagonal) "pentadiagonal" or "band" symmetric matrix.
$endgroup$
– leonbloy
1 hour ago
$begingroup$
@leonbloy that certainly narrows down the search for me, thanks for the input!
$endgroup$
– Troy
1 hour ago
$begingroup$
It's because of all the conveniently placed zeroes.
$endgroup$
– M. Vinay
1 hour ago
$begingroup$
It's because of all the conveniently placed zeroes.
$endgroup$
– M. Vinay
1 hour ago
$begingroup$
@M.Vinay Yes, seems that way. Is there a name for such matrices or any property sticking out to you right now which would explain why this is true for symmetric matrices of this kind?
$endgroup$
– Troy
1 hour ago
$begingroup$
@M.Vinay Yes, seems that way. Is there a name for such matrices or any property sticking out to you right now which would explain why this is true for symmetric matrices of this kind?
$endgroup$
– Troy
1 hour ago
1
1
$begingroup$
In my answer as currently written, I've shown that this holds for a slightly more general case (the matrix doesn't have to be symmetric/Hermitian, and may be real or complex). But I'd like to generalise still further, to higher orders. And also try to find a more big-picture explanation, as you say.
$endgroup$
– M. Vinay
1 hour ago
$begingroup$
In my answer as currently written, I've shown that this holds for a slightly more general case (the matrix doesn't have to be symmetric/Hermitian, and may be real or complex). But I'd like to generalise still further, to higher orders. And also try to find a more big-picture explanation, as you say.
$endgroup$
– M. Vinay
1 hour ago
2
2
$begingroup$
In case this helps: this would be "hollow" (zeroes at the diagonal) "pentadiagonal" or "band" symmetric matrix.
$endgroup$
– leonbloy
1 hour ago
$begingroup$
In case this helps: this would be "hollow" (zeroes at the diagonal) "pentadiagonal" or "band" symmetric matrix.
$endgroup$
– leonbloy
1 hour ago
$begingroup$
@leonbloy that certainly narrows down the search for me, thanks for the input!
$endgroup$
– Troy
1 hour ago
$begingroup$
@leonbloy that certainly narrows down the search for me, thanks for the input!
$endgroup$
– Troy
1 hour ago
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
$$-M_1=D^-1M_0D$$
where $D=D^-1$ is the diagonal matrix with diagonal entries $(-1,1,1,-1)$.
Therefore $M_0$ and $-M_1$ are conjugate, and have the same spectrum. This works
because of the zeroes in the corners of $M_0$. In general,
$$pmatrixa_11&a_12&a_13&a_14\
a_21&a_22&a_23&a_24\
a_31&a_32&a_33&a_34\
a_41&a_42&a_43&a_44$$
and
$$-pmatrix-a_11&a_12&a_13&-a_14\
a_21&-a_22&-a_23&a_24\
a_31&-a_32&-a_33&a_34\
-a_41&a_42&a_43&-a_44$$
are conjugate, for precisely the same reason.
$endgroup$
1
$begingroup$
Of course, signature matrix. This is the answer.
$endgroup$
– M. Vinay
1 hour ago
$begingroup$
okay, this is amazing.. (there's a small typo on the last line of the matrix, I can't edit since it's <6 characters long)
$endgroup$
– Troy
1 hour ago
add a comment |
$begingroup$
This is happening because of the somewhat special pattern of zeroes in this matrix. Edit: No it's not. It has everything to do with signature matrices instead, as shown in the other answer.
Let $$M_1 = beginbmatrix0 & a_2 & a_3 & 0\b_1 & 0 & b_3 & b_4\c_1 & c_2 & 0 & c_4\0 & d_2 & d_3 & 0endbmatrix, quad M_2 = beginbmatrix0 & a_2 & a_3 & 0\b_1 & 0 & -b_3 & b_4\c_1 & -c_2 & 0 & c_4\0 & d_2 & d_3 & 0endbmatrix$$
Let $(lambda, x)$ be an eigenvalue-eigenvector pair of $M_1$, where
$x = beginbmatrixx_1 & x_2 & x_3 & x_4endbmatrix^T$.
Then we can show that
$beginbmatrixx_1 & -x_2 & -x_3 & x_4endbmatrix^T$
is an eigenvector corresponding to eigenvalue $-lambda$ for $M_2$.
For,
beginalign*
a_2 x_2 + a_3 x_3 = lambda x_1 & implies a_2 (-x_2) + a_3(-x_3) = -lambda x_1\
b_1 x_1 + b_3 x_3 + b_4 x_4 = lambda x_2 & implies b_1 x_1 - b_3(-x_3) + b_4x_4 = (-lambda)(-x_2).
endalign*
And the cases of the third and fourth rows are obviously similar.
$endgroup$
$begingroup$
oh this is promising. let me mull on this a little before I accept. thanks!
$endgroup$
– Troy
1 hour ago
$begingroup$
The would imply that the property has no obvious generalization for larger sizes, no?
$endgroup$
– leonbloy
1 hour ago
$begingroup$
@leonbloy I think it can be done with careful placement of zeroes, but I don't know if those generalisations would be naturally interesting or too contrived. Probably the latter.
$endgroup$
– M. Vinay
1 hour ago
add a comment |
$begingroup$
I'm not sure if what follows is the type of thing you're looking for, but maybe you'll find this useful.
Consider the matrix
$$
M_a =
left[beginarrayrrrr
0 & 1 & 2 & 0 \
1 & 0 & a & 3 \
2 & a & 0 & 1 \
0 & 3 & 1 & 0
endarrayright]
$$
The characteristic polynomials of $M_a$ and $M_-a$ are
beginalign*
chi_M_a(t)
&= t^4 - left(a^2 + 15right) t^2 - 10 , a t + 25 \
chi_M_-a(t)
&= t^4 - left(a^2 + 15right) t^2 + 10 , a t + 25
endalign*
Now, note that $lambda$ is an eigenvalue of $M_a$ if and only if
beginalign*
0
&= chi_M_a(t) \
&= lambda^4 - left(a^2 + 15right) lambda^2 - 10 , a lambda + 25\
&= (-lambda)^4 - left(a^2 + 15right) (-lambda)^2 + 10 , a (-lambda) + 25 \
&= chi_M_-a(-lambda)
endalign*
This proves that $M_a$ and $M_-a$ have eigenvalues related by negation.
Now, suppose that $M$ instead takes the form
$$
M_a+bi=left[beginarrayrrrr
0 & 1 & 2 & 0 \
1 & 0 & a + i , b & 3 \
2 & a - i , b & 0 & 1 \
0 & 3 & 1 & 0
endarrayright]
$$
In this case, the characteristic polynomials of $M_a+bi$ and $M_-a+bi$ are
beginalign*
chi_M_a+bi(t)
&= t^4 + left(-a^2 - b^2 - 15right) t^2 - 10 , a t + 25 \
chi_M_-a+bi(t)
&= t^4 + left(-a^2 - b^2 - 15right) t^2 + 10 , a t + 25
endalign*
A similiar argument then shows that $M_a+bi$ and $M_-a+bi$ have eigenvalues related by negation.
$endgroup$
$begingroup$
thanks for the attempt; yes this is a tad too "high-level" for my use-case -- I need a slightly more general/abstracted explanation. +1 nonetheless.
$endgroup$
– Troy
1 hour ago
$begingroup$
This does not explain if the property depends on having those non-zero elements.
$endgroup$
– leonbloy
1 hour ago
$begingroup$
@leonbloy I mean, if someone wants to edit the question so that it is more rigorously posed, then we can take a stab at it. As it stands, it's unclear what's actually being asked here.
$endgroup$
– Brian Fitzpatrick
1 hour ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177640%2feigenvalues-of-two-symmetric-4-times-4-matrices-why-is-one-negative-of-the-ot%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$-M_1=D^-1M_0D$$
where $D=D^-1$ is the diagonal matrix with diagonal entries $(-1,1,1,-1)$.
Therefore $M_0$ and $-M_1$ are conjugate, and have the same spectrum. This works
because of the zeroes in the corners of $M_0$. In general,
$$pmatrixa_11&a_12&a_13&a_14\
a_21&a_22&a_23&a_24\
a_31&a_32&a_33&a_34\
a_41&a_42&a_43&a_44$$
and
$$-pmatrix-a_11&a_12&a_13&-a_14\
a_21&-a_22&-a_23&a_24\
a_31&-a_32&-a_33&a_34\
-a_41&a_42&a_43&-a_44$$
are conjugate, for precisely the same reason.
$endgroup$
1
$begingroup$
Of course, signature matrix. This is the answer.
$endgroup$
– M. Vinay
1 hour ago
$begingroup$
okay, this is amazing.. (there's a small typo on the last line of the matrix, I can't edit since it's <6 characters long)
$endgroup$
– Troy
1 hour ago
add a comment |
$begingroup$
$$-M_1=D^-1M_0D$$
where $D=D^-1$ is the diagonal matrix with diagonal entries $(-1,1,1,-1)$.
Therefore $M_0$ and $-M_1$ are conjugate, and have the same spectrum. This works
because of the zeroes in the corners of $M_0$. In general,
$$pmatrixa_11&a_12&a_13&a_14\
a_21&a_22&a_23&a_24\
a_31&a_32&a_33&a_34\
a_41&a_42&a_43&a_44$$
and
$$-pmatrix-a_11&a_12&a_13&-a_14\
a_21&-a_22&-a_23&a_24\
a_31&-a_32&-a_33&a_34\
-a_41&a_42&a_43&-a_44$$
are conjugate, for precisely the same reason.
$endgroup$
1
$begingroup$
Of course, signature matrix. This is the answer.
$endgroup$
– M. Vinay
1 hour ago
$begingroup$
okay, this is amazing.. (there's a small typo on the last line of the matrix, I can't edit since it's <6 characters long)
$endgroup$
– Troy
1 hour ago
add a comment |
$begingroup$
$$-M_1=D^-1M_0D$$
where $D=D^-1$ is the diagonal matrix with diagonal entries $(-1,1,1,-1)$.
Therefore $M_0$ and $-M_1$ are conjugate, and have the same spectrum. This works
because of the zeroes in the corners of $M_0$. In general,
$$pmatrixa_11&a_12&a_13&a_14\
a_21&a_22&a_23&a_24\
a_31&a_32&a_33&a_34\
a_41&a_42&a_43&a_44$$
and
$$-pmatrix-a_11&a_12&a_13&-a_14\
a_21&-a_22&-a_23&a_24\
a_31&-a_32&-a_33&a_34\
-a_41&a_42&a_43&-a_44$$
are conjugate, for precisely the same reason.
$endgroup$
$$-M_1=D^-1M_0D$$
where $D=D^-1$ is the diagonal matrix with diagonal entries $(-1,1,1,-1)$.
Therefore $M_0$ and $-M_1$ are conjugate, and have the same spectrum. This works
because of the zeroes in the corners of $M_0$. In general,
$$pmatrixa_11&a_12&a_13&a_14\
a_21&a_22&a_23&a_24\
a_31&a_32&a_33&a_34\
a_41&a_42&a_43&a_44$$
and
$$-pmatrix-a_11&a_12&a_13&-a_14\
a_21&-a_22&-a_23&a_24\
a_31&-a_32&-a_33&a_34\
-a_41&a_42&a_43&-a_44$$
are conjugate, for precisely the same reason.
edited 48 mins ago
answered 1 hour ago
Lord Shark the UnknownLord Shark the Unknown
108k1162135
108k1162135
1
$begingroup$
Of course, signature matrix. This is the answer.
$endgroup$
– M. Vinay
1 hour ago
$begingroup$
okay, this is amazing.. (there's a small typo on the last line of the matrix, I can't edit since it's <6 characters long)
$endgroup$
– Troy
1 hour ago
add a comment |
1
$begingroup$
Of course, signature matrix. This is the answer.
$endgroup$
– M. Vinay
1 hour ago
$begingroup$
okay, this is amazing.. (there's a small typo on the last line of the matrix, I can't edit since it's <6 characters long)
$endgroup$
– Troy
1 hour ago
1
1
$begingroup$
Of course, signature matrix. This is the answer.
$endgroup$
– M. Vinay
1 hour ago
$begingroup$
Of course, signature matrix. This is the answer.
$endgroup$
– M. Vinay
1 hour ago
$begingroup$
okay, this is amazing.. (there's a small typo on the last line of the matrix, I can't edit since it's <6 characters long)
$endgroup$
– Troy
1 hour ago
$begingroup$
okay, this is amazing.. (there's a small typo on the last line of the matrix, I can't edit since it's <6 characters long)
$endgroup$
– Troy
1 hour ago
add a comment |
$begingroup$
This is happening because of the somewhat special pattern of zeroes in this matrix. Edit: No it's not. It has everything to do with signature matrices instead, as shown in the other answer.
Let $$M_1 = beginbmatrix0 & a_2 & a_3 & 0\b_1 & 0 & b_3 & b_4\c_1 & c_2 & 0 & c_4\0 & d_2 & d_3 & 0endbmatrix, quad M_2 = beginbmatrix0 & a_2 & a_3 & 0\b_1 & 0 & -b_3 & b_4\c_1 & -c_2 & 0 & c_4\0 & d_2 & d_3 & 0endbmatrix$$
Let $(lambda, x)$ be an eigenvalue-eigenvector pair of $M_1$, where
$x = beginbmatrixx_1 & x_2 & x_3 & x_4endbmatrix^T$.
Then we can show that
$beginbmatrixx_1 & -x_2 & -x_3 & x_4endbmatrix^T$
is an eigenvector corresponding to eigenvalue $-lambda$ for $M_2$.
For,
beginalign*
a_2 x_2 + a_3 x_3 = lambda x_1 & implies a_2 (-x_2) + a_3(-x_3) = -lambda x_1\
b_1 x_1 + b_3 x_3 + b_4 x_4 = lambda x_2 & implies b_1 x_1 - b_3(-x_3) + b_4x_4 = (-lambda)(-x_2).
endalign*
And the cases of the third and fourth rows are obviously similar.
$endgroup$
$begingroup$
oh this is promising. let me mull on this a little before I accept. thanks!
$endgroup$
– Troy
1 hour ago
$begingroup$
The would imply that the property has no obvious generalization for larger sizes, no?
$endgroup$
– leonbloy
1 hour ago
$begingroup$
@leonbloy I think it can be done with careful placement of zeroes, but I don't know if those generalisations would be naturally interesting or too contrived. Probably the latter.
$endgroup$
– M. Vinay
1 hour ago
add a comment |
$begingroup$
This is happening because of the somewhat special pattern of zeroes in this matrix. Edit: No it's not. It has everything to do with signature matrices instead, as shown in the other answer.
Let $$M_1 = beginbmatrix0 & a_2 & a_3 & 0\b_1 & 0 & b_3 & b_4\c_1 & c_2 & 0 & c_4\0 & d_2 & d_3 & 0endbmatrix, quad M_2 = beginbmatrix0 & a_2 & a_3 & 0\b_1 & 0 & -b_3 & b_4\c_1 & -c_2 & 0 & c_4\0 & d_2 & d_3 & 0endbmatrix$$
Let $(lambda, x)$ be an eigenvalue-eigenvector pair of $M_1$, where
$x = beginbmatrixx_1 & x_2 & x_3 & x_4endbmatrix^T$.
Then we can show that
$beginbmatrixx_1 & -x_2 & -x_3 & x_4endbmatrix^T$
is an eigenvector corresponding to eigenvalue $-lambda$ for $M_2$.
For,
beginalign*
a_2 x_2 + a_3 x_3 = lambda x_1 & implies a_2 (-x_2) + a_3(-x_3) = -lambda x_1\
b_1 x_1 + b_3 x_3 + b_4 x_4 = lambda x_2 & implies b_1 x_1 - b_3(-x_3) + b_4x_4 = (-lambda)(-x_2).
endalign*
And the cases of the third and fourth rows are obviously similar.
$endgroup$
$begingroup$
oh this is promising. let me mull on this a little before I accept. thanks!
$endgroup$
– Troy
1 hour ago
$begingroup$
The would imply that the property has no obvious generalization for larger sizes, no?
$endgroup$
– leonbloy
1 hour ago
$begingroup$
@leonbloy I think it can be done with careful placement of zeroes, but I don't know if those generalisations would be naturally interesting or too contrived. Probably the latter.
$endgroup$
– M. Vinay
1 hour ago
add a comment |
$begingroup$
This is happening because of the somewhat special pattern of zeroes in this matrix. Edit: No it's not. It has everything to do with signature matrices instead, as shown in the other answer.
Let $$M_1 = beginbmatrix0 & a_2 & a_3 & 0\b_1 & 0 & b_3 & b_4\c_1 & c_2 & 0 & c_4\0 & d_2 & d_3 & 0endbmatrix, quad M_2 = beginbmatrix0 & a_2 & a_3 & 0\b_1 & 0 & -b_3 & b_4\c_1 & -c_2 & 0 & c_4\0 & d_2 & d_3 & 0endbmatrix$$
Let $(lambda, x)$ be an eigenvalue-eigenvector pair of $M_1$, where
$x = beginbmatrixx_1 & x_2 & x_3 & x_4endbmatrix^T$.
Then we can show that
$beginbmatrixx_1 & -x_2 & -x_3 & x_4endbmatrix^T$
is an eigenvector corresponding to eigenvalue $-lambda$ for $M_2$.
For,
beginalign*
a_2 x_2 + a_3 x_3 = lambda x_1 & implies a_2 (-x_2) + a_3(-x_3) = -lambda x_1\
b_1 x_1 + b_3 x_3 + b_4 x_4 = lambda x_2 & implies b_1 x_1 - b_3(-x_3) + b_4x_4 = (-lambda)(-x_2).
endalign*
And the cases of the third and fourth rows are obviously similar.
$endgroup$
This is happening because of the somewhat special pattern of zeroes in this matrix. Edit: No it's not. It has everything to do with signature matrices instead, as shown in the other answer.
Let $$M_1 = beginbmatrix0 & a_2 & a_3 & 0\b_1 & 0 & b_3 & b_4\c_1 & c_2 & 0 & c_4\0 & d_2 & d_3 & 0endbmatrix, quad M_2 = beginbmatrix0 & a_2 & a_3 & 0\b_1 & 0 & -b_3 & b_4\c_1 & -c_2 & 0 & c_4\0 & d_2 & d_3 & 0endbmatrix$$
Let $(lambda, x)$ be an eigenvalue-eigenvector pair of $M_1$, where
$x = beginbmatrixx_1 & x_2 & x_3 & x_4endbmatrix^T$.
Then we can show that
$beginbmatrixx_1 & -x_2 & -x_3 & x_4endbmatrix^T$
is an eigenvector corresponding to eigenvalue $-lambda$ for $M_2$.
For,
beginalign*
a_2 x_2 + a_3 x_3 = lambda x_1 & implies a_2 (-x_2) + a_3(-x_3) = -lambda x_1\
b_1 x_1 + b_3 x_3 + b_4 x_4 = lambda x_2 & implies b_1 x_1 - b_3(-x_3) + b_4x_4 = (-lambda)(-x_2).
endalign*
And the cases of the third and fourth rows are obviously similar.
edited 1 hour ago
answered 1 hour ago
M. VinayM. Vinay
7,33322136
7,33322136
$begingroup$
oh this is promising. let me mull on this a little before I accept. thanks!
$endgroup$
– Troy
1 hour ago
$begingroup$
The would imply that the property has no obvious generalization for larger sizes, no?
$endgroup$
– leonbloy
1 hour ago
$begingroup$
@leonbloy I think it can be done with careful placement of zeroes, but I don't know if those generalisations would be naturally interesting or too contrived. Probably the latter.
$endgroup$
– M. Vinay
1 hour ago
add a comment |
$begingroup$
oh this is promising. let me mull on this a little before I accept. thanks!
$endgroup$
– Troy
1 hour ago
$begingroup$
The would imply that the property has no obvious generalization for larger sizes, no?
$endgroup$
– leonbloy
1 hour ago
$begingroup$
@leonbloy I think it can be done with careful placement of zeroes, but I don't know if those generalisations would be naturally interesting or too contrived. Probably the latter.
$endgroup$
– M. Vinay
1 hour ago
$begingroup$
oh this is promising. let me mull on this a little before I accept. thanks!
$endgroup$
– Troy
1 hour ago
$begingroup$
oh this is promising. let me mull on this a little before I accept. thanks!
$endgroup$
– Troy
1 hour ago
$begingroup$
The would imply that the property has no obvious generalization for larger sizes, no?
$endgroup$
– leonbloy
1 hour ago
$begingroup$
The would imply that the property has no obvious generalization for larger sizes, no?
$endgroup$
– leonbloy
1 hour ago
$begingroup$
@leonbloy I think it can be done with careful placement of zeroes, but I don't know if those generalisations would be naturally interesting or too contrived. Probably the latter.
$endgroup$
– M. Vinay
1 hour ago
$begingroup$
@leonbloy I think it can be done with careful placement of zeroes, but I don't know if those generalisations would be naturally interesting or too contrived. Probably the latter.
$endgroup$
– M. Vinay
1 hour ago
add a comment |
$begingroup$
I'm not sure if what follows is the type of thing you're looking for, but maybe you'll find this useful.
Consider the matrix
$$
M_a =
left[beginarrayrrrr
0 & 1 & 2 & 0 \
1 & 0 & a & 3 \
2 & a & 0 & 1 \
0 & 3 & 1 & 0
endarrayright]
$$
The characteristic polynomials of $M_a$ and $M_-a$ are
beginalign*
chi_M_a(t)
&= t^4 - left(a^2 + 15right) t^2 - 10 , a t + 25 \
chi_M_-a(t)
&= t^4 - left(a^2 + 15right) t^2 + 10 , a t + 25
endalign*
Now, note that $lambda$ is an eigenvalue of $M_a$ if and only if
beginalign*
0
&= chi_M_a(t) \
&= lambda^4 - left(a^2 + 15right) lambda^2 - 10 , a lambda + 25\
&= (-lambda)^4 - left(a^2 + 15right) (-lambda)^2 + 10 , a (-lambda) + 25 \
&= chi_M_-a(-lambda)
endalign*
This proves that $M_a$ and $M_-a$ have eigenvalues related by negation.
Now, suppose that $M$ instead takes the form
$$
M_a+bi=left[beginarrayrrrr
0 & 1 & 2 & 0 \
1 & 0 & a + i , b & 3 \
2 & a - i , b & 0 & 1 \
0 & 3 & 1 & 0
endarrayright]
$$
In this case, the characteristic polynomials of $M_a+bi$ and $M_-a+bi$ are
beginalign*
chi_M_a+bi(t)
&= t^4 + left(-a^2 - b^2 - 15right) t^2 - 10 , a t + 25 \
chi_M_-a+bi(t)
&= t^4 + left(-a^2 - b^2 - 15right) t^2 + 10 , a t + 25
endalign*
A similiar argument then shows that $M_a+bi$ and $M_-a+bi$ have eigenvalues related by negation.
$endgroup$
$begingroup$
thanks for the attempt; yes this is a tad too "high-level" for my use-case -- I need a slightly more general/abstracted explanation. +1 nonetheless.
$endgroup$
– Troy
1 hour ago
$begingroup$
This does not explain if the property depends on having those non-zero elements.
$endgroup$
– leonbloy
1 hour ago
$begingroup$
@leonbloy I mean, if someone wants to edit the question so that it is more rigorously posed, then we can take a stab at it. As it stands, it's unclear what's actually being asked here.
$endgroup$
– Brian Fitzpatrick
1 hour ago
add a comment |
$begingroup$
I'm not sure if what follows is the type of thing you're looking for, but maybe you'll find this useful.
Consider the matrix
$$
M_a =
left[beginarrayrrrr
0 & 1 & 2 & 0 \
1 & 0 & a & 3 \
2 & a & 0 & 1 \
0 & 3 & 1 & 0
endarrayright]
$$
The characteristic polynomials of $M_a$ and $M_-a$ are
beginalign*
chi_M_a(t)
&= t^4 - left(a^2 + 15right) t^2 - 10 , a t + 25 \
chi_M_-a(t)
&= t^4 - left(a^2 + 15right) t^2 + 10 , a t + 25
endalign*
Now, note that $lambda$ is an eigenvalue of $M_a$ if and only if
beginalign*
0
&= chi_M_a(t) \
&= lambda^4 - left(a^2 + 15right) lambda^2 - 10 , a lambda + 25\
&= (-lambda)^4 - left(a^2 + 15right) (-lambda)^2 + 10 , a (-lambda) + 25 \
&= chi_M_-a(-lambda)
endalign*
This proves that $M_a$ and $M_-a$ have eigenvalues related by negation.
Now, suppose that $M$ instead takes the form
$$
M_a+bi=left[beginarrayrrrr
0 & 1 & 2 & 0 \
1 & 0 & a + i , b & 3 \
2 & a - i , b & 0 & 1 \
0 & 3 & 1 & 0
endarrayright]
$$
In this case, the characteristic polynomials of $M_a+bi$ and $M_-a+bi$ are
beginalign*
chi_M_a+bi(t)
&= t^4 + left(-a^2 - b^2 - 15right) t^2 - 10 , a t + 25 \
chi_M_-a+bi(t)
&= t^4 + left(-a^2 - b^2 - 15right) t^2 + 10 , a t + 25
endalign*
A similiar argument then shows that $M_a+bi$ and $M_-a+bi$ have eigenvalues related by negation.
$endgroup$
$begingroup$
thanks for the attempt; yes this is a tad too "high-level" for my use-case -- I need a slightly more general/abstracted explanation. +1 nonetheless.
$endgroup$
– Troy
1 hour ago
$begingroup$
This does not explain if the property depends on having those non-zero elements.
$endgroup$
– leonbloy
1 hour ago
$begingroup$
@leonbloy I mean, if someone wants to edit the question so that it is more rigorously posed, then we can take a stab at it. As it stands, it's unclear what's actually being asked here.
$endgroup$
– Brian Fitzpatrick
1 hour ago
add a comment |
$begingroup$
I'm not sure if what follows is the type of thing you're looking for, but maybe you'll find this useful.
Consider the matrix
$$
M_a =
left[beginarrayrrrr
0 & 1 & 2 & 0 \
1 & 0 & a & 3 \
2 & a & 0 & 1 \
0 & 3 & 1 & 0
endarrayright]
$$
The characteristic polynomials of $M_a$ and $M_-a$ are
beginalign*
chi_M_a(t)
&= t^4 - left(a^2 + 15right) t^2 - 10 , a t + 25 \
chi_M_-a(t)
&= t^4 - left(a^2 + 15right) t^2 + 10 , a t + 25
endalign*
Now, note that $lambda$ is an eigenvalue of $M_a$ if and only if
beginalign*
0
&= chi_M_a(t) \
&= lambda^4 - left(a^2 + 15right) lambda^2 - 10 , a lambda + 25\
&= (-lambda)^4 - left(a^2 + 15right) (-lambda)^2 + 10 , a (-lambda) + 25 \
&= chi_M_-a(-lambda)
endalign*
This proves that $M_a$ and $M_-a$ have eigenvalues related by negation.
Now, suppose that $M$ instead takes the form
$$
M_a+bi=left[beginarrayrrrr
0 & 1 & 2 & 0 \
1 & 0 & a + i , b & 3 \
2 & a - i , b & 0 & 1 \
0 & 3 & 1 & 0
endarrayright]
$$
In this case, the characteristic polynomials of $M_a+bi$ and $M_-a+bi$ are
beginalign*
chi_M_a+bi(t)
&= t^4 + left(-a^2 - b^2 - 15right) t^2 - 10 , a t + 25 \
chi_M_-a+bi(t)
&= t^4 + left(-a^2 - b^2 - 15right) t^2 + 10 , a t + 25
endalign*
A similiar argument then shows that $M_a+bi$ and $M_-a+bi$ have eigenvalues related by negation.
$endgroup$
I'm not sure if what follows is the type of thing you're looking for, but maybe you'll find this useful.
Consider the matrix
$$
M_a =
left[beginarrayrrrr
0 & 1 & 2 & 0 \
1 & 0 & a & 3 \
2 & a & 0 & 1 \
0 & 3 & 1 & 0
endarrayright]
$$
The characteristic polynomials of $M_a$ and $M_-a$ are
beginalign*
chi_M_a(t)
&= t^4 - left(a^2 + 15right) t^2 - 10 , a t + 25 \
chi_M_-a(t)
&= t^4 - left(a^2 + 15right) t^2 + 10 , a t + 25
endalign*
Now, note that $lambda$ is an eigenvalue of $M_a$ if and only if
beginalign*
0
&= chi_M_a(t) \
&= lambda^4 - left(a^2 + 15right) lambda^2 - 10 , a lambda + 25\
&= (-lambda)^4 - left(a^2 + 15right) (-lambda)^2 + 10 , a (-lambda) + 25 \
&= chi_M_-a(-lambda)
endalign*
This proves that $M_a$ and $M_-a$ have eigenvalues related by negation.
Now, suppose that $M$ instead takes the form
$$
M_a+bi=left[beginarrayrrrr
0 & 1 & 2 & 0 \
1 & 0 & a + i , b & 3 \
2 & a - i , b & 0 & 1 \
0 & 3 & 1 & 0
endarrayright]
$$
In this case, the characteristic polynomials of $M_a+bi$ and $M_-a+bi$ are
beginalign*
chi_M_a+bi(t)
&= t^4 + left(-a^2 - b^2 - 15right) t^2 - 10 , a t + 25 \
chi_M_-a+bi(t)
&= t^4 + left(-a^2 - b^2 - 15right) t^2 + 10 , a t + 25
endalign*
A similiar argument then shows that $M_a+bi$ and $M_-a+bi$ have eigenvalues related by negation.
edited 1 hour ago
answered 1 hour ago
Brian FitzpatrickBrian Fitzpatrick
21.8k42959
21.8k42959
$begingroup$
thanks for the attempt; yes this is a tad too "high-level" for my use-case -- I need a slightly more general/abstracted explanation. +1 nonetheless.
$endgroup$
– Troy
1 hour ago
$begingroup$
This does not explain if the property depends on having those non-zero elements.
$endgroup$
– leonbloy
1 hour ago
$begingroup$
@leonbloy I mean, if someone wants to edit the question so that it is more rigorously posed, then we can take a stab at it. As it stands, it's unclear what's actually being asked here.
$endgroup$
– Brian Fitzpatrick
1 hour ago
add a comment |
$begingroup$
thanks for the attempt; yes this is a tad too "high-level" for my use-case -- I need a slightly more general/abstracted explanation. +1 nonetheless.
$endgroup$
– Troy
1 hour ago
$begingroup$
This does not explain if the property depends on having those non-zero elements.
$endgroup$
– leonbloy
1 hour ago
$begingroup$
@leonbloy I mean, if someone wants to edit the question so that it is more rigorously posed, then we can take a stab at it. As it stands, it's unclear what's actually being asked here.
$endgroup$
– Brian Fitzpatrick
1 hour ago
$begingroup$
thanks for the attempt; yes this is a tad too "high-level" for my use-case -- I need a slightly more general/abstracted explanation. +1 nonetheless.
$endgroup$
– Troy
1 hour ago
$begingroup$
thanks for the attempt; yes this is a tad too "high-level" for my use-case -- I need a slightly more general/abstracted explanation. +1 nonetheless.
$endgroup$
– Troy
1 hour ago
$begingroup$
This does not explain if the property depends on having those non-zero elements.
$endgroup$
– leonbloy
1 hour ago
$begingroup$
This does not explain if the property depends on having those non-zero elements.
$endgroup$
– leonbloy
1 hour ago
$begingroup$
@leonbloy I mean, if someone wants to edit the question so that it is more rigorously posed, then we can take a stab at it. As it stands, it's unclear what's actually being asked here.
$endgroup$
– Brian Fitzpatrick
1 hour ago
$begingroup$
@leonbloy I mean, if someone wants to edit the question so that it is more rigorously posed, then we can take a stab at it. As it stands, it's unclear what's actually being asked here.
$endgroup$
– Brian Fitzpatrick
1 hour ago
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177640%2feigenvalues-of-two-symmetric-4-times-4-matrices-why-is-one-negative-of-the-ot%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
It's because of all the conveniently placed zeroes.
$endgroup$
– M. Vinay
1 hour ago
$begingroup$
@M.Vinay Yes, seems that way. Is there a name for such matrices or any property sticking out to you right now which would explain why this is true for symmetric matrices of this kind?
$endgroup$
– Troy
1 hour ago
1
$begingroup$
In my answer as currently written, I've shown that this holds for a slightly more general case (the matrix doesn't have to be symmetric/Hermitian, and may be real or complex). But I'd like to generalise still further, to higher orders. And also try to find a more big-picture explanation, as you say.
$endgroup$
– M. Vinay
1 hour ago
2
$begingroup$
In case this helps: this would be "hollow" (zeroes at the diagonal) "pentadiagonal" or "band" symmetric matrix.
$endgroup$
– leonbloy
1 hour ago
$begingroup$
@leonbloy that certainly narrows down the search for me, thanks for the input!
$endgroup$
– Troy
1 hour ago