Can divisibility rules for digits be generalized to sum of digitsDivisibility by 7 rule, and Congruence Arithmetic LawsWhy is $9$ special in testing divisiblity by $9$ by summing decimal digits? (casting out nines)Divisibility criteria for $7,11,13,17,19$Divisibility Rules for Bases other than $10$divisibility for numbers like 13,17 and 19 - Compartmentalization methodTrying to prove a congruence for Stirling numbers of the second kindThe following is a necessary condition for a number to be prime, from its digit expansion. Has it been referred somewhere?Let N be a four digit number, and N' be N with its digits reversed. Prove that N-N' is divisble by 9. Prove that N+N' is divisble by 11.Digit-sum division check in base-$n$Rules of thumb for divisibilityDivisibility by 7 involving grouping and alternating sumDivisibility of a 7-digit number by 21Divisibility Rule Proof about Special Numbers

How is it possible to have an ability score that is less than 3?

What are these boxed doors outside store fronts in New York?

Is it tax fraud for an individual to declare non-taxable revenue as taxable income? (US tax laws)

What's the output of a record cartridge playing an out-of-speed record

Why "Having chlorophyll without photosynthesis is actually very dangerous" and "like living with a bomb"?

Risk of getting Chronic Wasting Disease (CWD) in the United States?

How old can references or sources in a thesis be?

How is the claim "I am in New York only if I am in America" the same as "If I am in New York, then I am in America?

Which models of the Boeing 737 are still in production?

What does it mean to describe someone as a butt steak?

What is the offset in a seaplane's hull?

How could an uplifted falcon's brain work?

What does "Puller Prush Person" mean?

Why doesn't Newton's third law mean a person bounces back to where they started when they hit the ground?

Font hinting is lost in Chrome-like browsers (for some languages )

Can a Warlock become Neutral Good?

How does strength of boric acid solution increase in presence of salicylic acid?

Email Account under attack (really) - anything I can do?

Collect Fourier series terms

Why are electrically insulating heatsinks so rare? Is it just cost?

How do we improve the relationship with a client software team that performs poorly and is becoming less collaborative?

"You are your self first supporter", a more proper way to say it

Is this a crack on the carbon frame?

Dragon forelimb placement



Can divisibility rules for digits be generalized to sum of digits


Divisibility by 7 rule, and Congruence Arithmetic LawsWhy is $9$ special in testing divisiblity by $9$ by summing decimal digits? (casting out nines)Divisibility criteria for $7,11,13,17,19$Divisibility Rules for Bases other than $10$divisibility for numbers like 13,17 and 19 - Compartmentalization methodTrying to prove a congruence for Stirling numbers of the second kindThe following is a necessary condition for a number to be prime, from its digit expansion. Has it been referred somewhere?Let N be a four digit number, and N' be N with its digits reversed. Prove that N-N' is divisble by 9. Prove that N+N' is divisble by 11.Digit-sum division check in base-$n$Rules of thumb for divisibilityDivisibility by 7 involving grouping and alternating sumDivisibility of a 7-digit number by 21Divisibility Rule Proof about Special Numbers













1












$begingroup$


Suppose that we are given a two digit number $AB$, where $A$ and $B$ represents the digits, i.e 21 would be A=2 , B=1. I wish to prove that the sum of $AB$ and $BA$ is always divisible by $11$.
My initial idée was to use the fact that if a number is divisible by $11$ then the sum of its digits with alternating sign is also divisible by 11. For example
$$1-2+3-3+2-1=0 $$
so $11$ divides $123321$. So my proof would then be to consider the two digit number $(A+B)(B+A)$ or $CC$ which clearly is divisible by $11$ by the above statement if $C$ is $1$ through $9$. However, I am having truble justifying the case were $A+B$ is greater than or equal to $10$ and it got me wondering if the more generel is true: Let $ABCD...$ be a $n-digit$ number, if $$A-B+C-... equiv 0 (mod 11)$$
then $$S=sum_k=1^n(A+B+C+...)10^k equiv0(mod 11)$$
I am not really familliar with the whole congruence thingy, so incase the above is trivial I would be greatful on some source which could aid the solving of the above . Any tips or suggestion are also very welcome










share|cite|improve this question











$endgroup$











  • $begingroup$
    math.stackexchange.com/questions/328562/…
    $endgroup$
    – lab bhattacharjee
    8 hours ago










  • $begingroup$
    Use pmod11 to produce $pmod11$. So aequiv bpmod11 produces $aequiv bpmod11$.
    $endgroup$
    – Arturo Magidin
    8 hours ago















1












$begingroup$


Suppose that we are given a two digit number $AB$, where $A$ and $B$ represents the digits, i.e 21 would be A=2 , B=1. I wish to prove that the sum of $AB$ and $BA$ is always divisible by $11$.
My initial idée was to use the fact that if a number is divisible by $11$ then the sum of its digits with alternating sign is also divisible by 11. For example
$$1-2+3-3+2-1=0 $$
so $11$ divides $123321$. So my proof would then be to consider the two digit number $(A+B)(B+A)$ or $CC$ which clearly is divisible by $11$ by the above statement if $C$ is $1$ through $9$. However, I am having truble justifying the case were $A+B$ is greater than or equal to $10$ and it got me wondering if the more generel is true: Let $ABCD...$ be a $n-digit$ number, if $$A-B+C-... equiv 0 (mod 11)$$
then $$S=sum_k=1^n(A+B+C+...)10^k equiv0(mod 11)$$
I am not really familliar with the whole congruence thingy, so incase the above is trivial I would be greatful on some source which could aid the solving of the above . Any tips or suggestion are also very welcome










share|cite|improve this question











$endgroup$











  • $begingroup$
    math.stackexchange.com/questions/328562/…
    $endgroup$
    – lab bhattacharjee
    8 hours ago










  • $begingroup$
    Use pmod11 to produce $pmod11$. So aequiv bpmod11 produces $aequiv bpmod11$.
    $endgroup$
    – Arturo Magidin
    8 hours ago













1












1








1


1



$begingroup$


Suppose that we are given a two digit number $AB$, where $A$ and $B$ represents the digits, i.e 21 would be A=2 , B=1. I wish to prove that the sum of $AB$ and $BA$ is always divisible by $11$.
My initial idée was to use the fact that if a number is divisible by $11$ then the sum of its digits with alternating sign is also divisible by 11. For example
$$1-2+3-3+2-1=0 $$
so $11$ divides $123321$. So my proof would then be to consider the two digit number $(A+B)(B+A)$ or $CC$ which clearly is divisible by $11$ by the above statement if $C$ is $1$ through $9$. However, I am having truble justifying the case were $A+B$ is greater than or equal to $10$ and it got me wondering if the more generel is true: Let $ABCD...$ be a $n-digit$ number, if $$A-B+C-... equiv 0 (mod 11)$$
then $$S=sum_k=1^n(A+B+C+...)10^k equiv0(mod 11)$$
I am not really familliar with the whole congruence thingy, so incase the above is trivial I would be greatful on some source which could aid the solving of the above . Any tips or suggestion are also very welcome










share|cite|improve this question











$endgroup$




Suppose that we are given a two digit number $AB$, where $A$ and $B$ represents the digits, i.e 21 would be A=2 , B=1. I wish to prove that the sum of $AB$ and $BA$ is always divisible by $11$.
My initial idée was to use the fact that if a number is divisible by $11$ then the sum of its digits with alternating sign is also divisible by 11. For example
$$1-2+3-3+2-1=0 $$
so $11$ divides $123321$. So my proof would then be to consider the two digit number $(A+B)(B+A)$ or $CC$ which clearly is divisible by $11$ by the above statement if $C$ is $1$ through $9$. However, I am having truble justifying the case were $A+B$ is greater than or equal to $10$ and it got me wondering if the more generel is true: Let $ABCD...$ be a $n-digit$ number, if $$A-B+C-... equiv 0 (mod 11)$$
then $$S=sum_k=1^n(A+B+C+...)10^k equiv0(mod 11)$$
I am not really familliar with the whole congruence thingy, so incase the above is trivial I would be greatful on some source which could aid the solving of the above . Any tips or suggestion are also very welcome







divisibility






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 8 hours ago







André Armatowski

















asked 8 hours ago









André ArmatowskiAndré Armatowski

213




213











  • $begingroup$
    math.stackexchange.com/questions/328562/…
    $endgroup$
    – lab bhattacharjee
    8 hours ago










  • $begingroup$
    Use pmod11 to produce $pmod11$. So aequiv bpmod11 produces $aequiv bpmod11$.
    $endgroup$
    – Arturo Magidin
    8 hours ago
















  • $begingroup$
    math.stackexchange.com/questions/328562/…
    $endgroup$
    – lab bhattacharjee
    8 hours ago










  • $begingroup$
    Use pmod11 to produce $pmod11$. So aequiv bpmod11 produces $aequiv bpmod11$.
    $endgroup$
    – Arturo Magidin
    8 hours ago















$begingroup$
math.stackexchange.com/questions/328562/…
$endgroup$
– lab bhattacharjee
8 hours ago




$begingroup$
math.stackexchange.com/questions/328562/…
$endgroup$
– lab bhattacharjee
8 hours ago












$begingroup$
Use pmod11 to produce $pmod11$. So aequiv bpmod11 produces $aequiv bpmod11$.
$endgroup$
– Arturo Magidin
8 hours ago




$begingroup$
Use pmod11 to produce $pmod11$. So aequiv bpmod11 produces $aequiv bpmod11$.
$endgroup$
– Arturo Magidin
8 hours ago










3 Answers
3






active

oldest

votes


















1












$begingroup$

More generally, recall that the radix $rm,b,$ digit string $rm d_n cdots d_1 d_0 $ denotes a polynomial expression $rm P(b) = d_n b^n +:cdots: + d_1 b + d_0,, $ where $rm P(x) = d_n x^n +cdots+ d_1 x + d_0., $ Recall the reversed (digits) polynomial is $rm bf tilde rm P(x) = x^n P(1/x).,$ If $rm:n:$ is odd the Polynomial Congruence Rule yields $$rm: mod b!+!1: color#c00bequiv -1 Rightarrow bf tilde rm P(b) = color#c00b^n P(1/color#c00b) equiv (color#c00-1)^n P(color#c00-1)equiv -P(-1),:$$ therefore we conclude that $rm P(b) + bf tilde rm P(b)equiv P(-1)-P(-1)equiv 0.,$ OP is case $rm,b=10, n=1$.



Remark $ $ Essentially we have twice applied the radix $rm,b,$ analog of casting out elevens (the analog of casting out nines).






share|cite|improve this answer











$endgroup$




















    10












    $begingroup$

    It's simpler than you are making it...and no congruences are needed:



    We have $$overline AB=10A+B quad &quad overline BA=10B+A$$



    It follows that $$overline AB+overline BA=11times (A+B)$$ and we are done.






    share|cite|improve this answer











    $endgroup$












    • $begingroup$
      Very clean, totally escaped me!
      $endgroup$
      – André Armatowski
      8 hours ago


















    2












    $begingroup$

    You can easily push through what you were trying though. Say your numbers are $AB$ and $BA$. If $A+Bgt 10$, then write it as $A+B=10+c$; note that $0leq cleq 8$, because two digits cannot add to $19$. That means that when you do the carry, the second digit is $(c+1)$, and so $AB+BA$ will be a three digit number: $1$, then $c+1$, and then $c$. At this point, your test gives you $1-(c+1)+c = 0$, so you get a multiple of $11$.






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177167%2fcan-divisibility-rules-for-digits-be-generalized-to-sum-of-digits%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      1












      $begingroup$

      More generally, recall that the radix $rm,b,$ digit string $rm d_n cdots d_1 d_0 $ denotes a polynomial expression $rm P(b) = d_n b^n +:cdots: + d_1 b + d_0,, $ where $rm P(x) = d_n x^n +cdots+ d_1 x + d_0., $ Recall the reversed (digits) polynomial is $rm bf tilde rm P(x) = x^n P(1/x).,$ If $rm:n:$ is odd the Polynomial Congruence Rule yields $$rm: mod b!+!1: color#c00bequiv -1 Rightarrow bf tilde rm P(b) = color#c00b^n P(1/color#c00b) equiv (color#c00-1)^n P(color#c00-1)equiv -P(-1),:$$ therefore we conclude that $rm P(b) + bf tilde rm P(b)equiv P(-1)-P(-1)equiv 0.,$ OP is case $rm,b=10, n=1$.



      Remark $ $ Essentially we have twice applied the radix $rm,b,$ analog of casting out elevens (the analog of casting out nines).






      share|cite|improve this answer











      $endgroup$

















        1












        $begingroup$

        More generally, recall that the radix $rm,b,$ digit string $rm d_n cdots d_1 d_0 $ denotes a polynomial expression $rm P(b) = d_n b^n +:cdots: + d_1 b + d_0,, $ where $rm P(x) = d_n x^n +cdots+ d_1 x + d_0., $ Recall the reversed (digits) polynomial is $rm bf tilde rm P(x) = x^n P(1/x).,$ If $rm:n:$ is odd the Polynomial Congruence Rule yields $$rm: mod b!+!1: color#c00bequiv -1 Rightarrow bf tilde rm P(b) = color#c00b^n P(1/color#c00b) equiv (color#c00-1)^n P(color#c00-1)equiv -P(-1),:$$ therefore we conclude that $rm P(b) + bf tilde rm P(b)equiv P(-1)-P(-1)equiv 0.,$ OP is case $rm,b=10, n=1$.



        Remark $ $ Essentially we have twice applied the radix $rm,b,$ analog of casting out elevens (the analog of casting out nines).






        share|cite|improve this answer











        $endgroup$















          1












          1








          1





          $begingroup$

          More generally, recall that the radix $rm,b,$ digit string $rm d_n cdots d_1 d_0 $ denotes a polynomial expression $rm P(b) = d_n b^n +:cdots: + d_1 b + d_0,, $ where $rm P(x) = d_n x^n +cdots+ d_1 x + d_0., $ Recall the reversed (digits) polynomial is $rm bf tilde rm P(x) = x^n P(1/x).,$ If $rm:n:$ is odd the Polynomial Congruence Rule yields $$rm: mod b!+!1: color#c00bequiv -1 Rightarrow bf tilde rm P(b) = color#c00b^n P(1/color#c00b) equiv (color#c00-1)^n P(color#c00-1)equiv -P(-1),:$$ therefore we conclude that $rm P(b) + bf tilde rm P(b)equiv P(-1)-P(-1)equiv 0.,$ OP is case $rm,b=10, n=1$.



          Remark $ $ Essentially we have twice applied the radix $rm,b,$ analog of casting out elevens (the analog of casting out nines).






          share|cite|improve this answer











          $endgroup$



          More generally, recall that the radix $rm,b,$ digit string $rm d_n cdots d_1 d_0 $ denotes a polynomial expression $rm P(b) = d_n b^n +:cdots: + d_1 b + d_0,, $ where $rm P(x) = d_n x^n +cdots+ d_1 x + d_0., $ Recall the reversed (digits) polynomial is $rm bf tilde rm P(x) = x^n P(1/x).,$ If $rm:n:$ is odd the Polynomial Congruence Rule yields $$rm: mod b!+!1: color#c00bequiv -1 Rightarrow bf tilde rm P(b) = color#c00b^n P(1/color#c00b) equiv (color#c00-1)^n P(color#c00-1)equiv -P(-1),:$$ therefore we conclude that $rm P(b) + bf tilde rm P(b)equiv P(-1)-P(-1)equiv 0.,$ OP is case $rm,b=10, n=1$.



          Remark $ $ Essentially we have twice applied the radix $rm,b,$ analog of casting out elevens (the analog of casting out nines).







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 4 hours ago

























          answered 8 hours ago









          Bill DubuqueBill Dubuque

          213k29196654




          213k29196654





















              10












              $begingroup$

              It's simpler than you are making it...and no congruences are needed:



              We have $$overline AB=10A+B quad &quad overline BA=10B+A$$



              It follows that $$overline AB+overline BA=11times (A+B)$$ and we are done.






              share|cite|improve this answer











              $endgroup$












              • $begingroup$
                Very clean, totally escaped me!
                $endgroup$
                – André Armatowski
                8 hours ago















              10












              $begingroup$

              It's simpler than you are making it...and no congruences are needed:



              We have $$overline AB=10A+B quad &quad overline BA=10B+A$$



              It follows that $$overline AB+overline BA=11times (A+B)$$ and we are done.






              share|cite|improve this answer











              $endgroup$












              • $begingroup$
                Very clean, totally escaped me!
                $endgroup$
                – André Armatowski
                8 hours ago













              10












              10








              10





              $begingroup$

              It's simpler than you are making it...and no congruences are needed:



              We have $$overline AB=10A+B quad &quad overline BA=10B+A$$



              It follows that $$overline AB+overline BA=11times (A+B)$$ and we are done.






              share|cite|improve this answer











              $endgroup$



              It's simpler than you are making it...and no congruences are needed:



              We have $$overline AB=10A+B quad &quad overline BA=10B+A$$



              It follows that $$overline AB+overline BA=11times (A+B)$$ and we are done.







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited 8 hours ago

























              answered 8 hours ago









              lulululu

              43.5k25081




              43.5k25081











              • $begingroup$
                Very clean, totally escaped me!
                $endgroup$
                – André Armatowski
                8 hours ago
















              • $begingroup$
                Very clean, totally escaped me!
                $endgroup$
                – André Armatowski
                8 hours ago















              $begingroup$
              Very clean, totally escaped me!
              $endgroup$
              – André Armatowski
              8 hours ago




              $begingroup$
              Very clean, totally escaped me!
              $endgroup$
              – André Armatowski
              8 hours ago











              2












              $begingroup$

              You can easily push through what you were trying though. Say your numbers are $AB$ and $BA$. If $A+Bgt 10$, then write it as $A+B=10+c$; note that $0leq cleq 8$, because two digits cannot add to $19$. That means that when you do the carry, the second digit is $(c+1)$, and so $AB+BA$ will be a three digit number: $1$, then $c+1$, and then $c$. At this point, your test gives you $1-(c+1)+c = 0$, so you get a multiple of $11$.






              share|cite|improve this answer









              $endgroup$

















                2












                $begingroup$

                You can easily push through what you were trying though. Say your numbers are $AB$ and $BA$. If $A+Bgt 10$, then write it as $A+B=10+c$; note that $0leq cleq 8$, because two digits cannot add to $19$. That means that when you do the carry, the second digit is $(c+1)$, and so $AB+BA$ will be a three digit number: $1$, then $c+1$, and then $c$. At this point, your test gives you $1-(c+1)+c = 0$, so you get a multiple of $11$.






                share|cite|improve this answer









                $endgroup$















                  2












                  2








                  2





                  $begingroup$

                  You can easily push through what you were trying though. Say your numbers are $AB$ and $BA$. If $A+Bgt 10$, then write it as $A+B=10+c$; note that $0leq cleq 8$, because two digits cannot add to $19$. That means that when you do the carry, the second digit is $(c+1)$, and so $AB+BA$ will be a three digit number: $1$, then $c+1$, and then $c$. At this point, your test gives you $1-(c+1)+c = 0$, so you get a multiple of $11$.






                  share|cite|improve this answer









                  $endgroup$



                  You can easily push through what you were trying though. Say your numbers are $AB$ and $BA$. If $A+Bgt 10$, then write it as $A+B=10+c$; note that $0leq cleq 8$, because two digits cannot add to $19$. That means that when you do the carry, the second digit is $(c+1)$, and so $AB+BA$ will be a three digit number: $1$, then $c+1$, and then $c$. At this point, your test gives you $1-(c+1)+c = 0$, so you get a multiple of $11$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 8 hours ago









                  Arturo MagidinArturo Magidin

                  266k34590920




                  266k34590920



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177167%2fcan-divisibility-rules-for-digits-be-generalized-to-sum-of-digits%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Францішак Багушэвіч Змест Сям'я | Біяграфія | Творчасць | Мова Багушэвіча | Ацэнкі дзейнасці | Цікавыя факты | Спадчына | Выбраная бібліяграфія | Ушанаванне памяці | У філатэліі | Зноскі | Літаратура | Спасылкі | НавігацыяЛяхоўскі У. Рупіўся дзеля Бога і людзей: Жыццёвы шлях Лявона Вітан-Дубейкаўскага // Вольскі і Памідораў з песняй пра немца Адвакат, паэт, народны заступнік Ашмянскі веснікВ Минске появится площадь Богушевича и улица Сырокомли, Белорусская деловая газета, 19 июля 2001 г.Айцец беларускай нацыянальнай ідэі паўстаў у бронзе Сяргей Аляксандравіч Адашкевіч (1918, Мінск). 80-я гады. Бюст «Францішак Багушэвіч».Яўген Мікалаевіч Ціхановіч. «Партрэт Францішка Багушэвіча»Мікола Мікалаевіч Купава. «Партрэт зачынальніка новай беларускай літаратуры Францішка Багушэвіча»Уладзімір Іванавіч Мелехаў. На помніку «Змагарам за родную мову» Барэльеф «Францішак Багушэвіч»Памяць пра Багушэвіча на Віленшчыне Страчаная сталіца. Беларускія шыльды на вуліцах Вільні«Krynica». Ideologia i przywódcy białoruskiego katolicyzmuФранцішак БагушэвічТворы на knihi.comТворы Францішка Багушэвіча на bellib.byСодаль Уладзімір. Францішак Багушэвіч на Лідчыне;Луцкевіч Антон. Жыцьцё і творчасьць Фр. Багушэвіча ў успамінах ягоных сучасьнікаў // Запісы Беларускага Навуковага таварыства. Вільня, 1938. Сшытак 1. С. 16-34.Большая российская1188761710000 0000 5537 633Xn9209310021619551927869394п

                      Partai Komunis Tiongkok Daftar isi Kepemimpinan | Pranala luar | Referensi | Menu navigasidiperiksa1 perubahan tertundacpc.people.com.cnSitus resmiSurat kabar resmi"Why the Communist Party is alive, well and flourishing in China"0307-1235"Full text of Constitution of Communist Party of China"smengembangkannyas

                      ValueError: Expected n_neighbors <= n_samples, but n_samples = 1, n_neighbors = 6 (SMOTE) The 2019 Stack Overflow Developer Survey Results Are InCan SMOTE be applied over sequence of words (sentences)?ValueError when doing validation with random forestsSMOTE and multi class oversamplingLogic behind SMOTE-NC?ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)SmoteBoost: Should SMOTE be ran individually for each iteration/tree in the boosting?solving multi-class imbalance classification using smote and OSSUsing SMOTE for Synthetic Data generation to improve performance on unbalanced dataproblem of entry format for a simple model in KerasSVM SMOTE fit_resample() function runs forever with no result