Can divisibility rules for digits be generalized to sum of digitsDivisibility by 7 rule, and Congruence Arithmetic LawsWhy is $9$ special in testing divisiblity by $9$ by summing decimal digits? (casting out nines)Divisibility criteria for $7,11,13,17,19$Divisibility Rules for Bases other than $10$divisibility for numbers like 13,17 and 19 - Compartmentalization methodTrying to prove a congruence for Stirling numbers of the second kindThe following is a necessary condition for a number to be prime, from its digit expansion. Has it been referred somewhere?Let N be a four digit number, and N' be N with its digits reversed. Prove that N-N' is divisble by 9. Prove that N+N' is divisble by 11.Digit-sum division check in base-$n$Rules of thumb for divisibilityDivisibility by 7 involving grouping and alternating sumDivisibility of a 7-digit number by 21Divisibility Rule Proof about Special Numbers
How is it possible to have an ability score that is less than 3?
What are these boxed doors outside store fronts in New York?
Is it tax fraud for an individual to declare non-taxable revenue as taxable income? (US tax laws)
What's the output of a record cartridge playing an out-of-speed record
Why "Having chlorophyll without photosynthesis is actually very dangerous" and "like living with a bomb"?
Risk of getting Chronic Wasting Disease (CWD) in the United States?
How old can references or sources in a thesis be?
How is the claim "I am in New York only if I am in America" the same as "If I am in New York, then I am in America?
Which models of the Boeing 737 are still in production?
What does it mean to describe someone as a butt steak?
What is the offset in a seaplane's hull?
How could an uplifted falcon's brain work?
What does "Puller Prush Person" mean?
Why doesn't Newton's third law mean a person bounces back to where they started when they hit the ground?
Font hinting is lost in Chrome-like browsers (for some languages )
Can a Warlock become Neutral Good?
How does strength of boric acid solution increase in presence of salicylic acid?
Email Account under attack (really) - anything I can do?
Collect Fourier series terms
Why are electrically insulating heatsinks so rare? Is it just cost?
How do we improve the relationship with a client software team that performs poorly and is becoming less collaborative?
"You are your self first supporter", a more proper way to say it
Is this a crack on the carbon frame?
Dragon forelimb placement
Can divisibility rules for digits be generalized to sum of digits
Divisibility by 7 rule, and Congruence Arithmetic LawsWhy is $9$ special in testing divisiblity by $9$ by summing decimal digits? (casting out nines)Divisibility criteria for $7,11,13,17,19$Divisibility Rules for Bases other than $10$divisibility for numbers like 13,17 and 19 - Compartmentalization methodTrying to prove a congruence for Stirling numbers of the second kindThe following is a necessary condition for a number to be prime, from its digit expansion. Has it been referred somewhere?Let N be a four digit number, and N' be N with its digits reversed. Prove that N-N' is divisble by 9. Prove that N+N' is divisble by 11.Digit-sum division check in base-$n$Rules of thumb for divisibilityDivisibility by 7 involving grouping and alternating sumDivisibility of a 7-digit number by 21Divisibility Rule Proof about Special Numbers
$begingroup$
Suppose that we are given a two digit number $AB$, where $A$ and $B$ represents the digits, i.e 21 would be A=2 , B=1. I wish to prove that the sum of $AB$ and $BA$ is always divisible by $11$.
My initial idée was to use the fact that if a number is divisible by $11$ then the sum of its digits with alternating sign is also divisible by 11. For example
$$1-2+3-3+2-1=0 $$
so $11$ divides $123321$. So my proof would then be to consider the two digit number $(A+B)(B+A)$ or $CC$ which clearly is divisible by $11$ by the above statement if $C$ is $1$ through $9$. However, I am having truble justifying the case were $A+B$ is greater than or equal to $10$ and it got me wondering if the more generel is true: Let $ABCD...$ be a $n-digit$ number, if $$A-B+C-... equiv 0 (mod 11)$$
then $$S=sum_k=1^n(A+B+C+...)10^k equiv0(mod 11)$$
I am not really familliar with the whole congruence thingy, so incase the above is trivial I would be greatful on some source which could aid the solving of the above . Any tips or suggestion are also very welcome
divisibility
$endgroup$
add a comment |
$begingroup$
Suppose that we are given a two digit number $AB$, where $A$ and $B$ represents the digits, i.e 21 would be A=2 , B=1. I wish to prove that the sum of $AB$ and $BA$ is always divisible by $11$.
My initial idée was to use the fact that if a number is divisible by $11$ then the sum of its digits with alternating sign is also divisible by 11. For example
$$1-2+3-3+2-1=0 $$
so $11$ divides $123321$. So my proof would then be to consider the two digit number $(A+B)(B+A)$ or $CC$ which clearly is divisible by $11$ by the above statement if $C$ is $1$ through $9$. However, I am having truble justifying the case were $A+B$ is greater than or equal to $10$ and it got me wondering if the more generel is true: Let $ABCD...$ be a $n-digit$ number, if $$A-B+C-... equiv 0 (mod 11)$$
then $$S=sum_k=1^n(A+B+C+...)10^k equiv0(mod 11)$$
I am not really familliar with the whole congruence thingy, so incase the above is trivial I would be greatful on some source which could aid the solving of the above . Any tips or suggestion are also very welcome
divisibility
$endgroup$
$begingroup$
math.stackexchange.com/questions/328562/…
$endgroup$
– lab bhattacharjee
8 hours ago
$begingroup$
Usepmod11
to produce $pmod11$. Soaequiv bpmod11
produces $aequiv bpmod11$.
$endgroup$
– Arturo Magidin
8 hours ago
add a comment |
$begingroup$
Suppose that we are given a two digit number $AB$, where $A$ and $B$ represents the digits, i.e 21 would be A=2 , B=1. I wish to prove that the sum of $AB$ and $BA$ is always divisible by $11$.
My initial idée was to use the fact that if a number is divisible by $11$ then the sum of its digits with alternating sign is also divisible by 11. For example
$$1-2+3-3+2-1=0 $$
so $11$ divides $123321$. So my proof would then be to consider the two digit number $(A+B)(B+A)$ or $CC$ which clearly is divisible by $11$ by the above statement if $C$ is $1$ through $9$. However, I am having truble justifying the case were $A+B$ is greater than or equal to $10$ and it got me wondering if the more generel is true: Let $ABCD...$ be a $n-digit$ number, if $$A-B+C-... equiv 0 (mod 11)$$
then $$S=sum_k=1^n(A+B+C+...)10^k equiv0(mod 11)$$
I am not really familliar with the whole congruence thingy, so incase the above is trivial I would be greatful on some source which could aid the solving of the above . Any tips or suggestion are also very welcome
divisibility
$endgroup$
Suppose that we are given a two digit number $AB$, where $A$ and $B$ represents the digits, i.e 21 would be A=2 , B=1. I wish to prove that the sum of $AB$ and $BA$ is always divisible by $11$.
My initial idée was to use the fact that if a number is divisible by $11$ then the sum of its digits with alternating sign is also divisible by 11. For example
$$1-2+3-3+2-1=0 $$
so $11$ divides $123321$. So my proof would then be to consider the two digit number $(A+B)(B+A)$ or $CC$ which clearly is divisible by $11$ by the above statement if $C$ is $1$ through $9$. However, I am having truble justifying the case were $A+B$ is greater than or equal to $10$ and it got me wondering if the more generel is true: Let $ABCD...$ be a $n-digit$ number, if $$A-B+C-... equiv 0 (mod 11)$$
then $$S=sum_k=1^n(A+B+C+...)10^k equiv0(mod 11)$$
I am not really familliar with the whole congruence thingy, so incase the above is trivial I would be greatful on some source which could aid the solving of the above . Any tips or suggestion are also very welcome
divisibility
divisibility
edited 8 hours ago
André Armatowski
asked 8 hours ago
André ArmatowskiAndré Armatowski
213
213
$begingroup$
math.stackexchange.com/questions/328562/…
$endgroup$
– lab bhattacharjee
8 hours ago
$begingroup$
Usepmod11
to produce $pmod11$. Soaequiv bpmod11
produces $aequiv bpmod11$.
$endgroup$
– Arturo Magidin
8 hours ago
add a comment |
$begingroup$
math.stackexchange.com/questions/328562/…
$endgroup$
– lab bhattacharjee
8 hours ago
$begingroup$
Usepmod11
to produce $pmod11$. Soaequiv bpmod11
produces $aequiv bpmod11$.
$endgroup$
– Arturo Magidin
8 hours ago
$begingroup$
math.stackexchange.com/questions/328562/…
$endgroup$
– lab bhattacharjee
8 hours ago
$begingroup$
math.stackexchange.com/questions/328562/…
$endgroup$
– lab bhattacharjee
8 hours ago
$begingroup$
Use
pmod11
to produce $pmod11$. So aequiv bpmod11
produces $aequiv bpmod11$.$endgroup$
– Arturo Magidin
8 hours ago
$begingroup$
Use
pmod11
to produce $pmod11$. So aequiv bpmod11
produces $aequiv bpmod11$.$endgroup$
– Arturo Magidin
8 hours ago
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
More generally, recall that the radix $rm,b,$ digit string $rm d_n cdots d_1 d_0 $ denotes a polynomial expression $rm P(b) = d_n b^n +:cdots: + d_1 b + d_0,, $ where $rm P(x) = d_n x^n +cdots+ d_1 x + d_0., $ Recall the reversed (digits) polynomial is $rm bf tilde rm P(x) = x^n P(1/x).,$ If $rm:n:$ is odd the Polynomial Congruence Rule yields $$rm: mod b!+!1: color#c00bequiv -1 Rightarrow bf tilde rm P(b) = color#c00b^n P(1/color#c00b) equiv (color#c00-1)^n P(color#c00-1)equiv -P(-1),:$$ therefore we conclude that $rm P(b) + bf tilde rm P(b)equiv P(-1)-P(-1)equiv 0.,$ OP is case $rm,b=10, n=1$.
Remark $ $ Essentially we have twice applied the radix $rm,b,$ analog of casting out elevens (the analog of casting out nines).
$endgroup$
add a comment |
$begingroup$
It's simpler than you are making it...and no congruences are needed:
We have $$overline AB=10A+B quad &quad overline BA=10B+A$$
It follows that $$overline AB+overline BA=11times (A+B)$$ and we are done.
$endgroup$
$begingroup$
Very clean, totally escaped me!
$endgroup$
– André Armatowski
8 hours ago
add a comment |
$begingroup$
You can easily push through what you were trying though. Say your numbers are $AB$ and $BA$. If $A+Bgt 10$, then write it as $A+B=10+c$; note that $0leq cleq 8$, because two digits cannot add to $19$. That means that when you do the carry, the second digit is $(c+1)$, and so $AB+BA$ will be a three digit number: $1$, then $c+1$, and then $c$. At this point, your test gives you $1-(c+1)+c = 0$, so you get a multiple of $11$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177167%2fcan-divisibility-rules-for-digits-be-generalized-to-sum-of-digits%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
More generally, recall that the radix $rm,b,$ digit string $rm d_n cdots d_1 d_0 $ denotes a polynomial expression $rm P(b) = d_n b^n +:cdots: + d_1 b + d_0,, $ where $rm P(x) = d_n x^n +cdots+ d_1 x + d_0., $ Recall the reversed (digits) polynomial is $rm bf tilde rm P(x) = x^n P(1/x).,$ If $rm:n:$ is odd the Polynomial Congruence Rule yields $$rm: mod b!+!1: color#c00bequiv -1 Rightarrow bf tilde rm P(b) = color#c00b^n P(1/color#c00b) equiv (color#c00-1)^n P(color#c00-1)equiv -P(-1),:$$ therefore we conclude that $rm P(b) + bf tilde rm P(b)equiv P(-1)-P(-1)equiv 0.,$ OP is case $rm,b=10, n=1$.
Remark $ $ Essentially we have twice applied the radix $rm,b,$ analog of casting out elevens (the analog of casting out nines).
$endgroup$
add a comment |
$begingroup$
More generally, recall that the radix $rm,b,$ digit string $rm d_n cdots d_1 d_0 $ denotes a polynomial expression $rm P(b) = d_n b^n +:cdots: + d_1 b + d_0,, $ where $rm P(x) = d_n x^n +cdots+ d_1 x + d_0., $ Recall the reversed (digits) polynomial is $rm bf tilde rm P(x) = x^n P(1/x).,$ If $rm:n:$ is odd the Polynomial Congruence Rule yields $$rm: mod b!+!1: color#c00bequiv -1 Rightarrow bf tilde rm P(b) = color#c00b^n P(1/color#c00b) equiv (color#c00-1)^n P(color#c00-1)equiv -P(-1),:$$ therefore we conclude that $rm P(b) + bf tilde rm P(b)equiv P(-1)-P(-1)equiv 0.,$ OP is case $rm,b=10, n=1$.
Remark $ $ Essentially we have twice applied the radix $rm,b,$ analog of casting out elevens (the analog of casting out nines).
$endgroup$
add a comment |
$begingroup$
More generally, recall that the radix $rm,b,$ digit string $rm d_n cdots d_1 d_0 $ denotes a polynomial expression $rm P(b) = d_n b^n +:cdots: + d_1 b + d_0,, $ where $rm P(x) = d_n x^n +cdots+ d_1 x + d_0., $ Recall the reversed (digits) polynomial is $rm bf tilde rm P(x) = x^n P(1/x).,$ If $rm:n:$ is odd the Polynomial Congruence Rule yields $$rm: mod b!+!1: color#c00bequiv -1 Rightarrow bf tilde rm P(b) = color#c00b^n P(1/color#c00b) equiv (color#c00-1)^n P(color#c00-1)equiv -P(-1),:$$ therefore we conclude that $rm P(b) + bf tilde rm P(b)equiv P(-1)-P(-1)equiv 0.,$ OP is case $rm,b=10, n=1$.
Remark $ $ Essentially we have twice applied the radix $rm,b,$ analog of casting out elevens (the analog of casting out nines).
$endgroup$
More generally, recall that the radix $rm,b,$ digit string $rm d_n cdots d_1 d_0 $ denotes a polynomial expression $rm P(b) = d_n b^n +:cdots: + d_1 b + d_0,, $ where $rm P(x) = d_n x^n +cdots+ d_1 x + d_0., $ Recall the reversed (digits) polynomial is $rm bf tilde rm P(x) = x^n P(1/x).,$ If $rm:n:$ is odd the Polynomial Congruence Rule yields $$rm: mod b!+!1: color#c00bequiv -1 Rightarrow bf tilde rm P(b) = color#c00b^n P(1/color#c00b) equiv (color#c00-1)^n P(color#c00-1)equiv -P(-1),:$$ therefore we conclude that $rm P(b) + bf tilde rm P(b)equiv P(-1)-P(-1)equiv 0.,$ OP is case $rm,b=10, n=1$.
Remark $ $ Essentially we have twice applied the radix $rm,b,$ analog of casting out elevens (the analog of casting out nines).
edited 4 hours ago
answered 8 hours ago
Bill DubuqueBill Dubuque
213k29196654
213k29196654
add a comment |
add a comment |
$begingroup$
It's simpler than you are making it...and no congruences are needed:
We have $$overline AB=10A+B quad &quad overline BA=10B+A$$
It follows that $$overline AB+overline BA=11times (A+B)$$ and we are done.
$endgroup$
$begingroup$
Very clean, totally escaped me!
$endgroup$
– André Armatowski
8 hours ago
add a comment |
$begingroup$
It's simpler than you are making it...and no congruences are needed:
We have $$overline AB=10A+B quad &quad overline BA=10B+A$$
It follows that $$overline AB+overline BA=11times (A+B)$$ and we are done.
$endgroup$
$begingroup$
Very clean, totally escaped me!
$endgroup$
– André Armatowski
8 hours ago
add a comment |
$begingroup$
It's simpler than you are making it...and no congruences are needed:
We have $$overline AB=10A+B quad &quad overline BA=10B+A$$
It follows that $$overline AB+overline BA=11times (A+B)$$ and we are done.
$endgroup$
It's simpler than you are making it...and no congruences are needed:
We have $$overline AB=10A+B quad &quad overline BA=10B+A$$
It follows that $$overline AB+overline BA=11times (A+B)$$ and we are done.
edited 8 hours ago
answered 8 hours ago
lulululu
43.5k25081
43.5k25081
$begingroup$
Very clean, totally escaped me!
$endgroup$
– André Armatowski
8 hours ago
add a comment |
$begingroup$
Very clean, totally escaped me!
$endgroup$
– André Armatowski
8 hours ago
$begingroup$
Very clean, totally escaped me!
$endgroup$
– André Armatowski
8 hours ago
$begingroup$
Very clean, totally escaped me!
$endgroup$
– André Armatowski
8 hours ago
add a comment |
$begingroup$
You can easily push through what you were trying though. Say your numbers are $AB$ and $BA$. If $A+Bgt 10$, then write it as $A+B=10+c$; note that $0leq cleq 8$, because two digits cannot add to $19$. That means that when you do the carry, the second digit is $(c+1)$, and so $AB+BA$ will be a three digit number: $1$, then $c+1$, and then $c$. At this point, your test gives you $1-(c+1)+c = 0$, so you get a multiple of $11$.
$endgroup$
add a comment |
$begingroup$
You can easily push through what you were trying though. Say your numbers are $AB$ and $BA$. If $A+Bgt 10$, then write it as $A+B=10+c$; note that $0leq cleq 8$, because two digits cannot add to $19$. That means that when you do the carry, the second digit is $(c+1)$, and so $AB+BA$ will be a three digit number: $1$, then $c+1$, and then $c$. At this point, your test gives you $1-(c+1)+c = 0$, so you get a multiple of $11$.
$endgroup$
add a comment |
$begingroup$
You can easily push through what you were trying though. Say your numbers are $AB$ and $BA$. If $A+Bgt 10$, then write it as $A+B=10+c$; note that $0leq cleq 8$, because two digits cannot add to $19$. That means that when you do the carry, the second digit is $(c+1)$, and so $AB+BA$ will be a three digit number: $1$, then $c+1$, and then $c$. At this point, your test gives you $1-(c+1)+c = 0$, so you get a multiple of $11$.
$endgroup$
You can easily push through what you were trying though. Say your numbers are $AB$ and $BA$. If $A+Bgt 10$, then write it as $A+B=10+c$; note that $0leq cleq 8$, because two digits cannot add to $19$. That means that when you do the carry, the second digit is $(c+1)$, and so $AB+BA$ will be a three digit number: $1$, then $c+1$, and then $c$. At this point, your test gives you $1-(c+1)+c = 0$, so you get a multiple of $11$.
answered 8 hours ago
Arturo MagidinArturo Magidin
266k34590920
266k34590920
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177167%2fcan-divisibility-rules-for-digits-be-generalized-to-sum-of-digits%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
math.stackexchange.com/questions/328562/…
$endgroup$
– lab bhattacharjee
8 hours ago
$begingroup$
Use
pmod11
to produce $pmod11$. Soaequiv bpmod11
produces $aequiv bpmod11$.$endgroup$
– Arturo Magidin
8 hours ago