Reference request: Oldest number theory books with (unsolved) exercises? The 2019 Stack Overflow Developer Survey Results Are InClassical Enumerative Geometry ReferencesHow does “modern” number theory contribute to further understanding of $mathbbN$?Divergent Series as a topic of researchGeometric intuition for Fontaine-Wintenberger?Classification of singularities of plane curves of fixed degree (reference request)Reference request: Oldest calculus, real analysis books with exercises?Reference request: Oldest linear algebra books with exercises?Reference request for bounds of $n$-th compositeReference request: Oldest complex analysis books with (unsolved) exercises?Reference request: Oldest (non-analytic) geometry books with (unsolved) exercises?

Reference request: Oldest number theory books with (unsolved) exercises?



The 2019 Stack Overflow Developer Survey Results Are InClassical Enumerative Geometry ReferencesHow does “modern” number theory contribute to further understanding of $mathbbN$?Divergent Series as a topic of researchGeometric intuition for Fontaine-Wintenberger?Classification of singularities of plane curves of fixed degree (reference request)Reference request: Oldest calculus, real analysis books with exercises?Reference request: Oldest linear algebra books with exercises?Reference request for bounds of $n$-th compositeReference request: Oldest complex analysis books with (unsolved) exercises?Reference request: Oldest (non-analytic) geometry books with (unsolved) exercises?










5












$begingroup$


Per the title, what are some of the oldest number theory books out there with (unsolved) exercises? Maybe there are some hidden gems from before the 20th century out there. I am already aware of the books of Dickson and Hardy.



Motivation for this question. Some person came up to me before class and asked, are you the person asking the ridiculous "oldest book with exercises" questions on MO? I said yes, and he asked I could do one on number theory. So here we are.










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    Elementary Number Theory by Uspensky and Heaslet has a bunch of problems in each chapter. Not sure whether it's the oldness you are looking for (my impression is that the exercises don't get better if you go older than this).
    $endgroup$
    – darij grinberg
    11 hours ago






  • 1




    $begingroup$
    Not sure if there are exercises: books.google.com/books/about/…
    $endgroup$
    – Cherng-tiao Perng
    11 hours ago







  • 1




    $begingroup$
    I found this: "Introduzione alla teoria dei numeri, con numerosi esercizi e con notizie storiche." by Vittorio Murer, from 1909 zbmath.org/?q=an%3A40.0266.01
    $endgroup$
    – EFinat-S
    5 hours ago
















5












$begingroup$


Per the title, what are some of the oldest number theory books out there with (unsolved) exercises? Maybe there are some hidden gems from before the 20th century out there. I am already aware of the books of Dickson and Hardy.



Motivation for this question. Some person came up to me before class and asked, are you the person asking the ridiculous "oldest book with exercises" questions on MO? I said yes, and he asked I could do one on number theory. So here we are.










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    Elementary Number Theory by Uspensky and Heaslet has a bunch of problems in each chapter. Not sure whether it's the oldness you are looking for (my impression is that the exercises don't get better if you go older than this).
    $endgroup$
    – darij grinberg
    11 hours ago






  • 1




    $begingroup$
    Not sure if there are exercises: books.google.com/books/about/…
    $endgroup$
    – Cherng-tiao Perng
    11 hours ago







  • 1




    $begingroup$
    I found this: "Introduzione alla teoria dei numeri, con numerosi esercizi e con notizie storiche." by Vittorio Murer, from 1909 zbmath.org/?q=an%3A40.0266.01
    $endgroup$
    – EFinat-S
    5 hours ago














5












5








5


1



$begingroup$


Per the title, what are some of the oldest number theory books out there with (unsolved) exercises? Maybe there are some hidden gems from before the 20th century out there. I am already aware of the books of Dickson and Hardy.



Motivation for this question. Some person came up to me before class and asked, are you the person asking the ridiculous "oldest book with exercises" questions on MO? I said yes, and he asked I could do one on number theory. So here we are.










share|cite|improve this question











$endgroup$




Per the title, what are some of the oldest number theory books out there with (unsolved) exercises? Maybe there are some hidden gems from before the 20th century out there. I am already aware of the books of Dickson and Hardy.



Motivation for this question. Some person came up to me before class and asked, are you the person asking the ridiculous "oldest book with exercises" questions on MO? I said yes, and he asked I could do one on number theory. So here we are.







nt.number-theory reference-request






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 11 hours ago







Get Off The Internet

















asked 11 hours ago









Get Off The InternetGet Off The Internet

374320




374320







  • 2




    $begingroup$
    Elementary Number Theory by Uspensky and Heaslet has a bunch of problems in each chapter. Not sure whether it's the oldness you are looking for (my impression is that the exercises don't get better if you go older than this).
    $endgroup$
    – darij grinberg
    11 hours ago






  • 1




    $begingroup$
    Not sure if there are exercises: books.google.com/books/about/…
    $endgroup$
    – Cherng-tiao Perng
    11 hours ago







  • 1




    $begingroup$
    I found this: "Introduzione alla teoria dei numeri, con numerosi esercizi e con notizie storiche." by Vittorio Murer, from 1909 zbmath.org/?q=an%3A40.0266.01
    $endgroup$
    – EFinat-S
    5 hours ago













  • 2




    $begingroup$
    Elementary Number Theory by Uspensky and Heaslet has a bunch of problems in each chapter. Not sure whether it's the oldness you are looking for (my impression is that the exercises don't get better if you go older than this).
    $endgroup$
    – darij grinberg
    11 hours ago






  • 1




    $begingroup$
    Not sure if there are exercises: books.google.com/books/about/…
    $endgroup$
    – Cherng-tiao Perng
    11 hours ago







  • 1




    $begingroup$
    I found this: "Introduzione alla teoria dei numeri, con numerosi esercizi e con notizie storiche." by Vittorio Murer, from 1909 zbmath.org/?q=an%3A40.0266.01
    $endgroup$
    – EFinat-S
    5 hours ago








2




2




$begingroup$
Elementary Number Theory by Uspensky and Heaslet has a bunch of problems in each chapter. Not sure whether it's the oldness you are looking for (my impression is that the exercises don't get better if you go older than this).
$endgroup$
– darij grinberg
11 hours ago




$begingroup$
Elementary Number Theory by Uspensky and Heaslet has a bunch of problems in each chapter. Not sure whether it's the oldness you are looking for (my impression is that the exercises don't get better if you go older than this).
$endgroup$
– darij grinberg
11 hours ago




1




1




$begingroup$
Not sure if there are exercises: books.google.com/books/about/…
$endgroup$
– Cherng-tiao Perng
11 hours ago





$begingroup$
Not sure if there are exercises: books.google.com/books/about/…
$endgroup$
– Cherng-tiao Perng
11 hours ago





1




1




$begingroup$
I found this: "Introduzione alla teoria dei numeri, con numerosi esercizi e con notizie storiche." by Vittorio Murer, from 1909 zbmath.org/?q=an%3A40.0266.01
$endgroup$
– EFinat-S
5 hours ago





$begingroup$
I found this: "Introduzione alla teoria dei numeri, con numerosi esercizi e con notizie storiche." by Vittorio Murer, from 1909 zbmath.org/?q=an%3A40.0266.01
$endgroup$
– EFinat-S
5 hours ago











2 Answers
2






active

oldest

votes


















8












$begingroup$

I wonder if you are already aware of R. D. Carmichael's "The theory of numbers" (John Wiley & Sons, Inc., NY, pp. 94, 1914.).



Apropos of the exercises in this monograph, one can read the following in the preface:




Numerous problems are supplied throughout the text. These have been
selected with great care so as to serve as excellent exercises for the
student's introductory training in the methods of number theory and to
afford at the same time a further collection of useful results. The
exercises with a star are more difficult than the others; they will
doubtless appeal to the best students.




Among the numerous problems supplied, the eighth problem on page 36 does stand out because, as far as I know, nobody has been able to solve it yet. It goes as follows:




  1. Show that if the equation $$phi(x) = n$$ has one solution; it always has a second solution, $n$ being given and $x$ being the
    unknown.



Oddly enough, Carmichael didn't consider that this question deserved a star... In case you want to learn more about the history of this problem, I recommend that you take a look at the following installment of The evidence (a column that Stan Wagon used to contribute to The Mathematical Intelligencer):



S. Wagon, Carmichael's "empirical theorem". Math. Intelligencer, 8 (1986), No. 2, pp. 61-63.






share|cite|improve this answer











$endgroup$








  • 1




    $begingroup$
    Carmichael followed this up with his 1915 book, Diophantine Analysis, which also had exercises at the end of each chapter.
    $endgroup$
    – Gerry Myerson
    7 hours ago


















3












$begingroup$

The book "Théorie des nombres, Tome premier" by Edouard Lucas was published 1891. Many of the "Exemples" are actually exercises left to the reader. A scan is freely available in the archive.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "504"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f327697%2freference-request-oldest-number-theory-books-with-unsolved-exercises%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    8












    $begingroup$

    I wonder if you are already aware of R. D. Carmichael's "The theory of numbers" (John Wiley & Sons, Inc., NY, pp. 94, 1914.).



    Apropos of the exercises in this monograph, one can read the following in the preface:




    Numerous problems are supplied throughout the text. These have been
    selected with great care so as to serve as excellent exercises for the
    student's introductory training in the methods of number theory and to
    afford at the same time a further collection of useful results. The
    exercises with a star are more difficult than the others; they will
    doubtless appeal to the best students.




    Among the numerous problems supplied, the eighth problem on page 36 does stand out because, as far as I know, nobody has been able to solve it yet. It goes as follows:




    1. Show that if the equation $$phi(x) = n$$ has one solution; it always has a second solution, $n$ being given and $x$ being the
      unknown.



    Oddly enough, Carmichael didn't consider that this question deserved a star... In case you want to learn more about the history of this problem, I recommend that you take a look at the following installment of The evidence (a column that Stan Wagon used to contribute to The Mathematical Intelligencer):



    S. Wagon, Carmichael's "empirical theorem". Math. Intelligencer, 8 (1986), No. 2, pp. 61-63.






    share|cite|improve this answer











    $endgroup$








    • 1




      $begingroup$
      Carmichael followed this up with his 1915 book, Diophantine Analysis, which also had exercises at the end of each chapter.
      $endgroup$
      – Gerry Myerson
      7 hours ago















    8












    $begingroup$

    I wonder if you are already aware of R. D. Carmichael's "The theory of numbers" (John Wiley & Sons, Inc., NY, pp. 94, 1914.).



    Apropos of the exercises in this monograph, one can read the following in the preface:




    Numerous problems are supplied throughout the text. These have been
    selected with great care so as to serve as excellent exercises for the
    student's introductory training in the methods of number theory and to
    afford at the same time a further collection of useful results. The
    exercises with a star are more difficult than the others; they will
    doubtless appeal to the best students.




    Among the numerous problems supplied, the eighth problem on page 36 does stand out because, as far as I know, nobody has been able to solve it yet. It goes as follows:




    1. Show that if the equation $$phi(x) = n$$ has one solution; it always has a second solution, $n$ being given and $x$ being the
      unknown.



    Oddly enough, Carmichael didn't consider that this question deserved a star... In case you want to learn more about the history of this problem, I recommend that you take a look at the following installment of The evidence (a column that Stan Wagon used to contribute to The Mathematical Intelligencer):



    S. Wagon, Carmichael's "empirical theorem". Math. Intelligencer, 8 (1986), No. 2, pp. 61-63.






    share|cite|improve this answer











    $endgroup$








    • 1




      $begingroup$
      Carmichael followed this up with his 1915 book, Diophantine Analysis, which also had exercises at the end of each chapter.
      $endgroup$
      – Gerry Myerson
      7 hours ago













    8












    8








    8





    $begingroup$

    I wonder if you are already aware of R. D. Carmichael's "The theory of numbers" (John Wiley & Sons, Inc., NY, pp. 94, 1914.).



    Apropos of the exercises in this monograph, one can read the following in the preface:




    Numerous problems are supplied throughout the text. These have been
    selected with great care so as to serve as excellent exercises for the
    student's introductory training in the methods of number theory and to
    afford at the same time a further collection of useful results. The
    exercises with a star are more difficult than the others; they will
    doubtless appeal to the best students.




    Among the numerous problems supplied, the eighth problem on page 36 does stand out because, as far as I know, nobody has been able to solve it yet. It goes as follows:




    1. Show that if the equation $$phi(x) = n$$ has one solution; it always has a second solution, $n$ being given and $x$ being the
      unknown.



    Oddly enough, Carmichael didn't consider that this question deserved a star... In case you want to learn more about the history of this problem, I recommend that you take a look at the following installment of The evidence (a column that Stan Wagon used to contribute to The Mathematical Intelligencer):



    S. Wagon, Carmichael's "empirical theorem". Math. Intelligencer, 8 (1986), No. 2, pp. 61-63.






    share|cite|improve this answer











    $endgroup$



    I wonder if you are already aware of R. D. Carmichael's "The theory of numbers" (John Wiley & Sons, Inc., NY, pp. 94, 1914.).



    Apropos of the exercises in this monograph, one can read the following in the preface:




    Numerous problems are supplied throughout the text. These have been
    selected with great care so as to serve as excellent exercises for the
    student's introductory training in the methods of number theory and to
    afford at the same time a further collection of useful results. The
    exercises with a star are more difficult than the others; they will
    doubtless appeal to the best students.




    Among the numerous problems supplied, the eighth problem on page 36 does stand out because, as far as I know, nobody has been able to solve it yet. It goes as follows:




    1. Show that if the equation $$phi(x) = n$$ has one solution; it always has a second solution, $n$ being given and $x$ being the
      unknown.



    Oddly enough, Carmichael didn't consider that this question deserved a star... In case you want to learn more about the history of this problem, I recommend that you take a look at the following installment of The evidence (a column that Stan Wagon used to contribute to The Mathematical Intelligencer):



    S. Wagon, Carmichael's "empirical theorem". Math. Intelligencer, 8 (1986), No. 2, pp. 61-63.







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited 5 hours ago

























    answered 8 hours ago









    José Hdz. Stgo.José Hdz. Stgo.

    5,34734877




    5,34734877







    • 1




      $begingroup$
      Carmichael followed this up with his 1915 book, Diophantine Analysis, which also had exercises at the end of each chapter.
      $endgroup$
      – Gerry Myerson
      7 hours ago












    • 1




      $begingroup$
      Carmichael followed this up with his 1915 book, Diophantine Analysis, which also had exercises at the end of each chapter.
      $endgroup$
      – Gerry Myerson
      7 hours ago







    1




    1




    $begingroup$
    Carmichael followed this up with his 1915 book, Diophantine Analysis, which also had exercises at the end of each chapter.
    $endgroup$
    – Gerry Myerson
    7 hours ago




    $begingroup$
    Carmichael followed this up with his 1915 book, Diophantine Analysis, which also had exercises at the end of each chapter.
    $endgroup$
    – Gerry Myerson
    7 hours ago











    3












    $begingroup$

    The book "Théorie des nombres, Tome premier" by Edouard Lucas was published 1891. Many of the "Exemples" are actually exercises left to the reader. A scan is freely available in the archive.






    share|cite|improve this answer









    $endgroup$

















      3












      $begingroup$

      The book "Théorie des nombres, Tome premier" by Edouard Lucas was published 1891. Many of the "Exemples" are actually exercises left to the reader. A scan is freely available in the archive.






      share|cite|improve this answer









      $endgroup$















        3












        3








        3





        $begingroup$

        The book "Théorie des nombres, Tome premier" by Edouard Lucas was published 1891. Many of the "Exemples" are actually exercises left to the reader. A scan is freely available in the archive.






        share|cite|improve this answer









        $endgroup$



        The book "Théorie des nombres, Tome premier" by Edouard Lucas was published 1891. Many of the "Exemples" are actually exercises left to the reader. A scan is freely available in the archive.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 4 hours ago









        EFinat-SEFinat-S

        1,2141417




        1,2141417



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to MathOverflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f327697%2freference-request-oldest-number-theory-books-with-unsolved-exercises%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Францішак Багушэвіч Змест Сям'я | Біяграфія | Творчасць | Мова Багушэвіча | Ацэнкі дзейнасці | Цікавыя факты | Спадчына | Выбраная бібліяграфія | Ушанаванне памяці | У філатэліі | Зноскі | Літаратура | Спасылкі | НавігацыяЛяхоўскі У. Рупіўся дзеля Бога і людзей: Жыццёвы шлях Лявона Вітан-Дубейкаўскага // Вольскі і Памідораў з песняй пра немца Адвакат, паэт, народны заступнік Ашмянскі веснікВ Минске появится площадь Богушевича и улица Сырокомли, Белорусская деловая газета, 19 июля 2001 г.Айцец беларускай нацыянальнай ідэі паўстаў у бронзе Сяргей Аляксандравіч Адашкевіч (1918, Мінск). 80-я гады. Бюст «Францішак Багушэвіч».Яўген Мікалаевіч Ціхановіч. «Партрэт Францішка Багушэвіча»Мікола Мікалаевіч Купава. «Партрэт зачынальніка новай беларускай літаратуры Францішка Багушэвіча»Уладзімір Іванавіч Мелехаў. На помніку «Змагарам за родную мову» Барэльеф «Францішак Багушэвіч»Памяць пра Багушэвіча на Віленшчыне Страчаная сталіца. Беларускія шыльды на вуліцах Вільні«Krynica». Ideologia i przywódcy białoruskiego katolicyzmuФранцішак БагушэвічТворы на knihi.comТворы Францішка Багушэвіча на bellib.byСодаль Уладзімір. Францішак Багушэвіч на Лідчыне;Луцкевіч Антон. Жыцьцё і творчасьць Фр. Багушэвіча ў успамінах ягоных сучасьнікаў // Запісы Беларускага Навуковага таварыства. Вільня, 1938. Сшытак 1. С. 16-34.Большая российская1188761710000 0000 5537 633Xn9209310021619551927869394п

            Partai Komunis Tiongkok Daftar isi Kepemimpinan | Pranala luar | Referensi | Menu navigasidiperiksa1 perubahan tertundacpc.people.com.cnSitus resmiSurat kabar resmi"Why the Communist Party is alive, well and flourishing in China"0307-1235"Full text of Constitution of Communist Party of China"smengembangkannyas

            ValueError: Expected n_neighbors <= n_samples, but n_samples = 1, n_neighbors = 6 (SMOTE) The 2019 Stack Overflow Developer Survey Results Are InCan SMOTE be applied over sequence of words (sentences)?ValueError when doing validation with random forestsSMOTE and multi class oversamplingLogic behind SMOTE-NC?ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)SmoteBoost: Should SMOTE be ran individually for each iteration/tree in the boosting?solving multi-class imbalance classification using smote and OSSUsing SMOTE for Synthetic Data generation to improve performance on unbalanced dataproblem of entry format for a simple model in KerasSVM SMOTE fit_resample() function runs forever with no result