Modelling promotions for demand forecasting The 2019 Stack Overflow Developer Survey Results Are InBest regression model to use for sales predictionRegression for forecastingDemand Forecasting for Multiple Products Across Thousands of StoresAnalysing spikes in demand to forecast future demandSelecting the right time series modeldemand forecast for B2BDefining Input Shape for Time Series using LSTM in Kerasforecast product demand in one week using machine learning approachMultivariate Sales forecasting for intermittent time seriesHow to model non-linear demand function?

Why did Acorn's A3000 have red function keys?

For what reasons would an animal species NOT cross a *horizontal* land bridge?

Multiply Two Integer Polynomials

Does a dangling wire really electrocute me if I'm standing in water?

Why isn't the circumferential light around the M87 black hole's event horizon symmetric?

Shouldn't "much" here be used instead of "more"?

What to do when moving next to a bird sanctuary with a loosely-domesticated cat?

How can I autofill dates in Excel excluding Sunday?

Is flight data recorder erased after every flight?

What do the Banks children have against barley water?

Is this app Icon Browser Safe/Legit?

Who coined the term "madman theory"?

How come people say “Would of”?

How to save as into a customized destination on macOS?

Did Section 31 appear in Star Trek: The Next Generation?

Is a "Democratic" Oligarchy-Style System Possible?

Which Sci-Fi work first showed weapon of galactic-scale mass destruction?

How technical should a Scrum Master be to effectively remove impediments?

Can one be advised by a professor who is very far away?

Right tool to dig six foot holes?

Am I thawing this London Broil safely?

Button changing it's text & action. Good or terrible?

Can a flute soloist sit?

Why can Shazam fly?



Modelling promotions for demand forecasting



The 2019 Stack Overflow Developer Survey Results Are InBest regression model to use for sales predictionRegression for forecastingDemand Forecasting for Multiple Products Across Thousands of StoresAnalysing spikes in demand to forecast future demandSelecting the right time series modeldemand forecast for B2BDefining Input Shape for Time Series using LSTM in Kerasforecast product demand in one week using machine learning approachMultivariate Sales forecasting for intermittent time seriesHow to model non-linear demand function?










0












$begingroup$


I am trying to develop a model to predict future demand for a product. Now, there are always some promotional events that affect the sales. I am trying to solve this problem using dummy variables. Here's how:



Supposing that the firm runs 7 promotional events on a particular product. So, I construct 7 dummy variables, that are boolean. For supposing that a for a particular week, promotion 3 was running. So, my training data-point becomes [0,0,1,0,0,0,0] and the corresponding sales. I construct a linear regression model for promotions in this way.



Now, here is my problem. When we model seasonality using this method, we construct a base linear model, after deseasonalising the data, and then use the two models to predict the final output. In case of promotions, how do I 'depromotionalise' the data?



Any tips in solving the problem are appreciated. Thanks!










share|improve this question









$endgroup$




bumped to the homepage by Community 5 hours ago


This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.



















    0












    $begingroup$


    I am trying to develop a model to predict future demand for a product. Now, there are always some promotional events that affect the sales. I am trying to solve this problem using dummy variables. Here's how:



    Supposing that the firm runs 7 promotional events on a particular product. So, I construct 7 dummy variables, that are boolean. For supposing that a for a particular week, promotion 3 was running. So, my training data-point becomes [0,0,1,0,0,0,0] and the corresponding sales. I construct a linear regression model for promotions in this way.



    Now, here is my problem. When we model seasonality using this method, we construct a base linear model, after deseasonalising the data, and then use the two models to predict the final output. In case of promotions, how do I 'depromotionalise' the data?



    Any tips in solving the problem are appreciated. Thanks!










    share|improve this question









    $endgroup$




    bumped to the homepage by Community 5 hours ago


    This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.

















      0












      0








      0





      $begingroup$


      I am trying to develop a model to predict future demand for a product. Now, there are always some promotional events that affect the sales. I am trying to solve this problem using dummy variables. Here's how:



      Supposing that the firm runs 7 promotional events on a particular product. So, I construct 7 dummy variables, that are boolean. For supposing that a for a particular week, promotion 3 was running. So, my training data-point becomes [0,0,1,0,0,0,0] and the corresponding sales. I construct a linear regression model for promotions in this way.



      Now, here is my problem. When we model seasonality using this method, we construct a base linear model, after deseasonalising the data, and then use the two models to predict the final output. In case of promotions, how do I 'depromotionalise' the data?



      Any tips in solving the problem are appreciated. Thanks!










      share|improve this question









      $endgroup$




      I am trying to develop a model to predict future demand for a product. Now, there are always some promotional events that affect the sales. I am trying to solve this problem using dummy variables. Here's how:



      Supposing that the firm runs 7 promotional events on a particular product. So, I construct 7 dummy variables, that are boolean. For supposing that a for a particular week, promotion 3 was running. So, my training data-point becomes [0,0,1,0,0,0,0] and the corresponding sales. I construct a linear regression model for promotions in this way.



      Now, here is my problem. When we model seasonality using this method, we construct a base linear model, after deseasonalising the data, and then use the two models to predict the final output. In case of promotions, how do I 'depromotionalise' the data?



      Any tips in solving the problem are appreciated. Thanks!







      machine-learning time-series regression forecast






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Aug 8 '18 at 6:49









      Prashant PandeyPrashant Pandey

      1212




      1212





      bumped to the homepage by Community 5 hours ago


      This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.







      bumped to the homepage by Community 5 hours ago


      This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          To create dummy variables for days promotion holidays, you might find this example useful.



          If you are sure you do not have an out-of-stock problem anytime in the history you could use an autoregressive model to predict future sales (demand) for any product that has historical data. Depending on your data you could choose a model. Following code is an example which combines four different models by giving different weight to different models. This type of models capture seasonality and trends of your data. For more details about the models please check Rob Hyndman's forecast package documentation.



          choose_model<-function(x,h,reg,new_reg,end_train,start_test)
          library(forecast)
          library(tidyverse)


          #train data

          x_train <- window(x, end = end_train )

          x_test <- window(x, start = start_test)

          #train and test for regressors

          reg_train <- window(reg, end = end_train )

          reg_test <- window(reg, start = start_test)

          h1=length(x_test)

          #model1

          stlf(x_train , method="arima",s.window= nrow(x_train),xreg = reg_train, newxreg = reg_test, h=h1)-> fc_stlf_xreg

          #model2
          auto.arima(x_train, stepwise = FALSE, approximation = FALSE,xreg=reg_train)%>%forecast(h=h1,xreg=reg_test) -> fc_arima_xreg

          #model3
          set.seed(12345)#for nnetar model
          nnetar(x_train, MaxNWts=nrow(x), xreg=reg_train)%>%forecast(h=h1, xreg=reg_test) -> fc_nnetar_xreg

          #model4
          stlf(x_train , method= "ets",s.window= 12, h=h1)-> fc_stlf_ets

          #Combination

          mod1 <- lm(x_test ~ 0 + fc_stlf_xreg$mean + fc_arima_xreg$mean + fc_nnetar_xreg$mean + fc_stlf_ets$mean)
          mod2 <- lm(x_test/I(sum(coef(mod1))) ~ 0 + fc_stlf_xreg$mean + fc_arima_xreg$mean + fc_nnetar_xreg$mean + fc_stlf_ets$mean)



          #model1

          stlf(x, method="arima",s.window= 12,xreg=reg, newxreg=new_reg, h=h)-> fc_stlf

          #model2
          auto.arima(x, stepwise = FALSE, approximation = FALSE,xreg=reg)%>%forecast(h=h,xreg=new_reg) -> fc_arima

          #model3
          set.seed(12345)#for nnetar model
          nnetar(x, MaxNWts=nrow(x), xreg=reg)%>%forecast(h=h, xreg=new_reg) -> fc_nnetar

          #model4
          stlf(x , method= "ets",s.window= 12, h=h)-> fc_stlf_e

          #Combination

          Combi <- (mod2$coefficients[[1]]*fc_stlf$mean + mod2$coefficients[[2]]*fc_arima$mean +
          mod2$coefficients[[3]]*fc_nnetar$mean + mod2$coefficients[[4]]*fc_stlf_e$mean)

          return(Combi)



          The usage of the function:



          coose_model(x,h,reg,new_reg,c(2018,02),c(2018,3))


          $x$ is a time series



          $h$ is time horizon to predict



          $reg$ is the historical promotions, dummy date variables, holidays...



          $new_ reg$ is the promotions, dummy date variables, holidays that are that you know it is going to happen



          If you know that there is out-of-stock problem then take a look to this paper.






          share|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "557"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f36623%2fmodelling-promotions-for-demand-forecasting%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            To create dummy variables for days promotion holidays, you might find this example useful.



            If you are sure you do not have an out-of-stock problem anytime in the history you could use an autoregressive model to predict future sales (demand) for any product that has historical data. Depending on your data you could choose a model. Following code is an example which combines four different models by giving different weight to different models. This type of models capture seasonality and trends of your data. For more details about the models please check Rob Hyndman's forecast package documentation.



            choose_model<-function(x,h,reg,new_reg,end_train,start_test)
            library(forecast)
            library(tidyverse)


            #train data

            x_train <- window(x, end = end_train )

            x_test <- window(x, start = start_test)

            #train and test for regressors

            reg_train <- window(reg, end = end_train )

            reg_test <- window(reg, start = start_test)

            h1=length(x_test)

            #model1

            stlf(x_train , method="arima",s.window= nrow(x_train),xreg = reg_train, newxreg = reg_test, h=h1)-> fc_stlf_xreg

            #model2
            auto.arima(x_train, stepwise = FALSE, approximation = FALSE,xreg=reg_train)%>%forecast(h=h1,xreg=reg_test) -> fc_arima_xreg

            #model3
            set.seed(12345)#for nnetar model
            nnetar(x_train, MaxNWts=nrow(x), xreg=reg_train)%>%forecast(h=h1, xreg=reg_test) -> fc_nnetar_xreg

            #model4
            stlf(x_train , method= "ets",s.window= 12, h=h1)-> fc_stlf_ets

            #Combination

            mod1 <- lm(x_test ~ 0 + fc_stlf_xreg$mean + fc_arima_xreg$mean + fc_nnetar_xreg$mean + fc_stlf_ets$mean)
            mod2 <- lm(x_test/I(sum(coef(mod1))) ~ 0 + fc_stlf_xreg$mean + fc_arima_xreg$mean + fc_nnetar_xreg$mean + fc_stlf_ets$mean)



            #model1

            stlf(x, method="arima",s.window= 12,xreg=reg, newxreg=new_reg, h=h)-> fc_stlf

            #model2
            auto.arima(x, stepwise = FALSE, approximation = FALSE,xreg=reg)%>%forecast(h=h,xreg=new_reg) -> fc_arima

            #model3
            set.seed(12345)#for nnetar model
            nnetar(x, MaxNWts=nrow(x), xreg=reg)%>%forecast(h=h, xreg=new_reg) -> fc_nnetar

            #model4
            stlf(x , method= "ets",s.window= 12, h=h)-> fc_stlf_e

            #Combination

            Combi <- (mod2$coefficients[[1]]*fc_stlf$mean + mod2$coefficients[[2]]*fc_arima$mean +
            mod2$coefficients[[3]]*fc_nnetar$mean + mod2$coefficients[[4]]*fc_stlf_e$mean)

            return(Combi)



            The usage of the function:



            coose_model(x,h,reg,new_reg,c(2018,02),c(2018,3))


            $x$ is a time series



            $h$ is time horizon to predict



            $reg$ is the historical promotions, dummy date variables, holidays...



            $new_ reg$ is the promotions, dummy date variables, holidays that are that you know it is going to happen



            If you know that there is out-of-stock problem then take a look to this paper.






            share|improve this answer











            $endgroup$

















              0












              $begingroup$

              To create dummy variables for days promotion holidays, you might find this example useful.



              If you are sure you do not have an out-of-stock problem anytime in the history you could use an autoregressive model to predict future sales (demand) for any product that has historical data. Depending on your data you could choose a model. Following code is an example which combines four different models by giving different weight to different models. This type of models capture seasonality and trends of your data. For more details about the models please check Rob Hyndman's forecast package documentation.



              choose_model<-function(x,h,reg,new_reg,end_train,start_test)
              library(forecast)
              library(tidyverse)


              #train data

              x_train <- window(x, end = end_train )

              x_test <- window(x, start = start_test)

              #train and test for regressors

              reg_train <- window(reg, end = end_train )

              reg_test <- window(reg, start = start_test)

              h1=length(x_test)

              #model1

              stlf(x_train , method="arima",s.window= nrow(x_train),xreg = reg_train, newxreg = reg_test, h=h1)-> fc_stlf_xreg

              #model2
              auto.arima(x_train, stepwise = FALSE, approximation = FALSE,xreg=reg_train)%>%forecast(h=h1,xreg=reg_test) -> fc_arima_xreg

              #model3
              set.seed(12345)#for nnetar model
              nnetar(x_train, MaxNWts=nrow(x), xreg=reg_train)%>%forecast(h=h1, xreg=reg_test) -> fc_nnetar_xreg

              #model4
              stlf(x_train , method= "ets",s.window= 12, h=h1)-> fc_stlf_ets

              #Combination

              mod1 <- lm(x_test ~ 0 + fc_stlf_xreg$mean + fc_arima_xreg$mean + fc_nnetar_xreg$mean + fc_stlf_ets$mean)
              mod2 <- lm(x_test/I(sum(coef(mod1))) ~ 0 + fc_stlf_xreg$mean + fc_arima_xreg$mean + fc_nnetar_xreg$mean + fc_stlf_ets$mean)



              #model1

              stlf(x, method="arima",s.window= 12,xreg=reg, newxreg=new_reg, h=h)-> fc_stlf

              #model2
              auto.arima(x, stepwise = FALSE, approximation = FALSE,xreg=reg)%>%forecast(h=h,xreg=new_reg) -> fc_arima

              #model3
              set.seed(12345)#for nnetar model
              nnetar(x, MaxNWts=nrow(x), xreg=reg)%>%forecast(h=h, xreg=new_reg) -> fc_nnetar

              #model4
              stlf(x , method= "ets",s.window= 12, h=h)-> fc_stlf_e

              #Combination

              Combi <- (mod2$coefficients[[1]]*fc_stlf$mean + mod2$coefficients[[2]]*fc_arima$mean +
              mod2$coefficients[[3]]*fc_nnetar$mean + mod2$coefficients[[4]]*fc_stlf_e$mean)

              return(Combi)



              The usage of the function:



              coose_model(x,h,reg,new_reg,c(2018,02),c(2018,3))


              $x$ is a time series



              $h$ is time horizon to predict



              $reg$ is the historical promotions, dummy date variables, holidays...



              $new_ reg$ is the promotions, dummy date variables, holidays that are that you know it is going to happen



              If you know that there is out-of-stock problem then take a look to this paper.






              share|improve this answer











              $endgroup$















                0












                0








                0





                $begingroup$

                To create dummy variables for days promotion holidays, you might find this example useful.



                If you are sure you do not have an out-of-stock problem anytime in the history you could use an autoregressive model to predict future sales (demand) for any product that has historical data. Depending on your data you could choose a model. Following code is an example which combines four different models by giving different weight to different models. This type of models capture seasonality and trends of your data. For more details about the models please check Rob Hyndman's forecast package documentation.



                choose_model<-function(x,h,reg,new_reg,end_train,start_test)
                library(forecast)
                library(tidyverse)


                #train data

                x_train <- window(x, end = end_train )

                x_test <- window(x, start = start_test)

                #train and test for regressors

                reg_train <- window(reg, end = end_train )

                reg_test <- window(reg, start = start_test)

                h1=length(x_test)

                #model1

                stlf(x_train , method="arima",s.window= nrow(x_train),xreg = reg_train, newxreg = reg_test, h=h1)-> fc_stlf_xreg

                #model2
                auto.arima(x_train, stepwise = FALSE, approximation = FALSE,xreg=reg_train)%>%forecast(h=h1,xreg=reg_test) -> fc_arima_xreg

                #model3
                set.seed(12345)#for nnetar model
                nnetar(x_train, MaxNWts=nrow(x), xreg=reg_train)%>%forecast(h=h1, xreg=reg_test) -> fc_nnetar_xreg

                #model4
                stlf(x_train , method= "ets",s.window= 12, h=h1)-> fc_stlf_ets

                #Combination

                mod1 <- lm(x_test ~ 0 + fc_stlf_xreg$mean + fc_arima_xreg$mean + fc_nnetar_xreg$mean + fc_stlf_ets$mean)
                mod2 <- lm(x_test/I(sum(coef(mod1))) ~ 0 + fc_stlf_xreg$mean + fc_arima_xreg$mean + fc_nnetar_xreg$mean + fc_stlf_ets$mean)



                #model1

                stlf(x, method="arima",s.window= 12,xreg=reg, newxreg=new_reg, h=h)-> fc_stlf

                #model2
                auto.arima(x, stepwise = FALSE, approximation = FALSE,xreg=reg)%>%forecast(h=h,xreg=new_reg) -> fc_arima

                #model3
                set.seed(12345)#for nnetar model
                nnetar(x, MaxNWts=nrow(x), xreg=reg)%>%forecast(h=h, xreg=new_reg) -> fc_nnetar

                #model4
                stlf(x , method= "ets",s.window= 12, h=h)-> fc_stlf_e

                #Combination

                Combi <- (mod2$coefficients[[1]]*fc_stlf$mean + mod2$coefficients[[2]]*fc_arima$mean +
                mod2$coefficients[[3]]*fc_nnetar$mean + mod2$coefficients[[4]]*fc_stlf_e$mean)

                return(Combi)



                The usage of the function:



                coose_model(x,h,reg,new_reg,c(2018,02),c(2018,3))


                $x$ is a time series



                $h$ is time horizon to predict



                $reg$ is the historical promotions, dummy date variables, holidays...



                $new_ reg$ is the promotions, dummy date variables, holidays that are that you know it is going to happen



                If you know that there is out-of-stock problem then take a look to this paper.






                share|improve this answer











                $endgroup$



                To create dummy variables for days promotion holidays, you might find this example useful.



                If you are sure you do not have an out-of-stock problem anytime in the history you could use an autoregressive model to predict future sales (demand) for any product that has historical data. Depending on your data you could choose a model. Following code is an example which combines four different models by giving different weight to different models. This type of models capture seasonality and trends of your data. For more details about the models please check Rob Hyndman's forecast package documentation.



                choose_model<-function(x,h,reg,new_reg,end_train,start_test)
                library(forecast)
                library(tidyverse)


                #train data

                x_train <- window(x, end = end_train )

                x_test <- window(x, start = start_test)

                #train and test for regressors

                reg_train <- window(reg, end = end_train )

                reg_test <- window(reg, start = start_test)

                h1=length(x_test)

                #model1

                stlf(x_train , method="arima",s.window= nrow(x_train),xreg = reg_train, newxreg = reg_test, h=h1)-> fc_stlf_xreg

                #model2
                auto.arima(x_train, stepwise = FALSE, approximation = FALSE,xreg=reg_train)%>%forecast(h=h1,xreg=reg_test) -> fc_arima_xreg

                #model3
                set.seed(12345)#for nnetar model
                nnetar(x_train, MaxNWts=nrow(x), xreg=reg_train)%>%forecast(h=h1, xreg=reg_test) -> fc_nnetar_xreg

                #model4
                stlf(x_train , method= "ets",s.window= 12, h=h1)-> fc_stlf_ets

                #Combination

                mod1 <- lm(x_test ~ 0 + fc_stlf_xreg$mean + fc_arima_xreg$mean + fc_nnetar_xreg$mean + fc_stlf_ets$mean)
                mod2 <- lm(x_test/I(sum(coef(mod1))) ~ 0 + fc_stlf_xreg$mean + fc_arima_xreg$mean + fc_nnetar_xreg$mean + fc_stlf_ets$mean)



                #model1

                stlf(x, method="arima",s.window= 12,xreg=reg, newxreg=new_reg, h=h)-> fc_stlf

                #model2
                auto.arima(x, stepwise = FALSE, approximation = FALSE,xreg=reg)%>%forecast(h=h,xreg=new_reg) -> fc_arima

                #model3
                set.seed(12345)#for nnetar model
                nnetar(x, MaxNWts=nrow(x), xreg=reg)%>%forecast(h=h, xreg=new_reg) -> fc_nnetar

                #model4
                stlf(x , method= "ets",s.window= 12, h=h)-> fc_stlf_e

                #Combination

                Combi <- (mod2$coefficients[[1]]*fc_stlf$mean + mod2$coefficients[[2]]*fc_arima$mean +
                mod2$coefficients[[3]]*fc_nnetar$mean + mod2$coefficients[[4]]*fc_stlf_e$mean)

                return(Combi)



                The usage of the function:



                coose_model(x,h,reg,new_reg,c(2018,02),c(2018,3))


                $x$ is a time series



                $h$ is time horizon to predict



                $reg$ is the historical promotions, dummy date variables, holidays...



                $new_ reg$ is the promotions, dummy date variables, holidays that are that you know it is going to happen



                If you know that there is out-of-stock problem then take a look to this paper.







                share|improve this answer














                share|improve this answer



                share|improve this answer








                edited Aug 13 '18 at 7:43

























                answered Aug 12 '18 at 22:28









                AkaiAkai

                664




                664



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Data Science Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f36623%2fmodelling-promotions-for-demand-forecasting%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Францішак Багушэвіч Змест Сям'я | Біяграфія | Творчасць | Мова Багушэвіча | Ацэнкі дзейнасці | Цікавыя факты | Спадчына | Выбраная бібліяграфія | Ушанаванне памяці | У філатэліі | Зноскі | Літаратура | Спасылкі | НавігацыяЛяхоўскі У. Рупіўся дзеля Бога і людзей: Жыццёвы шлях Лявона Вітан-Дубейкаўскага // Вольскі і Памідораў з песняй пра немца Адвакат, паэт, народны заступнік Ашмянскі веснікВ Минске появится площадь Богушевича и улица Сырокомли, Белорусская деловая газета, 19 июля 2001 г.Айцец беларускай нацыянальнай ідэі паўстаў у бронзе Сяргей Аляксандравіч Адашкевіч (1918, Мінск). 80-я гады. Бюст «Францішак Багушэвіч».Яўген Мікалаевіч Ціхановіч. «Партрэт Францішка Багушэвіча»Мікола Мікалаевіч Купава. «Партрэт зачынальніка новай беларускай літаратуры Францішка Багушэвіча»Уладзімір Іванавіч Мелехаў. На помніку «Змагарам за родную мову» Барэльеф «Францішак Багушэвіч»Памяць пра Багушэвіча на Віленшчыне Страчаная сталіца. Беларускія шыльды на вуліцах Вільні«Krynica». Ideologia i przywódcy białoruskiego katolicyzmuФранцішак БагушэвічТворы на knihi.comТворы Францішка Багушэвіча на bellib.byСодаль Уладзімір. Францішак Багушэвіч на Лідчыне;Луцкевіч Антон. Жыцьцё і творчасьць Фр. Багушэвіча ў успамінах ягоных сучасьнікаў // Запісы Беларускага Навуковага таварыства. Вільня, 1938. Сшытак 1. С. 16-34.Большая российская1188761710000 0000 5537 633Xn9209310021619551927869394п

                    Беларусь Змест Назва Гісторыя Геаграфія Сімволіка Дзяржаўны лад Палітычныя партыі Міжнароднае становішча і знешняя палітыка Адміністрацыйны падзел Насельніцтва Эканоміка Культура і грамадства Сацыяльная сфера Узброеныя сілы Заўвагі Літаратура Спасылкі НавігацыяHGЯOiТоп-2011 г. (па версіі ej.by)Топ-2013 г. (па версіі ej.by)Топ-2016 г. (па версіі ej.by)Топ-2017 г. (па версіі ej.by)Нацыянальны статыстычны камітэт Рэспублікі БеларусьШчыльнасць насельніцтва па краінахhttp://naviny.by/rubrics/society/2011/09/16/ic_articles_116_175144/А. Калечыц, У. Ксяндзоў. Спробы засялення краю неандэртальскім чалавекам.І ў Менску былі мамантыА. Калечыц, У. Ксяндзоў. Старажытны каменны век (палеаліт). Першапачатковае засяленне тэрыторыіГ. Штыхаў. Балты і славяне ў VI—VIII стст.М. Клімаў. Полацкае княства ў IX—XI стст.Г. Штыхаў, В. Ляўко. Палітычная гісторыя Полацкай зямліГ. Штыхаў. Дзяржаўны лад у землях-княствахГ. Штыхаў. Дзяржаўны лад у землях-княствахБеларускія землі ў складзе Вялікага Княства ЛітоўскагаЛюблінская унія 1569 г."The Early Stages of Independence"Zapomniane prawdy25 гадоў таму было аб'яўлена, што Язэп Пілсудскі — беларус (фота)Наша вадаДакументы ЧАЭС: Забруджванне тэрыторыі Беларусі « ЧАЭС Зона адчужэнняСведения о политических партиях, зарегистрированных в Республике Беларусь // Министерство юстиции Республики БеларусьСтатыстычны бюлетэнь „Полаўзроставая структура насельніцтва Рэспублікі Беларусь на 1 студзеня 2012 года і сярэднегадовая колькасць насельніцтва за 2011 год“Индекс человеческого развития Беларуси — не было бы нижеБеларусь занимает первое место в СНГ по индексу развития с учетом гендерного факцёраНацыянальны статыстычны камітэт Рэспублікі БеларусьКанстытуцыя РБ. Артыкул 17Трансфармацыйныя задачы БеларусіВыйсце з крызісу — далейшае рэфармаванне Беларускі рубель — сусветны лідар па дэвальвацыяхПра змену коштаў у кастрычніку 2011 г.Бядней за беларусаў у СНД толькі таджыкіСярэдні заробак у верасні дасягнуў 2,26 мільёна рублёўЭканомікаГаласуем за ТОП-100 беларускай прозыСучасныя беларускія мастакіАрхитектура Беларуси BELARUS.BYА. Каханоўскі. Культура Беларусі ўсярэдзіне XVII—XVIII ст.Анталогія беларускай народнай песні, гуказапісы спеваўБеларускія Музычныя IнструментыБеларускі рок, які мы страцілі. Топ-10 гуртоў«Мясцовы час» — нязгаслая легенда беларускай рок-музыкіСЯРГЕЙ БУДКІН. МЫ НЯ ЗНАЕМ СВАЁЙ МУЗЫКІМ. А. Каладзінскі. НАРОДНЫ ТЭАТРМагнацкія культурныя цэнтрыПублічная дыскусія «Беларуская новая пьеса: без беларускай мовы ці беларуская?»Беларускія драматургі па-ранейшаму лепш ставяцца за мяжой, чым на радзіме«Працэс незалежнага кіно пайшоў, і дзяржаву турбуе яго непадкантрольнасць»Беларускія філосафы ў пошуках прасторыВсе идём в библиотекуАрхіваванаАб Нацыянальнай праграме даследавання і выкарыстання касмічнай прасторы ў мірных мэтах на 2008—2012 гадыУ космас — разам.У суседнім з Барысаўскім раёне пабудуюць Камандна-вымяральны пунктСвяты і абрады беларусаў«Мірныя бульбашы з малой краіны» — 5 непраўдзівых стэрэатыпаў пра БеларусьМ. Раманюк. Беларускае народнае адзеннеУ Беларусі скарачаецца колькасць злачынстваўЛукашэнка незадаволены мінскімі ўладамі Крадзяжы складаюць у Мінску каля 70% злачынстваў Узровень злачыннасці ў Мінскай вобласці — адзін з самых высокіх у краіне Генпракуратура аналізуе стан са злачыннасцю ў Беларусі па каэфіцыенце злачыннасці У Беларусі стабілізавалася крымінагеннае становішча, лічыць генпракурорЗамежнікі сталі здзяйсняць у Беларусі больш злачынстваўМУС Беларусі турбуе рост рэцыдыўнай злачыннасціЯ з ЖЭСа. Дазволіце вас абкрасці! Рэйтынг усіх службаў і падраздзяленняў ГУУС Мінгарвыканкама вырасАб КДБ РБГісторыя Аператыўна-аналітычнага цэнтра РБГісторыя ДКФРТаможняagentura.ruБеларусьBelarus.by — Афіцыйны сайт Рэспублікі БеларусьСайт урада БеларусіRadzima.org — Збор архітэктурных помнікаў, гісторыя Беларусі«Глобус Беларуси»Гербы и флаги БеларусиАсаблівасці каменнага веку на БеларусіА. Калечыц, У. Ксяндзоў. Старажытны каменны век (палеаліт). Першапачатковае засяленне тэрыторыіУ. Ксяндзоў. Сярэдні каменны век (мезаліт). Засяленне краю плямёнамі паляўнічых, рыбакоў і збіральнікаўА. Калечыц, М. Чарняўскі. Плямёны на тэрыторыі Беларусі ў новым каменным веку (неаліце)А. Калечыц, У. Ксяндзоў, М. Чарняўскі. Гаспадарчыя заняткі ў каменным векуЭ. Зайкоўскі. Духоўная культура ў каменным векуАсаблівасці бронзавага веку на БеларусіФарміраванне супольнасцей ранняга перыяду бронзавага векуФотографии БеларусиРоля беларускіх зямель ва ўтварэнні і ўмацаванні ВКЛВ. Фадзеева. З гісторыі развіцця беларускай народнай вышыўкіDMOZGran catalanaБольшая российскаяBritannica (анлайн)Швейцарскі гістарычны15325917611952699xDA123282154079143-90000 0001 2171 2080n9112870100577502ge128882171858027501086026362074122714179пппппп

                    ValueError: Expected n_neighbors <= n_samples, but n_samples = 1, n_neighbors = 6 (SMOTE) The 2019 Stack Overflow Developer Survey Results Are InCan SMOTE be applied over sequence of words (sentences)?ValueError when doing validation with random forestsSMOTE and multi class oversamplingLogic behind SMOTE-NC?ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)SmoteBoost: Should SMOTE be ran individually for each iteration/tree in the boosting?solving multi-class imbalance classification using smote and OSSUsing SMOTE for Synthetic Data generation to improve performance on unbalanced dataproblem of entry format for a simple model in KerasSVM SMOTE fit_resample() function runs forever with no result