Distributing a matrix The 2019 Stack Overflow Developer Survey Results Are InOn multiplying quaternion matricesWhen is matrix multiplication commutative?Matrix multiplicationWhy aren't all matrices diagonalisable?Linear Transformation vs Matrixhow many ways is there to factor matrix?Can an arbitrary matrix represent any linear map just by changing the basis?Inverse matrix confusionA question matrix multiplication commutative?Joint Matrices Factorization

Is flight data recorder erased after every flight?

Why isn't the circumferential light around the M87 black hole's event horizon symmetric?

Did Section 31 appear in Star Trek: The Next Generation?

Right tool to dig six foot holes?

Is an up-to-date browser secure on an out-of-date OS?

Distributing a matrix

What is the most effective way of iterating a std::vector and why?

How to save as into a customized destination on macOS?

Interpreting the 2019 New York Reproductive Health Act?

Is "plugging out" electronic devices an American expression?

A poker game description that does not feel gimmicky

Why hard-Brexiteers don't insist on a hard border to prevent illegal immigration after Brexit?

Landlord wants to switch my lease to a "Land contract" to "get back at the city"

Multiply Two Integer Polynomials

Is this app Icon Browser Safe/Legit?

Why isn't airport relocation done gradually?

How technical should a Scrum Master be to effectively remove impediments?

What do hard-Brexiteers want with respect to the Irish border?

Falsification in Math vs Science

When should I buy a clipper card after flying to OAK?

Why was M87 targetted for the Event Horizon Telescope instead of Sagittarius A*?

Looking for Correct Greek Translation for Heraclitus

What is the meaning of Triage in Cybersec world?

Output the Arecibo Message



Distributing a matrix



The 2019 Stack Overflow Developer Survey Results Are InOn multiplying quaternion matricesWhen is matrix multiplication commutative?Matrix multiplicationWhy aren't all matrices diagonalisable?Linear Transformation vs Matrixhow many ways is there to factor matrix?Can an arbitrary matrix represent any linear map just by changing the basis?Inverse matrix confusionA question matrix multiplication commutative?Joint Matrices Factorization










3












$begingroup$


Since matrix mutiplication is not commutative, the two ways in which you can factorize matrices makes a difference in which side the factor goes on.



In particular, if I want to distribute



$$((I - A) + A)(I - A)^-1,$$



would it become



$$(I - A)(I - A)^-1 + A(I - A)^-1 $$



OR would it be



$$(I - A)^-1(I - A) + (I - A)^-1A?$$



How do I know which side it goes on? I think the first one is correct.










share|cite|improve this question









$endgroup$
















    3












    $begingroup$


    Since matrix mutiplication is not commutative, the two ways in which you can factorize matrices makes a difference in which side the factor goes on.



    In particular, if I want to distribute



    $$((I - A) + A)(I - A)^-1,$$



    would it become



    $$(I - A)(I - A)^-1 + A(I - A)^-1 $$



    OR would it be



    $$(I - A)^-1(I - A) + (I - A)^-1A?$$



    How do I know which side it goes on? I think the first one is correct.










    share|cite|improve this question









    $endgroup$














      3












      3








      3





      $begingroup$


      Since matrix mutiplication is not commutative, the two ways in which you can factorize matrices makes a difference in which side the factor goes on.



      In particular, if I want to distribute



      $$((I - A) + A)(I - A)^-1,$$



      would it become



      $$(I - A)(I - A)^-1 + A(I - A)^-1 $$



      OR would it be



      $$(I - A)^-1(I - A) + (I - A)^-1A?$$



      How do I know which side it goes on? I think the first one is correct.










      share|cite|improve this question









      $endgroup$




      Since matrix mutiplication is not commutative, the two ways in which you can factorize matrices makes a difference in which side the factor goes on.



      In particular, if I want to distribute



      $$((I - A) + A)(I - A)^-1,$$



      would it become



      $$(I - A)(I - A)^-1 + A(I - A)^-1 $$



      OR would it be



      $$(I - A)^-1(I - A) + (I - A)^-1A?$$



      How do I know which side it goes on? I think the first one is correct.







      linear-algebra






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 4 hours ago









      redblacktreesredblacktrees

      424




      424




















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$

          Your first answer is correct. There are two distributive laws for matrices,
          $$A(B+C)=AB+ACquadhboxandquad (A+B)C=AC+BC ,$$
          but not $A(B+C)=BA+CA$ or $(A+B)C=AC+CB$ or.....






          share|cite|improve this answer









          $endgroup$




















            1












            $begingroup$

            In general, this is what we call "right distributivity" - I usually hear the context for this in the sense of ring axioms. Let's sojourn into this a bit - though if you're not familiar with abstract algebra, this won't be particularly enlightening, and you might be better off skipping to the very end.




            Let $(R,+,cdot,0,1)$ be a ring; then we call left-distributivity and define it by



            $$a cdot (b+c) = acdot b + a cdot c$$



            Similarly, right-distributivity is given by



            $$(b+c)cdot a = bcdot a + ccdot a$$



            Note: we are not guaranteed that $acdot b = bcdot a$ unless $R$ is a commutative ring.



            In the context of matrices over rings, for which I reference Wikipedia, you can define $M_n(R)$ as the $ntimes n$ matrices over a ring $R$ (i.e. its elements come from the ring, and the addition and multiplication of elements are shared). Notably, we have that $M_n(R)$ is a commutative ring if and only if $R$ is a commutative ring and $n=1$ (so basically effectively no different from working in the ring in question).




            So what does this mean? This means, in your case, you probably do not have $AB=BA$ (of course, I imagine you know this). And thus in the context of the distributivity thigns above, you would have



            $$(B+C)A = BA + CA$$



            Your example has $B = I-A$ and $C=A$. And thus, your first example is correct: if you are distributing something on the right side, and cannot ensure commutativity, you should multiply that element by everything in the brackets on the right side.






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3183231%2fdistributing-a-matrix%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              2












              $begingroup$

              Your first answer is correct. There are two distributive laws for matrices,
              $$A(B+C)=AB+ACquadhboxandquad (A+B)C=AC+BC ,$$
              but not $A(B+C)=BA+CA$ or $(A+B)C=AC+CB$ or.....






              share|cite|improve this answer









              $endgroup$

















                2












                $begingroup$

                Your first answer is correct. There are two distributive laws for matrices,
                $$A(B+C)=AB+ACquadhboxandquad (A+B)C=AC+BC ,$$
                but not $A(B+C)=BA+CA$ or $(A+B)C=AC+CB$ or.....






                share|cite|improve this answer









                $endgroup$















                  2












                  2








                  2





                  $begingroup$

                  Your first answer is correct. There are two distributive laws for matrices,
                  $$A(B+C)=AB+ACquadhboxandquad (A+B)C=AC+BC ,$$
                  but not $A(B+C)=BA+CA$ or $(A+B)C=AC+CB$ or.....






                  share|cite|improve this answer









                  $endgroup$



                  Your first answer is correct. There are two distributive laws for matrices,
                  $$A(B+C)=AB+ACquadhboxandquad (A+B)C=AC+BC ,$$
                  but not $A(B+C)=BA+CA$ or $(A+B)C=AC+CB$ or.....







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 4 hours ago









                  DavidDavid

                  69.8k668131




                  69.8k668131





















                      1












                      $begingroup$

                      In general, this is what we call "right distributivity" - I usually hear the context for this in the sense of ring axioms. Let's sojourn into this a bit - though if you're not familiar with abstract algebra, this won't be particularly enlightening, and you might be better off skipping to the very end.




                      Let $(R,+,cdot,0,1)$ be a ring; then we call left-distributivity and define it by



                      $$a cdot (b+c) = acdot b + a cdot c$$



                      Similarly, right-distributivity is given by



                      $$(b+c)cdot a = bcdot a + ccdot a$$



                      Note: we are not guaranteed that $acdot b = bcdot a$ unless $R$ is a commutative ring.



                      In the context of matrices over rings, for which I reference Wikipedia, you can define $M_n(R)$ as the $ntimes n$ matrices over a ring $R$ (i.e. its elements come from the ring, and the addition and multiplication of elements are shared). Notably, we have that $M_n(R)$ is a commutative ring if and only if $R$ is a commutative ring and $n=1$ (so basically effectively no different from working in the ring in question).




                      So what does this mean? This means, in your case, you probably do not have $AB=BA$ (of course, I imagine you know this). And thus in the context of the distributivity thigns above, you would have



                      $$(B+C)A = BA + CA$$



                      Your example has $B = I-A$ and $C=A$. And thus, your first example is correct: if you are distributing something on the right side, and cannot ensure commutativity, you should multiply that element by everything in the brackets on the right side.






                      share|cite|improve this answer









                      $endgroup$

















                        1












                        $begingroup$

                        In general, this is what we call "right distributivity" - I usually hear the context for this in the sense of ring axioms. Let's sojourn into this a bit - though if you're not familiar with abstract algebra, this won't be particularly enlightening, and you might be better off skipping to the very end.




                        Let $(R,+,cdot,0,1)$ be a ring; then we call left-distributivity and define it by



                        $$a cdot (b+c) = acdot b + a cdot c$$



                        Similarly, right-distributivity is given by



                        $$(b+c)cdot a = bcdot a + ccdot a$$



                        Note: we are not guaranteed that $acdot b = bcdot a$ unless $R$ is a commutative ring.



                        In the context of matrices over rings, for which I reference Wikipedia, you can define $M_n(R)$ as the $ntimes n$ matrices over a ring $R$ (i.e. its elements come from the ring, and the addition and multiplication of elements are shared). Notably, we have that $M_n(R)$ is a commutative ring if and only if $R$ is a commutative ring and $n=1$ (so basically effectively no different from working in the ring in question).




                        So what does this mean? This means, in your case, you probably do not have $AB=BA$ (of course, I imagine you know this). And thus in the context of the distributivity thigns above, you would have



                        $$(B+C)A = BA + CA$$



                        Your example has $B = I-A$ and $C=A$. And thus, your first example is correct: if you are distributing something on the right side, and cannot ensure commutativity, you should multiply that element by everything in the brackets on the right side.






                        share|cite|improve this answer









                        $endgroup$















                          1












                          1








                          1





                          $begingroup$

                          In general, this is what we call "right distributivity" - I usually hear the context for this in the sense of ring axioms. Let's sojourn into this a bit - though if you're not familiar with abstract algebra, this won't be particularly enlightening, and you might be better off skipping to the very end.




                          Let $(R,+,cdot,0,1)$ be a ring; then we call left-distributivity and define it by



                          $$a cdot (b+c) = acdot b + a cdot c$$



                          Similarly, right-distributivity is given by



                          $$(b+c)cdot a = bcdot a + ccdot a$$



                          Note: we are not guaranteed that $acdot b = bcdot a$ unless $R$ is a commutative ring.



                          In the context of matrices over rings, for which I reference Wikipedia, you can define $M_n(R)$ as the $ntimes n$ matrices over a ring $R$ (i.e. its elements come from the ring, and the addition and multiplication of elements are shared). Notably, we have that $M_n(R)$ is a commutative ring if and only if $R$ is a commutative ring and $n=1$ (so basically effectively no different from working in the ring in question).




                          So what does this mean? This means, in your case, you probably do not have $AB=BA$ (of course, I imagine you know this). And thus in the context of the distributivity thigns above, you would have



                          $$(B+C)A = BA + CA$$



                          Your example has $B = I-A$ and $C=A$. And thus, your first example is correct: if you are distributing something on the right side, and cannot ensure commutativity, you should multiply that element by everything in the brackets on the right side.






                          share|cite|improve this answer









                          $endgroup$



                          In general, this is what we call "right distributivity" - I usually hear the context for this in the sense of ring axioms. Let's sojourn into this a bit - though if you're not familiar with abstract algebra, this won't be particularly enlightening, and you might be better off skipping to the very end.




                          Let $(R,+,cdot,0,1)$ be a ring; then we call left-distributivity and define it by



                          $$a cdot (b+c) = acdot b + a cdot c$$



                          Similarly, right-distributivity is given by



                          $$(b+c)cdot a = bcdot a + ccdot a$$



                          Note: we are not guaranteed that $acdot b = bcdot a$ unless $R$ is a commutative ring.



                          In the context of matrices over rings, for which I reference Wikipedia, you can define $M_n(R)$ as the $ntimes n$ matrices over a ring $R$ (i.e. its elements come from the ring, and the addition and multiplication of elements are shared). Notably, we have that $M_n(R)$ is a commutative ring if and only if $R$ is a commutative ring and $n=1$ (so basically effectively no different from working in the ring in question).




                          So what does this mean? This means, in your case, you probably do not have $AB=BA$ (of course, I imagine you know this). And thus in the context of the distributivity thigns above, you would have



                          $$(B+C)A = BA + CA$$



                          Your example has $B = I-A$ and $C=A$. And thus, your first example is correct: if you are distributing something on the right side, and cannot ensure commutativity, you should multiply that element by everything in the brackets on the right side.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered 4 hours ago









                          Eevee TrainerEevee Trainer

                          10.4k31742




                          10.4k31742



























                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3183231%2fdistributing-a-matrix%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              ValueError: Error when checking input: expected conv2d_13_input to have shape (3, 150, 150) but got array with shape (150, 150, 3)2019 Community Moderator ElectionError when checking : expected dense_1_input to have shape (None, 5) but got array with shape (200, 1)Error 'Expected 2D array, got 1D array instead:'ValueError: Error when checking input: expected lstm_41_input to have 3 dimensions, but got array with shape (40000,100)ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)ValueError: Error when checking target: expected dense_2 to have shape (1,) but got array with shape (0,)Keras exception: ValueError: Error when checking input: expected conv2d_1_input to have shape (150, 150, 3) but got array with shape (256, 256, 3)Steps taking too long to completewhen checking input: expected dense_1_input to have shape (13328,) but got array with shape (317,)ValueError: Error when checking target: expected dense_3 to have shape (None, 1) but got array with shape (7715, 40000)Keras exception: Error when checking input: expected dense_input to have shape (2,) but got array with shape (1,)

                              Ружовы пелікан Змест Знешні выгляд | Пашырэнне | Асаблівасці біялогіі | Літаратура | НавігацыяДагледжаная версіяправерана1 зменаДагледжаная версіяправерана1 змена/ 22697590 Сістэматыкана ВіківідахВыявына Вікісховішчы174693363011049382

                              Illegal assignment from SObject to ContactFetching String, Id from Map - Illegal Assignment Id to Field / ObjectError: Compile Error: Illegal assignment from String to BooleanError: List has no rows for assignment to SObjectError on Test Class - System.QueryException: List has no rows for assignment to SObjectRemote action problemDML requires SObject or SObject list type error“Illegal assignment from List to List”Test Class Fail: Batch Class: System.QueryException: List has no rows for assignment to SObjectMapping to a user'List has no rows for assignment to SObject' Mystery