Using a Lyapunov function to classify stability and sketching a phase portraitLyapunov stability question from Arnold's triviumNon linear phase portraitNonlinear phase portrait and linearizationSystem of differential equations, phase portraitDynamical Systems- Plotting Phase PortraitPhase portrait of ODE in polar coordinatesQuestions about stability in the sense of LyapunovLinearization method or Lyapunov function - examplestability using linearization instead of Lyapunov failsLyapunov function instead of linearization

Does the sign matter for proportionality?

How much cash can I safely carry into the USA and avoid civil forfeiture?

How to solve constants out of the internal energy equation?

Packing rectangles: Does rotation ever help?

With a Canadian student visa, can I spend a night at Vancouver before continuing to Toronto?

What makes accurate emulation of old systems a difficult task?

How to have a sharp product image?

What does KSP mean?

Using a Lyapunov function to classify stability and sketching a phase portrait

Is the 5 MB static resource size limit 5,242,880 bytes or 5,000,000 bytes?

What language was spoken in East Asia before Proto-Turkic?

Can someone publish a story that happened to you?

a sore throat vs a strep throat vs strep throat

how to sum variables from file in bash

Rivers without rain

US visa is under administrative processing, I need the passport back ASAP

Stop and Take a Breath!

Is there a way to get a compiler for the original B programming language?

How do I reattach a shelf to the wall when it ripped out of the wall?

How to creep the reader out with what seems like a normal person?

What route did the Hindenburg take when traveling from Germany to the U.S.?

How can the Zone of Truth spell be defeated without the caster knowing?

The Defining Moment

Any examples of headwear for races with animal ears?



Using a Lyapunov function to classify stability and sketching a phase portrait


Lyapunov stability question from Arnold's triviumNon linear phase portraitNonlinear phase portrait and linearizationSystem of differential equations, phase portraitDynamical Systems- Plotting Phase PortraitPhase portrait of ODE in polar coordinatesQuestions about stability in the sense of LyapunovLinearization method or Lyapunov function - examplestability using linearization instead of Lyapunov failsLyapunov function instead of linearization













3












$begingroup$



Consider the system
$$x' = -x^3-xy^2k$$
$$y' = -y^3-x^2ky$$
Where $k$ is a given positive integer.



a.) Find and classify according to stability the equilibrium solutions.



$itHint:$ Let $V(x,y) = x^2 + y^2$



b.) Sketch a phase portrait when $k = 1$



$itHint:$ What are $x'$ and $y'$ when $y=ax$ for some real number $a$?




a.)
Using $V$, we get $fracddtV=2xx'+2yy'$



Plugging in our system , we get:



$$fracddtV=2x(-x^3-xy^2k)+2y(-y^3-x^2ky)$$
$$=-(x^4+y^4)-x^2y^2k-x^2ky^2<0$$
I dropped the $2$ since it doesn't matter to determine stability. We see that our own equilibrium is $(0,0)$ since setting $x'=0$ we get
$$y^2k=-x^2$$
Which only works for $x=y=0$



Therefore our system is asymptotically stable at the origin.



I am having trouble with b.), mostly because the hint is confusing me.



Let $y=ax$, then our system becomes
$$x'=-x^3-a^2x^3=-x^3(1+a^2)$$
$$y'=-a^3x^3-ax^3=-ax^3(1+a^2)$$
I am not sure what to do with this. Using linearization doesn't work since the Jacobian will be the zero vector at the point of interest. I have never had a problem that asks to draw a phase portrait when linearization doesn't work, so I am hoping someone more clever than me can offer some advice.










share|cite|improve this question











$endgroup$
















    3












    $begingroup$



    Consider the system
    $$x' = -x^3-xy^2k$$
    $$y' = -y^3-x^2ky$$
    Where $k$ is a given positive integer.



    a.) Find and classify according to stability the equilibrium solutions.



    $itHint:$ Let $V(x,y) = x^2 + y^2$



    b.) Sketch a phase portrait when $k = 1$



    $itHint:$ What are $x'$ and $y'$ when $y=ax$ for some real number $a$?




    a.)
    Using $V$, we get $fracddtV=2xx'+2yy'$



    Plugging in our system , we get:



    $$fracddtV=2x(-x^3-xy^2k)+2y(-y^3-x^2ky)$$
    $$=-(x^4+y^4)-x^2y^2k-x^2ky^2<0$$
    I dropped the $2$ since it doesn't matter to determine stability. We see that our own equilibrium is $(0,0)$ since setting $x'=0$ we get
    $$y^2k=-x^2$$
    Which only works for $x=y=0$



    Therefore our system is asymptotically stable at the origin.



    I am having trouble with b.), mostly because the hint is confusing me.



    Let $y=ax$, then our system becomes
    $$x'=-x^3-a^2x^3=-x^3(1+a^2)$$
    $$y'=-a^3x^3-ax^3=-ax^3(1+a^2)$$
    I am not sure what to do with this. Using linearization doesn't work since the Jacobian will be the zero vector at the point of interest. I have never had a problem that asks to draw a phase portrait when linearization doesn't work, so I am hoping someone more clever than me can offer some advice.










    share|cite|improve this question











    $endgroup$














      3












      3








      3





      $begingroup$



      Consider the system
      $$x' = -x^3-xy^2k$$
      $$y' = -y^3-x^2ky$$
      Where $k$ is a given positive integer.



      a.) Find and classify according to stability the equilibrium solutions.



      $itHint:$ Let $V(x,y) = x^2 + y^2$



      b.) Sketch a phase portrait when $k = 1$



      $itHint:$ What are $x'$ and $y'$ when $y=ax$ for some real number $a$?




      a.)
      Using $V$, we get $fracddtV=2xx'+2yy'$



      Plugging in our system , we get:



      $$fracddtV=2x(-x^3-xy^2k)+2y(-y^3-x^2ky)$$
      $$=-(x^4+y^4)-x^2y^2k-x^2ky^2<0$$
      I dropped the $2$ since it doesn't matter to determine stability. We see that our own equilibrium is $(0,0)$ since setting $x'=0$ we get
      $$y^2k=-x^2$$
      Which only works for $x=y=0$



      Therefore our system is asymptotically stable at the origin.



      I am having trouble with b.), mostly because the hint is confusing me.



      Let $y=ax$, then our system becomes
      $$x'=-x^3-a^2x^3=-x^3(1+a^2)$$
      $$y'=-a^3x^3-ax^3=-ax^3(1+a^2)$$
      I am not sure what to do with this. Using linearization doesn't work since the Jacobian will be the zero vector at the point of interest. I have never had a problem that asks to draw a phase portrait when linearization doesn't work, so I am hoping someone more clever than me can offer some advice.










      share|cite|improve this question











      $endgroup$





      Consider the system
      $$x' = -x^3-xy^2k$$
      $$y' = -y^3-x^2ky$$
      Where $k$ is a given positive integer.



      a.) Find and classify according to stability the equilibrium solutions.



      $itHint:$ Let $V(x,y) = x^2 + y^2$



      b.) Sketch a phase portrait when $k = 1$



      $itHint:$ What are $x'$ and $y'$ when $y=ax$ for some real number $a$?




      a.)
      Using $V$, we get $fracddtV=2xx'+2yy'$



      Plugging in our system , we get:



      $$fracddtV=2x(-x^3-xy^2k)+2y(-y^3-x^2ky)$$
      $$=-(x^4+y^4)-x^2y^2k-x^2ky^2<0$$
      I dropped the $2$ since it doesn't matter to determine stability. We see that our own equilibrium is $(0,0)$ since setting $x'=0$ we get
      $$y^2k=-x^2$$
      Which only works for $x=y=0$



      Therefore our system is asymptotically stable at the origin.



      I am having trouble with b.), mostly because the hint is confusing me.



      Let $y=ax$, then our system becomes
      $$x'=-x^3-a^2x^3=-x^3(1+a^2)$$
      $$y'=-a^3x^3-ax^3=-ax^3(1+a^2)$$
      I am not sure what to do with this. Using linearization doesn't work since the Jacobian will be the zero vector at the point of interest. I have never had a problem that asks to draw a phase portrait when linearization doesn't work, so I am hoping someone more clever than me can offer some advice.







      ordinary-differential-equations stability-in-odes lyapunov-functions






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 3 hours ago







      hkj447

















      asked 4 hours ago









      hkj447hkj447

      978




      978




















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$

          Although there are many ways to do this, I suspect what the problem is guiding you towards doing is to obtain the flow directly by evaluating over every line that intersects the origin in phase space.



          So for a sketch, you would draw the line $y = 0.1 x$, and use the expression you found above for $a = 0.1$ to determine the magnitude and direction of the flow on that line. Then try it for a couple of other different lines, and use common sense to fill in the rest.






          share|cite|improve this answer









          $endgroup$




















            2












            $begingroup$

            Phase portraits - a partial offering



            Below are phase portraits for $k=1,2,5$. The red lines indicate the null clines where $doty=0$ and $doty=0$.



            $k = 1$



            The linear system is



            $$beginalign
            beginsplit
            dotx &= -x^3 - xy^2 = -x left( x^2 + y^2 right) \
            doty &= -y^3 - x^2y = -y left( x^2 + y^2 right)
            endsplit
            endalign$$



            $$ dotr = fracx dotx + y dotyr = -r^3 $$



            The lone critical point is the origin.



            When $y = a x$, $ainmathbbR$, we have
            $$beginalign
            beginsplit
            dotx &= -x^3left( 1 + a^2 right) \
            doty &= -a y^3left( 1 + a^2 right)
            endsplit
            endalign$$



            k=1



            $k = 2$



            $$beginalign
            beginsplit
            dotx &= -x^3 - xy^4 = -x left( x^2 + y^4 right) \
            doty &= -y^3 - x^4y = -y left( x^2 + y^2 right)
            endsplit
            endalign$$



            $$ dotr = tfrac18 r^3 left(left(r^2-2right) cos (4 theta )-r^2-6right) $$



            The bounding curves for $dotr$ are when $cos 4theta = 1$



            $$dotr = -r^3$$



            and when $cos 4theta = -1$



            $$dotr = -tfrac14 r^3 left(r^2+2right)$$



            The bounding curves cross at $r=sqrt2$. At no point is $dotr$ ever positive.



            k=2k=5






            share|cite|improve this answer











            $endgroup$













              Your Answer








              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3204990%2fusing-a-lyapunov-function-to-classify-stability-and-sketching-a-phase-portrait%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              2












              $begingroup$

              Although there are many ways to do this, I suspect what the problem is guiding you towards doing is to obtain the flow directly by evaluating over every line that intersects the origin in phase space.



              So for a sketch, you would draw the line $y = 0.1 x$, and use the expression you found above for $a = 0.1$ to determine the magnitude and direction of the flow on that line. Then try it for a couple of other different lines, and use common sense to fill in the rest.






              share|cite|improve this answer









              $endgroup$

















                2












                $begingroup$

                Although there are many ways to do this, I suspect what the problem is guiding you towards doing is to obtain the flow directly by evaluating over every line that intersects the origin in phase space.



                So for a sketch, you would draw the line $y = 0.1 x$, and use the expression you found above for $a = 0.1$ to determine the magnitude and direction of the flow on that line. Then try it for a couple of other different lines, and use common sense to fill in the rest.






                share|cite|improve this answer









                $endgroup$















                  2












                  2








                  2





                  $begingroup$

                  Although there are many ways to do this, I suspect what the problem is guiding you towards doing is to obtain the flow directly by evaluating over every line that intersects the origin in phase space.



                  So for a sketch, you would draw the line $y = 0.1 x$, and use the expression you found above for $a = 0.1$ to determine the magnitude and direction of the flow on that line. Then try it for a couple of other different lines, and use common sense to fill in the rest.






                  share|cite|improve this answer









                  $endgroup$



                  Although there are many ways to do this, I suspect what the problem is guiding you towards doing is to obtain the flow directly by evaluating over every line that intersects the origin in phase space.



                  So for a sketch, you would draw the line $y = 0.1 x$, and use the expression you found above for $a = 0.1$ to determine the magnitude and direction of the flow on that line. Then try it for a couple of other different lines, and use common sense to fill in the rest.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 4 hours ago









                  aghostinthefiguresaghostinthefigures

                  1,4391318




                  1,4391318





















                      2












                      $begingroup$

                      Phase portraits - a partial offering



                      Below are phase portraits for $k=1,2,5$. The red lines indicate the null clines where $doty=0$ and $doty=0$.



                      $k = 1$



                      The linear system is



                      $$beginalign
                      beginsplit
                      dotx &= -x^3 - xy^2 = -x left( x^2 + y^2 right) \
                      doty &= -y^3 - x^2y = -y left( x^2 + y^2 right)
                      endsplit
                      endalign$$



                      $$ dotr = fracx dotx + y dotyr = -r^3 $$



                      The lone critical point is the origin.



                      When $y = a x$, $ainmathbbR$, we have
                      $$beginalign
                      beginsplit
                      dotx &= -x^3left( 1 + a^2 right) \
                      doty &= -a y^3left( 1 + a^2 right)
                      endsplit
                      endalign$$



                      k=1



                      $k = 2$



                      $$beginalign
                      beginsplit
                      dotx &= -x^3 - xy^4 = -x left( x^2 + y^4 right) \
                      doty &= -y^3 - x^4y = -y left( x^2 + y^2 right)
                      endsplit
                      endalign$$



                      $$ dotr = tfrac18 r^3 left(left(r^2-2right) cos (4 theta )-r^2-6right) $$



                      The bounding curves for $dotr$ are when $cos 4theta = 1$



                      $$dotr = -r^3$$



                      and when $cos 4theta = -1$



                      $$dotr = -tfrac14 r^3 left(r^2+2right)$$



                      The bounding curves cross at $r=sqrt2$. At no point is $dotr$ ever positive.



                      k=2k=5






                      share|cite|improve this answer











                      $endgroup$

















                        2












                        $begingroup$

                        Phase portraits - a partial offering



                        Below are phase portraits for $k=1,2,5$. The red lines indicate the null clines where $doty=0$ and $doty=0$.



                        $k = 1$



                        The linear system is



                        $$beginalign
                        beginsplit
                        dotx &= -x^3 - xy^2 = -x left( x^2 + y^2 right) \
                        doty &= -y^3 - x^2y = -y left( x^2 + y^2 right)
                        endsplit
                        endalign$$



                        $$ dotr = fracx dotx + y dotyr = -r^3 $$



                        The lone critical point is the origin.



                        When $y = a x$, $ainmathbbR$, we have
                        $$beginalign
                        beginsplit
                        dotx &= -x^3left( 1 + a^2 right) \
                        doty &= -a y^3left( 1 + a^2 right)
                        endsplit
                        endalign$$



                        k=1



                        $k = 2$



                        $$beginalign
                        beginsplit
                        dotx &= -x^3 - xy^4 = -x left( x^2 + y^4 right) \
                        doty &= -y^3 - x^4y = -y left( x^2 + y^2 right)
                        endsplit
                        endalign$$



                        $$ dotr = tfrac18 r^3 left(left(r^2-2right) cos (4 theta )-r^2-6right) $$



                        The bounding curves for $dotr$ are when $cos 4theta = 1$



                        $$dotr = -r^3$$



                        and when $cos 4theta = -1$



                        $$dotr = -tfrac14 r^3 left(r^2+2right)$$



                        The bounding curves cross at $r=sqrt2$. At no point is $dotr$ ever positive.



                        k=2k=5






                        share|cite|improve this answer











                        $endgroup$















                          2












                          2








                          2





                          $begingroup$

                          Phase portraits - a partial offering



                          Below are phase portraits for $k=1,2,5$. The red lines indicate the null clines where $doty=0$ and $doty=0$.



                          $k = 1$



                          The linear system is



                          $$beginalign
                          beginsplit
                          dotx &= -x^3 - xy^2 = -x left( x^2 + y^2 right) \
                          doty &= -y^3 - x^2y = -y left( x^2 + y^2 right)
                          endsplit
                          endalign$$



                          $$ dotr = fracx dotx + y dotyr = -r^3 $$



                          The lone critical point is the origin.



                          When $y = a x$, $ainmathbbR$, we have
                          $$beginalign
                          beginsplit
                          dotx &= -x^3left( 1 + a^2 right) \
                          doty &= -a y^3left( 1 + a^2 right)
                          endsplit
                          endalign$$



                          k=1



                          $k = 2$



                          $$beginalign
                          beginsplit
                          dotx &= -x^3 - xy^4 = -x left( x^2 + y^4 right) \
                          doty &= -y^3 - x^4y = -y left( x^2 + y^2 right)
                          endsplit
                          endalign$$



                          $$ dotr = tfrac18 r^3 left(left(r^2-2right) cos (4 theta )-r^2-6right) $$



                          The bounding curves for $dotr$ are when $cos 4theta = 1$



                          $$dotr = -r^3$$



                          and when $cos 4theta = -1$



                          $$dotr = -tfrac14 r^3 left(r^2+2right)$$



                          The bounding curves cross at $r=sqrt2$. At no point is $dotr$ ever positive.



                          k=2k=5






                          share|cite|improve this answer











                          $endgroup$



                          Phase portraits - a partial offering



                          Below are phase portraits for $k=1,2,5$. The red lines indicate the null clines where $doty=0$ and $doty=0$.



                          $k = 1$



                          The linear system is



                          $$beginalign
                          beginsplit
                          dotx &= -x^3 - xy^2 = -x left( x^2 + y^2 right) \
                          doty &= -y^3 - x^2y = -y left( x^2 + y^2 right)
                          endsplit
                          endalign$$



                          $$ dotr = fracx dotx + y dotyr = -r^3 $$



                          The lone critical point is the origin.



                          When $y = a x$, $ainmathbbR$, we have
                          $$beginalign
                          beginsplit
                          dotx &= -x^3left( 1 + a^2 right) \
                          doty &= -a y^3left( 1 + a^2 right)
                          endsplit
                          endalign$$



                          k=1



                          $k = 2$



                          $$beginalign
                          beginsplit
                          dotx &= -x^3 - xy^4 = -x left( x^2 + y^4 right) \
                          doty &= -y^3 - x^4y = -y left( x^2 + y^2 right)
                          endsplit
                          endalign$$



                          $$ dotr = tfrac18 r^3 left(left(r^2-2right) cos (4 theta )-r^2-6right) $$



                          The bounding curves for $dotr$ are when $cos 4theta = 1$



                          $$dotr = -r^3$$



                          and when $cos 4theta = -1$



                          $$dotr = -tfrac14 r^3 left(r^2+2right)$$



                          The bounding curves cross at $r=sqrt2$. At no point is $dotr$ ever positive.



                          k=2k=5







                          share|cite|improve this answer














                          share|cite|improve this answer



                          share|cite|improve this answer








                          edited 2 hours ago

























                          answered 3 hours ago









                          dantopadantopa

                          6,76442345




                          6,76442345



























                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3204990%2fusing-a-lyapunov-function-to-classify-stability-and-sketching-a-phase-portrait%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Францішак Багушэвіч Змест Сям'я | Біяграфія | Творчасць | Мова Багушэвіча | Ацэнкі дзейнасці | Цікавыя факты | Спадчына | Выбраная бібліяграфія | Ушанаванне памяці | У філатэліі | Зноскі | Літаратура | Спасылкі | НавігацыяЛяхоўскі У. Рупіўся дзеля Бога і людзей: Жыццёвы шлях Лявона Вітан-Дубейкаўскага // Вольскі і Памідораў з песняй пра немца Адвакат, паэт, народны заступнік Ашмянскі веснікВ Минске появится площадь Богушевича и улица Сырокомли, Белорусская деловая газета, 19 июля 2001 г.Айцец беларускай нацыянальнай ідэі паўстаў у бронзе Сяргей Аляксандравіч Адашкевіч (1918, Мінск). 80-я гады. Бюст «Францішак Багушэвіч».Яўген Мікалаевіч Ціхановіч. «Партрэт Францішка Багушэвіча»Мікола Мікалаевіч Купава. «Партрэт зачынальніка новай беларускай літаратуры Францішка Багушэвіча»Уладзімір Іванавіч Мелехаў. На помніку «Змагарам за родную мову» Барэльеф «Францішак Багушэвіч»Памяць пра Багушэвіча на Віленшчыне Страчаная сталіца. Беларускія шыльды на вуліцах Вільні«Krynica». Ideologia i przywódcy białoruskiego katolicyzmuФранцішак БагушэвічТворы на knihi.comТворы Францішка Багушэвіча на bellib.byСодаль Уладзімір. Францішак Багушэвіч на Лідчыне;Луцкевіч Антон. Жыцьцё і творчасьць Фр. Багушэвіча ў успамінах ягоных сучасьнікаў // Запісы Беларускага Навуковага таварыства. Вільня, 1938. Сшытак 1. С. 16-34.Большая российская1188761710000 0000 5537 633Xn9209310021619551927869394п

                              Беларусь Змест Назва Гісторыя Геаграфія Сімволіка Дзяржаўны лад Палітычныя партыі Міжнароднае становішча і знешняя палітыка Адміністрацыйны падзел Насельніцтва Эканоміка Культура і грамадства Сацыяльная сфера Узброеныя сілы Заўвагі Літаратура Спасылкі НавігацыяHGЯOiТоп-2011 г. (па версіі ej.by)Топ-2013 г. (па версіі ej.by)Топ-2016 г. (па версіі ej.by)Топ-2017 г. (па версіі ej.by)Нацыянальны статыстычны камітэт Рэспублікі БеларусьШчыльнасць насельніцтва па краінахhttp://naviny.by/rubrics/society/2011/09/16/ic_articles_116_175144/А. Калечыц, У. Ксяндзоў. Спробы засялення краю неандэртальскім чалавекам.І ў Менску былі мамантыА. Калечыц, У. Ксяндзоў. Старажытны каменны век (палеаліт). Першапачатковае засяленне тэрыторыіГ. Штыхаў. Балты і славяне ў VI—VIII стст.М. Клімаў. Полацкае княства ў IX—XI стст.Г. Штыхаў, В. Ляўко. Палітычная гісторыя Полацкай зямліГ. Штыхаў. Дзяржаўны лад у землях-княствахГ. Штыхаў. Дзяржаўны лад у землях-княствахБеларускія землі ў складзе Вялікага Княства ЛітоўскагаЛюблінская унія 1569 г."The Early Stages of Independence"Zapomniane prawdy25 гадоў таму было аб'яўлена, што Язэп Пілсудскі — беларус (фота)Наша вадаДакументы ЧАЭС: Забруджванне тэрыторыі Беларусі « ЧАЭС Зона адчужэнняСведения о политических партиях, зарегистрированных в Республике Беларусь // Министерство юстиции Республики БеларусьСтатыстычны бюлетэнь „Полаўзроставая структура насельніцтва Рэспублікі Беларусь на 1 студзеня 2012 года і сярэднегадовая колькасць насельніцтва за 2011 год“Индекс человеческого развития Беларуси — не было бы нижеБеларусь занимает первое место в СНГ по индексу развития с учетом гендерного факцёраНацыянальны статыстычны камітэт Рэспублікі БеларусьКанстытуцыя РБ. Артыкул 17Трансфармацыйныя задачы БеларусіВыйсце з крызісу — далейшае рэфармаванне Беларускі рубель — сусветны лідар па дэвальвацыяхПра змену коштаў у кастрычніку 2011 г.Бядней за беларусаў у СНД толькі таджыкіСярэдні заробак у верасні дасягнуў 2,26 мільёна рублёўЭканомікаГаласуем за ТОП-100 беларускай прозыСучасныя беларускія мастакіАрхитектура Беларуси BELARUS.BYА. Каханоўскі. Культура Беларусі ўсярэдзіне XVII—XVIII ст.Анталогія беларускай народнай песні, гуказапісы спеваўБеларускія Музычныя IнструментыБеларускі рок, які мы страцілі. Топ-10 гуртоў«Мясцовы час» — нязгаслая легенда беларускай рок-музыкіСЯРГЕЙ БУДКІН. МЫ НЯ ЗНАЕМ СВАЁЙ МУЗЫКІМ. А. Каладзінскі. НАРОДНЫ ТЭАТРМагнацкія культурныя цэнтрыПублічная дыскусія «Беларуская новая пьеса: без беларускай мовы ці беларуская?»Беларускія драматургі па-ранейшаму лепш ставяцца за мяжой, чым на радзіме«Працэс незалежнага кіно пайшоў, і дзяржаву турбуе яго непадкантрольнасць»Беларускія філосафы ў пошуках прасторыВсе идём в библиотекуАрхіваванаАб Нацыянальнай праграме даследавання і выкарыстання касмічнай прасторы ў мірных мэтах на 2008—2012 гадыУ космас — разам.У суседнім з Барысаўскім раёне пабудуюць Камандна-вымяральны пунктСвяты і абрады беларусаў«Мірныя бульбашы з малой краіны» — 5 непраўдзівых стэрэатыпаў пра БеларусьМ. Раманюк. Беларускае народнае адзеннеУ Беларусі скарачаецца колькасць злачынстваўЛукашэнка незадаволены мінскімі ўладамі Крадзяжы складаюць у Мінску каля 70% злачынстваў Узровень злачыннасці ў Мінскай вобласці — адзін з самых высокіх у краіне Генпракуратура аналізуе стан са злачыннасцю ў Беларусі па каэфіцыенце злачыннасці У Беларусі стабілізавалася крымінагеннае становішча, лічыць генпракурорЗамежнікі сталі здзяйсняць у Беларусі больш злачынстваўМУС Беларусі турбуе рост рэцыдыўнай злачыннасціЯ з ЖЭСа. Дазволіце вас абкрасці! Рэйтынг усіх службаў і падраздзяленняў ГУУС Мінгарвыканкама вырасАб КДБ РБГісторыя Аператыўна-аналітычнага цэнтра РБГісторыя ДКФРТаможняagentura.ruБеларусьBelarus.by — Афіцыйны сайт Рэспублікі БеларусьСайт урада БеларусіRadzima.org — Збор архітэктурных помнікаў, гісторыя Беларусі«Глобус Беларуси»Гербы и флаги БеларусиАсаблівасці каменнага веку на БеларусіА. Калечыц, У. Ксяндзоў. Старажытны каменны век (палеаліт). Першапачатковае засяленне тэрыторыіУ. Ксяндзоў. Сярэдні каменны век (мезаліт). Засяленне краю плямёнамі паляўнічых, рыбакоў і збіральнікаўА. Калечыц, М. Чарняўскі. Плямёны на тэрыторыі Беларусі ў новым каменным веку (неаліце)А. Калечыц, У. Ксяндзоў, М. Чарняўскі. Гаспадарчыя заняткі ў каменным векуЭ. Зайкоўскі. Духоўная культура ў каменным векуАсаблівасці бронзавага веку на БеларусіФарміраванне супольнасцей ранняга перыяду бронзавага векуФотографии БеларусиРоля беларускіх зямель ва ўтварэнні і ўмацаванні ВКЛВ. Фадзеева. З гісторыі развіцця беларускай народнай вышыўкіDMOZGran catalanaБольшая российскаяBritannica (анлайн)Швейцарскі гістарычны15325917611952699xDA123282154079143-90000 0001 2171 2080n9112870100577502ge128882171858027501086026362074122714179пппппп

                              ValueError: Expected n_neighbors <= n_samples, but n_samples = 1, n_neighbors = 6 (SMOTE) The 2019 Stack Overflow Developer Survey Results Are InCan SMOTE be applied over sequence of words (sentences)?ValueError when doing validation with random forestsSMOTE and multi class oversamplingLogic behind SMOTE-NC?ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)SmoteBoost: Should SMOTE be ran individually for each iteration/tree in the boosting?solving multi-class imbalance classification using smote and OSSUsing SMOTE for Synthetic Data generation to improve performance on unbalanced dataproblem of entry format for a simple model in KerasSVM SMOTE fit_resample() function runs forever with no result