Uniformly continuous derivative implies existence of limitHow to show that a uniformly continuous function is bounded?Simple Construction of a Uniformly Continuous Real Valued Function With No Derivative Anywhere In The Domain?Bounded derivative implies uniform continuity- does the domain need to be an open interval?Prove $f$ is uniformly continuous iff $ lim_xto inftyf(x)=0$The product of uniformly continuous functions is not necessarily uniformly continuousIs $f$ uniformly continuous?Continuous function goes to zero at $pm infty$, show it is uniformly continuousDifficult limit problem involving sine and tangent$f$ is uniformly continuous if and only if the limits exist in $mathbbR$Relationship with uniformly continuous function and its derivative.

Is there really no use for MD5 anymore?

If a warlock with the Repelling Blast invocation casts Eldritch Blast and hits, must the targets always be pushed back?

A Strange Latex Symbol

Why does processed meat contain preservatives, while canned fish needs not?

Stop and Take a Breath!

What does KSP mean?

Is there any limitation with Arduino Nano serial communication distance?

Can someone publish a story that happened to you?

Meaning of Bloch representation

Mac Pro install disk keeps ejecting itself

Don’t seats that recline flat defeat the purpose of having seatbelts?

How to have a sharp product image?

Phrase for the opposite of "foolproof"

Term for maladaptive animal behavior that will lead to their demise?

How to pronounce 'C++' in Spanish

Sci-fi book: portals appear in London and send a failed artist towards a designated path where he operate a giant superweapon

What does the "ep" capability mean?

Error message with tabularx

How to make a pipeline wait for end-of-file or stop after an error?

Does this extra sentence in the description of the warlock's Eyes of the Rune Keeper eldritch invocation appear in any official reference?

Unexpected email from Yorkshire Bank

Please, smoke with good manners

Is there a way to get a compiler for the original B programming language?

Is contacting this expert in the field something acceptable or would it be discourteous?



Uniformly continuous derivative implies existence of limit


How to show that a uniformly continuous function is bounded?Simple Construction of a Uniformly Continuous Real Valued Function With No Derivative Anywhere In The Domain?Bounded derivative implies uniform continuity- does the domain need to be an open interval?Prove $f$ is uniformly continuous iff $ lim_xto inftyf(x)=0$The product of uniformly continuous functions is not necessarily uniformly continuousIs $f$ uniformly continuous?Continuous function goes to zero at $pm infty$, show it is uniformly continuousDifficult limit problem involving sine and tangent$f$ is uniformly continuous if and only if the limits exist in $mathbbR$Relationship with uniformly continuous function and its derivative.













2












$begingroup$



Let $f in C^1([0, +infty))$. Suppose that $lim_x rightarrow +infty f(x)=L$ and $f'$ is uniformly continuous.



Show that $$lim_x rightarrow +infty f'(x) + f(x)=L$$




I tried to apply L'Hospital's Rule to $frace^xf(x)e^x$ since $fracddxe^xf(x)=e^x(f'(x)+f(x))$. It seems alright but I didn't use the uniform continuity of $f'$ and it doesn't work for the function $f(x)=fracsin(x^2)x$ whose derivative is $f'(x)=2cos(x^2)-fracsin(x^2)x^2$ since $lim_x rightarrow +infty f'(x)$ doesn't exist.



Any ideas? Thanks in advance.










share|cite|improve this question









$endgroup$











  • $begingroup$
    The L'Hospital trick won't work in cases where the limit of $[f(x) +f'(x)]$ does not exist as in your example.
    $endgroup$
    – RRL
    1 hour ago















2












$begingroup$



Let $f in C^1([0, +infty))$. Suppose that $lim_x rightarrow +infty f(x)=L$ and $f'$ is uniformly continuous.



Show that $$lim_x rightarrow +infty f'(x) + f(x)=L$$




I tried to apply L'Hospital's Rule to $frace^xf(x)e^x$ since $fracddxe^xf(x)=e^x(f'(x)+f(x))$. It seems alright but I didn't use the uniform continuity of $f'$ and it doesn't work for the function $f(x)=fracsin(x^2)x$ whose derivative is $f'(x)=2cos(x^2)-fracsin(x^2)x^2$ since $lim_x rightarrow +infty f'(x)$ doesn't exist.



Any ideas? Thanks in advance.










share|cite|improve this question









$endgroup$











  • $begingroup$
    The L'Hospital trick won't work in cases where the limit of $[f(x) +f'(x)]$ does not exist as in your example.
    $endgroup$
    – RRL
    1 hour ago













2












2








2


1



$begingroup$



Let $f in C^1([0, +infty))$. Suppose that $lim_x rightarrow +infty f(x)=L$ and $f'$ is uniformly continuous.



Show that $$lim_x rightarrow +infty f'(x) + f(x)=L$$




I tried to apply L'Hospital's Rule to $frace^xf(x)e^x$ since $fracddxe^xf(x)=e^x(f'(x)+f(x))$. It seems alright but I didn't use the uniform continuity of $f'$ and it doesn't work for the function $f(x)=fracsin(x^2)x$ whose derivative is $f'(x)=2cos(x^2)-fracsin(x^2)x^2$ since $lim_x rightarrow +infty f'(x)$ doesn't exist.



Any ideas? Thanks in advance.










share|cite|improve this question









$endgroup$





Let $f in C^1([0, +infty))$. Suppose that $lim_x rightarrow +infty f(x)=L$ and $f'$ is uniformly continuous.



Show that $$lim_x rightarrow +infty f'(x) + f(x)=L$$




I tried to apply L'Hospital's Rule to $frace^xf(x)e^x$ since $fracddxe^xf(x)=e^x(f'(x)+f(x))$. It seems alright but I didn't use the uniform continuity of $f'$ and it doesn't work for the function $f(x)=fracsin(x^2)x$ whose derivative is $f'(x)=2cos(x^2)-fracsin(x^2)x^2$ since $lim_x rightarrow +infty f'(x)$ doesn't exist.



Any ideas? Thanks in advance.







real-analysis






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 2 hours ago









lzralbulzralbu

697512




697512











  • $begingroup$
    The L'Hospital trick won't work in cases where the limit of $[f(x) +f'(x)]$ does not exist as in your example.
    $endgroup$
    – RRL
    1 hour ago
















  • $begingroup$
    The L'Hospital trick won't work in cases where the limit of $[f(x) +f'(x)]$ does not exist as in your example.
    $endgroup$
    – RRL
    1 hour ago















$begingroup$
The L'Hospital trick won't work in cases where the limit of $[f(x) +f'(x)]$ does not exist as in your example.
$endgroup$
– RRL
1 hour ago




$begingroup$
The L'Hospital trick won't work in cases where the limit of $[f(x) +f'(x)]$ does not exist as in your example.
$endgroup$
– RRL
1 hour ago










1 Answer
1






active

oldest

votes


















3












$begingroup$

We have $lim_x to infty f'(x) = 0$ because,



$$int_0^x f'(t) , dt = f(x) - f(0), \int_0^infty f'(t) , dt = lim_x to inftyf(x) - f(0) = L - f(0) quad (textconvergent)$$



and $f'$ is uniformly continuous.



To prove this assume that $lim_x to inftyf'(x) =0$ does not hold and arrive at contradiction with the fact that the integral of $f'$ is convergent.



If $lim_x to infty f'(x) = 0$ does not hold then there exists $epsilon_0 > 0$ and a sequence $x_n to infty$ such that $|f'(x_n)| geqslant epsilon_0$ for all $n$. Next apply uniform continuity.



Assume WLOG that $f'(x_n) geqslant epsilon_0$.



There exists by uniform continuity $delta > 0$ such that $|f'(t) - f'(x_n)| < epsilon_0/2 implies f'(t) > epsilon_0/2$ for all $t in [x_n - delta,x_n + delta],$ and



$$ int_x_n - delta^x_n + delta f'(t) , dt > epsilondelta$$



This violates the Cauchy criterion for convergence of the improper integral since $x_n$ can be arbitrarily large.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    I can help you further, but first let me know if these hints makes it obvious to you now.
    $endgroup$
    – RRL
    1 hour ago










  • $begingroup$
    I still can't see how to use uniform continuity. Could you, please, explain it further?
    $endgroup$
    – lzralbu
    1 hour ago










  • $begingroup$
    I shall do so...
    $endgroup$
    – RRL
    1 hour ago










  • $begingroup$
    What about the example given in the question?
    $endgroup$
    – Jens Schwaiger
    57 mins ago










  • $begingroup$
    @JensSchwaiger: $cos(x^2)$ is not uniformly continuous on $[0,infty)$. OP introduced this as a counterexample for the L'Hospital trick. It is not relevant to the actual question where the assumption is that $f'$ is uniformly continuous.
    $endgroup$
    – RRL
    42 mins ago











Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3205125%2funiformly-continuous-derivative-implies-existence-of-limit%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









3












$begingroup$

We have $lim_x to infty f'(x) = 0$ because,



$$int_0^x f'(t) , dt = f(x) - f(0), \int_0^infty f'(t) , dt = lim_x to inftyf(x) - f(0) = L - f(0) quad (textconvergent)$$



and $f'$ is uniformly continuous.



To prove this assume that $lim_x to inftyf'(x) =0$ does not hold and arrive at contradiction with the fact that the integral of $f'$ is convergent.



If $lim_x to infty f'(x) = 0$ does not hold then there exists $epsilon_0 > 0$ and a sequence $x_n to infty$ such that $|f'(x_n)| geqslant epsilon_0$ for all $n$. Next apply uniform continuity.



Assume WLOG that $f'(x_n) geqslant epsilon_0$.



There exists by uniform continuity $delta > 0$ such that $|f'(t) - f'(x_n)| < epsilon_0/2 implies f'(t) > epsilon_0/2$ for all $t in [x_n - delta,x_n + delta],$ and



$$ int_x_n - delta^x_n + delta f'(t) , dt > epsilondelta$$



This violates the Cauchy criterion for convergence of the improper integral since $x_n$ can be arbitrarily large.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    I can help you further, but first let me know if these hints makes it obvious to you now.
    $endgroup$
    – RRL
    1 hour ago










  • $begingroup$
    I still can't see how to use uniform continuity. Could you, please, explain it further?
    $endgroup$
    – lzralbu
    1 hour ago










  • $begingroup$
    I shall do so...
    $endgroup$
    – RRL
    1 hour ago










  • $begingroup$
    What about the example given in the question?
    $endgroup$
    – Jens Schwaiger
    57 mins ago










  • $begingroup$
    @JensSchwaiger: $cos(x^2)$ is not uniformly continuous on $[0,infty)$. OP introduced this as a counterexample for the L'Hospital trick. It is not relevant to the actual question where the assumption is that $f'$ is uniformly continuous.
    $endgroup$
    – RRL
    42 mins ago















3












$begingroup$

We have $lim_x to infty f'(x) = 0$ because,



$$int_0^x f'(t) , dt = f(x) - f(0), \int_0^infty f'(t) , dt = lim_x to inftyf(x) - f(0) = L - f(0) quad (textconvergent)$$



and $f'$ is uniformly continuous.



To prove this assume that $lim_x to inftyf'(x) =0$ does not hold and arrive at contradiction with the fact that the integral of $f'$ is convergent.



If $lim_x to infty f'(x) = 0$ does not hold then there exists $epsilon_0 > 0$ and a sequence $x_n to infty$ such that $|f'(x_n)| geqslant epsilon_0$ for all $n$. Next apply uniform continuity.



Assume WLOG that $f'(x_n) geqslant epsilon_0$.



There exists by uniform continuity $delta > 0$ such that $|f'(t) - f'(x_n)| < epsilon_0/2 implies f'(t) > epsilon_0/2$ for all $t in [x_n - delta,x_n + delta],$ and



$$ int_x_n - delta^x_n + delta f'(t) , dt > epsilondelta$$



This violates the Cauchy criterion for convergence of the improper integral since $x_n$ can be arbitrarily large.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    I can help you further, but first let me know if these hints makes it obvious to you now.
    $endgroup$
    – RRL
    1 hour ago










  • $begingroup$
    I still can't see how to use uniform continuity. Could you, please, explain it further?
    $endgroup$
    – lzralbu
    1 hour ago










  • $begingroup$
    I shall do so...
    $endgroup$
    – RRL
    1 hour ago










  • $begingroup$
    What about the example given in the question?
    $endgroup$
    – Jens Schwaiger
    57 mins ago










  • $begingroup$
    @JensSchwaiger: $cos(x^2)$ is not uniformly continuous on $[0,infty)$. OP introduced this as a counterexample for the L'Hospital trick. It is not relevant to the actual question where the assumption is that $f'$ is uniformly continuous.
    $endgroup$
    – RRL
    42 mins ago













3












3








3





$begingroup$

We have $lim_x to infty f'(x) = 0$ because,



$$int_0^x f'(t) , dt = f(x) - f(0), \int_0^infty f'(t) , dt = lim_x to inftyf(x) - f(0) = L - f(0) quad (textconvergent)$$



and $f'$ is uniformly continuous.



To prove this assume that $lim_x to inftyf'(x) =0$ does not hold and arrive at contradiction with the fact that the integral of $f'$ is convergent.



If $lim_x to infty f'(x) = 0$ does not hold then there exists $epsilon_0 > 0$ and a sequence $x_n to infty$ such that $|f'(x_n)| geqslant epsilon_0$ for all $n$. Next apply uniform continuity.



Assume WLOG that $f'(x_n) geqslant epsilon_0$.



There exists by uniform continuity $delta > 0$ such that $|f'(t) - f'(x_n)| < epsilon_0/2 implies f'(t) > epsilon_0/2$ for all $t in [x_n - delta,x_n + delta],$ and



$$ int_x_n - delta^x_n + delta f'(t) , dt > epsilondelta$$



This violates the Cauchy criterion for convergence of the improper integral since $x_n$ can be arbitrarily large.






share|cite|improve this answer











$endgroup$



We have $lim_x to infty f'(x) = 0$ because,



$$int_0^x f'(t) , dt = f(x) - f(0), \int_0^infty f'(t) , dt = lim_x to inftyf(x) - f(0) = L - f(0) quad (textconvergent)$$



and $f'$ is uniformly continuous.



To prove this assume that $lim_x to inftyf'(x) =0$ does not hold and arrive at contradiction with the fact that the integral of $f'$ is convergent.



If $lim_x to infty f'(x) = 0$ does not hold then there exists $epsilon_0 > 0$ and a sequence $x_n to infty$ such that $|f'(x_n)| geqslant epsilon_0$ for all $n$. Next apply uniform continuity.



Assume WLOG that $f'(x_n) geqslant epsilon_0$.



There exists by uniform continuity $delta > 0$ such that $|f'(t) - f'(x_n)| < epsilon_0/2 implies f'(t) > epsilon_0/2$ for all $t in [x_n - delta,x_n + delta],$ and



$$ int_x_n - delta^x_n + delta f'(t) , dt > epsilondelta$$



This violates the Cauchy criterion for convergence of the improper integral since $x_n$ can be arbitrarily large.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 1 hour ago

























answered 1 hour ago









RRLRRL

54.1k52675




54.1k52675











  • $begingroup$
    I can help you further, but first let me know if these hints makes it obvious to you now.
    $endgroup$
    – RRL
    1 hour ago










  • $begingroup$
    I still can't see how to use uniform continuity. Could you, please, explain it further?
    $endgroup$
    – lzralbu
    1 hour ago










  • $begingroup$
    I shall do so...
    $endgroup$
    – RRL
    1 hour ago










  • $begingroup$
    What about the example given in the question?
    $endgroup$
    – Jens Schwaiger
    57 mins ago










  • $begingroup$
    @JensSchwaiger: $cos(x^2)$ is not uniformly continuous on $[0,infty)$. OP introduced this as a counterexample for the L'Hospital trick. It is not relevant to the actual question where the assumption is that $f'$ is uniformly continuous.
    $endgroup$
    – RRL
    42 mins ago
















  • $begingroup$
    I can help you further, but first let me know if these hints makes it obvious to you now.
    $endgroup$
    – RRL
    1 hour ago










  • $begingroup$
    I still can't see how to use uniform continuity. Could you, please, explain it further?
    $endgroup$
    – lzralbu
    1 hour ago










  • $begingroup$
    I shall do so...
    $endgroup$
    – RRL
    1 hour ago










  • $begingroup$
    What about the example given in the question?
    $endgroup$
    – Jens Schwaiger
    57 mins ago










  • $begingroup$
    @JensSchwaiger: $cos(x^2)$ is not uniformly continuous on $[0,infty)$. OP introduced this as a counterexample for the L'Hospital trick. It is not relevant to the actual question where the assumption is that $f'$ is uniformly continuous.
    $endgroup$
    – RRL
    42 mins ago















$begingroup$
I can help you further, but first let me know if these hints makes it obvious to you now.
$endgroup$
– RRL
1 hour ago




$begingroup$
I can help you further, but first let me know if these hints makes it obvious to you now.
$endgroup$
– RRL
1 hour ago












$begingroup$
I still can't see how to use uniform continuity. Could you, please, explain it further?
$endgroup$
– lzralbu
1 hour ago




$begingroup$
I still can't see how to use uniform continuity. Could you, please, explain it further?
$endgroup$
– lzralbu
1 hour ago












$begingroup$
I shall do so...
$endgroup$
– RRL
1 hour ago




$begingroup$
I shall do so...
$endgroup$
– RRL
1 hour ago












$begingroup$
What about the example given in the question?
$endgroup$
– Jens Schwaiger
57 mins ago




$begingroup$
What about the example given in the question?
$endgroup$
– Jens Schwaiger
57 mins ago












$begingroup$
@JensSchwaiger: $cos(x^2)$ is not uniformly continuous on $[0,infty)$. OP introduced this as a counterexample for the L'Hospital trick. It is not relevant to the actual question where the assumption is that $f'$ is uniformly continuous.
$endgroup$
– RRL
42 mins ago




$begingroup$
@JensSchwaiger: $cos(x^2)$ is not uniformly continuous on $[0,infty)$. OP introduced this as a counterexample for the L'Hospital trick. It is not relevant to the actual question where the assumption is that $f'$ is uniformly continuous.
$endgroup$
– RRL
42 mins ago

















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3205125%2funiformly-continuous-derivative-implies-existence-of-limit%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Францішак Багушэвіч Змест Сям'я | Біяграфія | Творчасць | Мова Багушэвіча | Ацэнкі дзейнасці | Цікавыя факты | Спадчына | Выбраная бібліяграфія | Ушанаванне памяці | У філатэліі | Зноскі | Літаратура | Спасылкі | НавігацыяЛяхоўскі У. Рупіўся дзеля Бога і людзей: Жыццёвы шлях Лявона Вітан-Дубейкаўскага // Вольскі і Памідораў з песняй пра немца Адвакат, паэт, народны заступнік Ашмянскі веснікВ Минске появится площадь Богушевича и улица Сырокомли, Белорусская деловая газета, 19 июля 2001 г.Айцец беларускай нацыянальнай ідэі паўстаў у бронзе Сяргей Аляксандравіч Адашкевіч (1918, Мінск). 80-я гады. Бюст «Францішак Багушэвіч».Яўген Мікалаевіч Ціхановіч. «Партрэт Францішка Багушэвіча»Мікола Мікалаевіч Купава. «Партрэт зачынальніка новай беларускай літаратуры Францішка Багушэвіча»Уладзімір Іванавіч Мелехаў. На помніку «Змагарам за родную мову» Барэльеф «Францішак Багушэвіч»Памяць пра Багушэвіча на Віленшчыне Страчаная сталіца. Беларускія шыльды на вуліцах Вільні«Krynica». Ideologia i przywódcy białoruskiego katolicyzmuФранцішак БагушэвічТворы на knihi.comТворы Францішка Багушэвіча на bellib.byСодаль Уладзімір. Францішак Багушэвіч на Лідчыне;Луцкевіч Антон. Жыцьцё і творчасьць Фр. Багушэвіча ў успамінах ягоных сучасьнікаў // Запісы Беларускага Навуковага таварыства. Вільня, 1938. Сшытак 1. С. 16-34.Большая российская1188761710000 0000 5537 633Xn9209310021619551927869394п

Partai Komunis Tiongkok Daftar isi Kepemimpinan | Pranala luar | Referensi | Menu navigasidiperiksa1 perubahan tertundacpc.people.com.cnSitus resmiSurat kabar resmi"Why the Communist Party is alive, well and flourishing in China"0307-1235"Full text of Constitution of Communist Party of China"smengembangkannyas

ValueError: Expected n_neighbors <= n_samples, but n_samples = 1, n_neighbors = 6 (SMOTE) The 2019 Stack Overflow Developer Survey Results Are InCan SMOTE be applied over sequence of words (sentences)?ValueError when doing validation with random forestsSMOTE and multi class oversamplingLogic behind SMOTE-NC?ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)SmoteBoost: Should SMOTE be ran individually for each iteration/tree in the boosting?solving multi-class imbalance classification using smote and OSSUsing SMOTE for Synthetic Data generation to improve performance on unbalanced dataproblem of entry format for a simple model in KerasSVM SMOTE fit_resample() function runs forever with no result