Symplectic equivalent of commuting matricesProving “almost all matrices over C are diagonalizable”.Polar decomposition for quaternionic matrices?Characterizing symplectic matrices relative to a partial Iwasawa decompositionApproximating commuting matrices by commuting diagonalizable matricesSymplectic block-diagonalization of a real symmetric Hamiltonian matrixDo skew symmetric matrices ever naturally represent linear transformations?Constant symplectic structureCenter of matricesDiagonalization of real symmetric matrices with symplectic matricesIs every stable matrix orthogonally similar to a $D$-skew-symmetric matrix?

Symplectic equivalent of commuting matrices


Proving “almost all matrices over C are diagonalizable”.Polar decomposition for quaternionic matrices?Characterizing symplectic matrices relative to a partial Iwasawa decompositionApproximating commuting matrices by commuting diagonalizable matricesSymplectic block-diagonalization of a real symmetric Hamiltonian matrixDo skew symmetric matrices ever naturally represent linear transformations?Constant symplectic structureCenter of matricesDiagonalization of real symmetric matrices with symplectic matricesIs every stable matrix orthogonally similar to a $D$-skew-symmetric matrix?













7












$begingroup$


It is well known what happens if two real symmetric matrices commute, i.e. if we have two matrices $A$ and $B$ such that $A=A^T$, $B=B^T$ and $AB=BA$. The answer is given in terms of diagonalization: there is a unitary matrix $M$ such that $A$ and $B$ are transformed into $A'=M^TAM$ and $B'=M^TBM$, and both $A'$ and $B'$ are diagonal.



Here I'm asking if any analogous property holds in the following case.



$A$ and $B$ are symmetric, i.e. $A=A^T$ and $B=B^T$. The following property holds:



$$AOmega B=BOmega A$$ (1)



where $Omega$ is the matrix defining the symplectic bilinear form (skew-symmetric, nonsingular, and hollow), e.g.:



$$Omega = beginbmatrix0 & 0 & 1 & 0\0 & 0 & 0 & 1\
-1 & 0 & 0 & 0 \ 0 & -1 & 0 & 0 endbmatrix$$



The allowed transformations are the symplectic matrices $M$, i.e. matrices for which the following holds:



$$M^TOmega M=Omega$$



The transformed matrices are $A'=M^TAM$ and $B'=M^TBM$.



My question is if there is a form into which $A'$ and $B'$ can be put, by means of a suitable $M$, provided that Eq.1 holds.










share|cite|improve this question







New contributor




Doriano Brogioli is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 2




    $begingroup$
    No idea, but a comment, a bit unrelated: for many computations with such things it's better to write $Omega$ as $diag(M,ldots,M)$ where $M=(^0_-1 ^1_0)$. Of course, in practice, it doesn't make that much of a difference.
    $endgroup$
    – Teo Banica
    10 hours ago






  • 1




    $begingroup$
    For $n=2$, there's the formula $Omega AOmega = (det A) A^-1T$ ($=(det A) A^-1$ here), so if $det A=det B$, then (1) says that $A^-1B=B^-1A$, and in general, there's an extra constant. Of course, all this is a far cry from the full question, but it might give a hint.
    $endgroup$
    – Christian Remling
    10 hours ago










  • $begingroup$
    If $A$ and $B$ are complex matrices for which $Omega A$ and $Omega B$ are (anti)symmetric and commute (the latter is equivalent to condition $(1)$), then there's a symplectic $S$ such that $S^-1Omega AS=D$ and $S^-1Omega BS=E$ are diagonal by Lemma 17 in the paper Carlo posted. Hence $S^top AS=-Omega D$ and $S^top BS=-Omega E$.
    $endgroup$
    – MTyson
    4 hours ago















7












$begingroup$


It is well known what happens if two real symmetric matrices commute, i.e. if we have two matrices $A$ and $B$ such that $A=A^T$, $B=B^T$ and $AB=BA$. The answer is given in terms of diagonalization: there is a unitary matrix $M$ such that $A$ and $B$ are transformed into $A'=M^TAM$ and $B'=M^TBM$, and both $A'$ and $B'$ are diagonal.



Here I'm asking if any analogous property holds in the following case.



$A$ and $B$ are symmetric, i.e. $A=A^T$ and $B=B^T$. The following property holds:



$$AOmega B=BOmega A$$ (1)



where $Omega$ is the matrix defining the symplectic bilinear form (skew-symmetric, nonsingular, and hollow), e.g.:



$$Omega = beginbmatrix0 & 0 & 1 & 0\0 & 0 & 0 & 1\
-1 & 0 & 0 & 0 \ 0 & -1 & 0 & 0 endbmatrix$$



The allowed transformations are the symplectic matrices $M$, i.e. matrices for which the following holds:



$$M^TOmega M=Omega$$



The transformed matrices are $A'=M^TAM$ and $B'=M^TBM$.



My question is if there is a form into which $A'$ and $B'$ can be put, by means of a suitable $M$, provided that Eq.1 holds.










share|cite|improve this question







New contributor




Doriano Brogioli is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 2




    $begingroup$
    No idea, but a comment, a bit unrelated: for many computations with such things it's better to write $Omega$ as $diag(M,ldots,M)$ where $M=(^0_-1 ^1_0)$. Of course, in practice, it doesn't make that much of a difference.
    $endgroup$
    – Teo Banica
    10 hours ago






  • 1




    $begingroup$
    For $n=2$, there's the formula $Omega AOmega = (det A) A^-1T$ ($=(det A) A^-1$ here), so if $det A=det B$, then (1) says that $A^-1B=B^-1A$, and in general, there's an extra constant. Of course, all this is a far cry from the full question, but it might give a hint.
    $endgroup$
    – Christian Remling
    10 hours ago










  • $begingroup$
    If $A$ and $B$ are complex matrices for which $Omega A$ and $Omega B$ are (anti)symmetric and commute (the latter is equivalent to condition $(1)$), then there's a symplectic $S$ such that $S^-1Omega AS=D$ and $S^-1Omega BS=E$ are diagonal by Lemma 17 in the paper Carlo posted. Hence $S^top AS=-Omega D$ and $S^top BS=-Omega E$.
    $endgroup$
    – MTyson
    4 hours ago













7












7








7





$begingroup$


It is well known what happens if two real symmetric matrices commute, i.e. if we have two matrices $A$ and $B$ such that $A=A^T$, $B=B^T$ and $AB=BA$. The answer is given in terms of diagonalization: there is a unitary matrix $M$ such that $A$ and $B$ are transformed into $A'=M^TAM$ and $B'=M^TBM$, and both $A'$ and $B'$ are diagonal.



Here I'm asking if any analogous property holds in the following case.



$A$ and $B$ are symmetric, i.e. $A=A^T$ and $B=B^T$. The following property holds:



$$AOmega B=BOmega A$$ (1)



where $Omega$ is the matrix defining the symplectic bilinear form (skew-symmetric, nonsingular, and hollow), e.g.:



$$Omega = beginbmatrix0 & 0 & 1 & 0\0 & 0 & 0 & 1\
-1 & 0 & 0 & 0 \ 0 & -1 & 0 & 0 endbmatrix$$



The allowed transformations are the symplectic matrices $M$, i.e. matrices for which the following holds:



$$M^TOmega M=Omega$$



The transformed matrices are $A'=M^TAM$ and $B'=M^TBM$.



My question is if there is a form into which $A'$ and $B'$ can be put, by means of a suitable $M$, provided that Eq.1 holds.










share|cite|improve this question







New contributor




Doriano Brogioli is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




It is well known what happens if two real symmetric matrices commute, i.e. if we have two matrices $A$ and $B$ such that $A=A^T$, $B=B^T$ and $AB=BA$. The answer is given in terms of diagonalization: there is a unitary matrix $M$ such that $A$ and $B$ are transformed into $A'=M^TAM$ and $B'=M^TBM$, and both $A'$ and $B'$ are diagonal.



Here I'm asking if any analogous property holds in the following case.



$A$ and $B$ are symmetric, i.e. $A=A^T$ and $B=B^T$. The following property holds:



$$AOmega B=BOmega A$$ (1)



where $Omega$ is the matrix defining the symplectic bilinear form (skew-symmetric, nonsingular, and hollow), e.g.:



$$Omega = beginbmatrix0 & 0 & 1 & 0\0 & 0 & 0 & 1\
-1 & 0 & 0 & 0 \ 0 & -1 & 0 & 0 endbmatrix$$



The allowed transformations are the symplectic matrices $M$, i.e. matrices for which the following holds:



$$M^TOmega M=Omega$$



The transformed matrices are $A'=M^TAM$ and $B'=M^TBM$.



My question is if there is a form into which $A'$ and $B'$ can be put, by means of a suitable $M$, provided that Eq.1 holds.







linear-algebra sg.symplectic-geometry






share|cite|improve this question







New contributor




Doriano Brogioli is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question







New contributor




Doriano Brogioli is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question






New contributor




Doriano Brogioli is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 11 hours ago









Doriano BrogioliDoriano Brogioli

361




361




New contributor




Doriano Brogioli is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Doriano Brogioli is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Doriano Brogioli is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







  • 2




    $begingroup$
    No idea, but a comment, a bit unrelated: for many computations with such things it's better to write $Omega$ as $diag(M,ldots,M)$ where $M=(^0_-1 ^1_0)$. Of course, in practice, it doesn't make that much of a difference.
    $endgroup$
    – Teo Banica
    10 hours ago






  • 1




    $begingroup$
    For $n=2$, there's the formula $Omega AOmega = (det A) A^-1T$ ($=(det A) A^-1$ here), so if $det A=det B$, then (1) says that $A^-1B=B^-1A$, and in general, there's an extra constant. Of course, all this is a far cry from the full question, but it might give a hint.
    $endgroup$
    – Christian Remling
    10 hours ago










  • $begingroup$
    If $A$ and $B$ are complex matrices for which $Omega A$ and $Omega B$ are (anti)symmetric and commute (the latter is equivalent to condition $(1)$), then there's a symplectic $S$ such that $S^-1Omega AS=D$ and $S^-1Omega BS=E$ are diagonal by Lemma 17 in the paper Carlo posted. Hence $S^top AS=-Omega D$ and $S^top BS=-Omega E$.
    $endgroup$
    – MTyson
    4 hours ago












  • 2




    $begingroup$
    No idea, but a comment, a bit unrelated: for many computations with such things it's better to write $Omega$ as $diag(M,ldots,M)$ where $M=(^0_-1 ^1_0)$. Of course, in practice, it doesn't make that much of a difference.
    $endgroup$
    – Teo Banica
    10 hours ago






  • 1




    $begingroup$
    For $n=2$, there's the formula $Omega AOmega = (det A) A^-1T$ ($=(det A) A^-1$ here), so if $det A=det B$, then (1) says that $A^-1B=B^-1A$, and in general, there's an extra constant. Of course, all this is a far cry from the full question, but it might give a hint.
    $endgroup$
    – Christian Remling
    10 hours ago










  • $begingroup$
    If $A$ and $B$ are complex matrices for which $Omega A$ and $Omega B$ are (anti)symmetric and commute (the latter is equivalent to condition $(1)$), then there's a symplectic $S$ such that $S^-1Omega AS=D$ and $S^-1Omega BS=E$ are diagonal by Lemma 17 in the paper Carlo posted. Hence $S^top AS=-Omega D$ and $S^top BS=-Omega E$.
    $endgroup$
    – MTyson
    4 hours ago







2




2




$begingroup$
No idea, but a comment, a bit unrelated: for many computations with such things it's better to write $Omega$ as $diag(M,ldots,M)$ where $M=(^0_-1 ^1_0)$. Of course, in practice, it doesn't make that much of a difference.
$endgroup$
– Teo Banica
10 hours ago




$begingroup$
No idea, but a comment, a bit unrelated: for many computations with such things it's better to write $Omega$ as $diag(M,ldots,M)$ where $M=(^0_-1 ^1_0)$. Of course, in practice, it doesn't make that much of a difference.
$endgroup$
– Teo Banica
10 hours ago




1




1




$begingroup$
For $n=2$, there's the formula $Omega AOmega = (det A) A^-1T$ ($=(det A) A^-1$ here), so if $det A=det B$, then (1) says that $A^-1B=B^-1A$, and in general, there's an extra constant. Of course, all this is a far cry from the full question, but it might give a hint.
$endgroup$
– Christian Remling
10 hours ago




$begingroup$
For $n=2$, there's the formula $Omega AOmega = (det A) A^-1T$ ($=(det A) A^-1$ here), so if $det A=det B$, then (1) says that $A^-1B=B^-1A$, and in general, there's an extra constant. Of course, all this is a far cry from the full question, but it might give a hint.
$endgroup$
– Christian Remling
10 hours ago












$begingroup$
If $A$ and $B$ are complex matrices for which $Omega A$ and $Omega B$ are (anti)symmetric and commute (the latter is equivalent to condition $(1)$), then there's a symplectic $S$ such that $S^-1Omega AS=D$ and $S^-1Omega BS=E$ are diagonal by Lemma 17 in the paper Carlo posted. Hence $S^top AS=-Omega D$ and $S^top BS=-Omega E$.
$endgroup$
– MTyson
4 hours ago




$begingroup$
If $A$ and $B$ are complex matrices for which $Omega A$ and $Omega B$ are (anti)symmetric and commute (the latter is equivalent to condition $(1)$), then there's a symplectic $S$ such that $S^-1Omega AS=D$ and $S^-1Omega BS=E$ are diagonal by Lemma 17 in the paper Carlo posted. Hence $S^top AS=-Omega D$ and $S^top BS=-Omega E$.
$endgroup$
– MTyson
4 hours ago










1 Answer
1






active

oldest

votes


















2












$begingroup$

The symplectic counterpart of the fact that a family of commuting diagonalizable matrices is simultaneously diagonalizable is discussed in section 3.1 of On the diagonalizability of a matrix by a symplectic equivalence, similarity or congruence transformation






share|cite|improve this answer









$endgroup$












  • $begingroup$
    I don't think this paper ever considers condition (1) of the OP; "commuting" there just means commuting.
    $endgroup$
    – Christian Remling
    7 hours ago











Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "504"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);






Doriano Brogioli is a new contributor. Be nice, and check out our Code of Conduct.









draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f327421%2fsymplectic-equivalent-of-commuting-matrices%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

The symplectic counterpart of the fact that a family of commuting diagonalizable matrices is simultaneously diagonalizable is discussed in section 3.1 of On the diagonalizability of a matrix by a symplectic equivalence, similarity or congruence transformation






share|cite|improve this answer









$endgroup$












  • $begingroup$
    I don't think this paper ever considers condition (1) of the OP; "commuting" there just means commuting.
    $endgroup$
    – Christian Remling
    7 hours ago















2












$begingroup$

The symplectic counterpart of the fact that a family of commuting diagonalizable matrices is simultaneously diagonalizable is discussed in section 3.1 of On the diagonalizability of a matrix by a symplectic equivalence, similarity or congruence transformation






share|cite|improve this answer









$endgroup$












  • $begingroup$
    I don't think this paper ever considers condition (1) of the OP; "commuting" there just means commuting.
    $endgroup$
    – Christian Remling
    7 hours ago













2












2








2





$begingroup$

The symplectic counterpart of the fact that a family of commuting diagonalizable matrices is simultaneously diagonalizable is discussed in section 3.1 of On the diagonalizability of a matrix by a symplectic equivalence, similarity or congruence transformation






share|cite|improve this answer









$endgroup$



The symplectic counterpart of the fact that a family of commuting diagonalizable matrices is simultaneously diagonalizable is discussed in section 3.1 of On the diagonalizability of a matrix by a symplectic equivalence, similarity or congruence transformation







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered 8 hours ago









Carlo BeenakkerCarlo Beenakker

79.7k9190292




79.7k9190292











  • $begingroup$
    I don't think this paper ever considers condition (1) of the OP; "commuting" there just means commuting.
    $endgroup$
    – Christian Remling
    7 hours ago
















  • $begingroup$
    I don't think this paper ever considers condition (1) of the OP; "commuting" there just means commuting.
    $endgroup$
    – Christian Remling
    7 hours ago















$begingroup$
I don't think this paper ever considers condition (1) of the OP; "commuting" there just means commuting.
$endgroup$
– Christian Remling
7 hours ago




$begingroup$
I don't think this paper ever considers condition (1) of the OP; "commuting" there just means commuting.
$endgroup$
– Christian Remling
7 hours ago










Doriano Brogioli is a new contributor. Be nice, and check out our Code of Conduct.









draft saved

draft discarded


















Doriano Brogioli is a new contributor. Be nice, and check out our Code of Conduct.












Doriano Brogioli is a new contributor. Be nice, and check out our Code of Conduct.











Doriano Brogioli is a new contributor. Be nice, and check out our Code of Conduct.














Thanks for contributing an answer to MathOverflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f327421%2fsymplectic-equivalent-of-commuting-matrices%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Францішак Багушэвіч Змест Сям'я | Біяграфія | Творчасць | Мова Багушэвіча | Ацэнкі дзейнасці | Цікавыя факты | Спадчына | Выбраная бібліяграфія | Ушанаванне памяці | У філатэліі | Зноскі | Літаратура | Спасылкі | НавігацыяЛяхоўскі У. Рупіўся дзеля Бога і людзей: Жыццёвы шлях Лявона Вітан-Дубейкаўскага // Вольскі і Памідораў з песняй пра немца Адвакат, паэт, народны заступнік Ашмянскі веснікВ Минске появится площадь Богушевича и улица Сырокомли, Белорусская деловая газета, 19 июля 2001 г.Айцец беларускай нацыянальнай ідэі паўстаў у бронзе Сяргей Аляксандравіч Адашкевіч (1918, Мінск). 80-я гады. Бюст «Францішак Багушэвіч».Яўген Мікалаевіч Ціхановіч. «Партрэт Францішка Багушэвіча»Мікола Мікалаевіч Купава. «Партрэт зачынальніка новай беларускай літаратуры Францішка Багушэвіча»Уладзімір Іванавіч Мелехаў. На помніку «Змагарам за родную мову» Барэльеф «Францішак Багушэвіч»Памяць пра Багушэвіча на Віленшчыне Страчаная сталіца. Беларускія шыльды на вуліцах Вільні«Krynica». Ideologia i przywódcy białoruskiego katolicyzmuФранцішак БагушэвічТворы на knihi.comТворы Францішка Багушэвіча на bellib.byСодаль Уладзімір. Францішак Багушэвіч на Лідчыне;Луцкевіч Антон. Жыцьцё і творчасьць Фр. Багушэвіча ў успамінах ягоных сучасьнікаў // Запісы Беларускага Навуковага таварыства. Вільня, 1938. Сшытак 1. С. 16-34.Большая российская1188761710000 0000 5537 633Xn9209310021619551927869394п

Partai Komunis Tiongkok Daftar isi Kepemimpinan | Pranala luar | Referensi | Menu navigasidiperiksa1 perubahan tertundacpc.people.com.cnSitus resmiSurat kabar resmi"Why the Communist Party is alive, well and flourishing in China"0307-1235"Full text of Constitution of Communist Party of China"smengembangkannyas

ValueError: Expected n_neighbors <= n_samples, but n_samples = 1, n_neighbors = 6 (SMOTE) The 2019 Stack Overflow Developer Survey Results Are InCan SMOTE be applied over sequence of words (sentences)?ValueError when doing validation with random forestsSMOTE and multi class oversamplingLogic behind SMOTE-NC?ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)SmoteBoost: Should SMOTE be ran individually for each iteration/tree in the boosting?solving multi-class imbalance classification using smote and OSSUsing SMOTE for Synthetic Data generation to improve performance on unbalanced dataproblem of entry format for a simple model in KerasSVM SMOTE fit_resample() function runs forever with no result