How is this relation reflexive?Need help counting equivalence classes.Is this relation reflexive, symmetric and transitive?Proving an equivalence relation(specifically transitivity)Equivalence relation example. How is this even reflexive?Where is the transistivity in this equivalence relationIdentity relation vs Reflexive RelationHow is this an equivalence relation?truefalse claims in relations and equivalence relationsHow is this case a reflexive relation?Is this relation reflexive if it “chains” to itself?

How do you conduct xenoanthropology after first contact?

How can I fix this gap between bookcases I made?

XeLaTeX and pdfLaTeX ignore hyphenation

I probably found a bug with the sudo apt install function

Why is an old chain unsafe?

Why has Russell's definition of numbers using equivalence classes been finally abandoned? ( If it has actually been abandoned).

Patience, young "Padovan"

Banach space and Hilbert space topology

Can I make popcorn with any corn?

Example of a relative pronoun

Prevent a directory in /tmp from being deleted

Circuitry of TV splitters

Compute hash value according to multiplication method

Why is "Reports" in sentence down without "The"

TGV timetables / schedules?

Should I join office cleaning event for free?

Why is this code 6.5x slower with optimizations enabled?

How can bays and straits be determined in a procedurally generated map?

New order #4: World

What is the command to reset a PC without deleting any files

Can I interfere when another PC is about to be attacked?

What makes Graph invariants so useful/important?

What defenses are there against being summoned by the Gate spell?

Why Is Death Allowed In the Matrix?



How is this relation reflexive?


Need help counting equivalence classes.Is this relation reflexive, symmetric and transitive?Proving an equivalence relation(specifically transitivity)Equivalence relation example. How is this even reflexive?Where is the transistivity in this equivalence relationIdentity relation vs Reflexive RelationHow is this an equivalence relation?truefalse claims in relations and equivalence relationsHow is this case a reflexive relation?Is this relation reflexive if it “chains” to itself?













8












$begingroup$


Let $mathcalX$ be the set of all nonempty subsets of the set $1,2,3,...,10$. Define the relation $mathcalR$ on $mathcalX$ by: $forall A, B in mathcalX, A mathcalR B$ iff the smallest element of $A$ is equal to the smallest element of $B$. For example, $1,2,3 mathcalR 1,3,5,8$ because the smallest element of $1,2,3$ is $1$ which is also the smallest element of $1,3,5,8$.



Prove that $mathcalR$ is an equivalence relation on $mathcalX$.



From my understanding, the definition of reflexive is:



$$mathcalR text is reflexive iff forall x in mathcalX, x mathcalR x$$



However, for this problem, you can have the relation with these two sets:



$1$ and $1,2$



Then wouldn't this not be reflexive since $2$ is not in the first set, but is in the second set?



I'm having trouble seeing how this is reflexive. Getting confused by the definition here.










share|cite|improve this question









$endgroup$







  • 4




    $begingroup$
    Reflexive means that every element is related to itself. Thus, for reflexivity you have to consider one set only. Ok, we have that $ 1 mathcal R 1,2 $ but we have also $ 1 mathcal R 1 $ and $ 1,2 mathcal R 1,2 $
    $endgroup$
    – Mauro ALLEGRANZA
    7 hours ago






  • 5




    $begingroup$
    Note: “reflexive” does not mean that if $x$ is related to $y$, then $x=y$. It means that if $x=y$, then $x$ is related to $y$.
    $endgroup$
    – Arturo Magidin
    7 hours ago










  • $begingroup$
    So it must be reflexive because both $A$ and $B$ belong to the same set $mathcalX$?
    $endgroup$
    – qbuffer
    7 hours ago











  • $begingroup$
    @qbuffer Have a look at the updated version of my answer.
    $endgroup$
    – Haris Gusic
    6 hours ago















8












$begingroup$


Let $mathcalX$ be the set of all nonempty subsets of the set $1,2,3,...,10$. Define the relation $mathcalR$ on $mathcalX$ by: $forall A, B in mathcalX, A mathcalR B$ iff the smallest element of $A$ is equal to the smallest element of $B$. For example, $1,2,3 mathcalR 1,3,5,8$ because the smallest element of $1,2,3$ is $1$ which is also the smallest element of $1,3,5,8$.



Prove that $mathcalR$ is an equivalence relation on $mathcalX$.



From my understanding, the definition of reflexive is:



$$mathcalR text is reflexive iff forall x in mathcalX, x mathcalR x$$



However, for this problem, you can have the relation with these two sets:



$1$ and $1,2$



Then wouldn't this not be reflexive since $2$ is not in the first set, but is in the second set?



I'm having trouble seeing how this is reflexive. Getting confused by the definition here.










share|cite|improve this question









$endgroup$







  • 4




    $begingroup$
    Reflexive means that every element is related to itself. Thus, for reflexivity you have to consider one set only. Ok, we have that $ 1 mathcal R 1,2 $ but we have also $ 1 mathcal R 1 $ and $ 1,2 mathcal R 1,2 $
    $endgroup$
    – Mauro ALLEGRANZA
    7 hours ago






  • 5




    $begingroup$
    Note: “reflexive” does not mean that if $x$ is related to $y$, then $x=y$. It means that if $x=y$, then $x$ is related to $y$.
    $endgroup$
    – Arturo Magidin
    7 hours ago










  • $begingroup$
    So it must be reflexive because both $A$ and $B$ belong to the same set $mathcalX$?
    $endgroup$
    – qbuffer
    7 hours ago











  • $begingroup$
    @qbuffer Have a look at the updated version of my answer.
    $endgroup$
    – Haris Gusic
    6 hours ago













8












8








8





$begingroup$


Let $mathcalX$ be the set of all nonempty subsets of the set $1,2,3,...,10$. Define the relation $mathcalR$ on $mathcalX$ by: $forall A, B in mathcalX, A mathcalR B$ iff the smallest element of $A$ is equal to the smallest element of $B$. For example, $1,2,3 mathcalR 1,3,5,8$ because the smallest element of $1,2,3$ is $1$ which is also the smallest element of $1,3,5,8$.



Prove that $mathcalR$ is an equivalence relation on $mathcalX$.



From my understanding, the definition of reflexive is:



$$mathcalR text is reflexive iff forall x in mathcalX, x mathcalR x$$



However, for this problem, you can have the relation with these two sets:



$1$ and $1,2$



Then wouldn't this not be reflexive since $2$ is not in the first set, but is in the second set?



I'm having trouble seeing how this is reflexive. Getting confused by the definition here.










share|cite|improve this question









$endgroup$




Let $mathcalX$ be the set of all nonempty subsets of the set $1,2,3,...,10$. Define the relation $mathcalR$ on $mathcalX$ by: $forall A, B in mathcalX, A mathcalR B$ iff the smallest element of $A$ is equal to the smallest element of $B$. For example, $1,2,3 mathcalR 1,3,5,8$ because the smallest element of $1,2,3$ is $1$ which is also the smallest element of $1,3,5,8$.



Prove that $mathcalR$ is an equivalence relation on $mathcalX$.



From my understanding, the definition of reflexive is:



$$mathcalR text is reflexive iff forall x in mathcalX, x mathcalR x$$



However, for this problem, you can have the relation with these two sets:



$1$ and $1,2$



Then wouldn't this not be reflexive since $2$ is not in the first set, but is in the second set?



I'm having trouble seeing how this is reflexive. Getting confused by the definition here.







discrete-mathematics relations equivalence-relations






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 7 hours ago









qbufferqbuffer

625




625







  • 4




    $begingroup$
    Reflexive means that every element is related to itself. Thus, for reflexivity you have to consider one set only. Ok, we have that $ 1 mathcal R 1,2 $ but we have also $ 1 mathcal R 1 $ and $ 1,2 mathcal R 1,2 $
    $endgroup$
    – Mauro ALLEGRANZA
    7 hours ago






  • 5




    $begingroup$
    Note: “reflexive” does not mean that if $x$ is related to $y$, then $x=y$. It means that if $x=y$, then $x$ is related to $y$.
    $endgroup$
    – Arturo Magidin
    7 hours ago










  • $begingroup$
    So it must be reflexive because both $A$ and $B$ belong to the same set $mathcalX$?
    $endgroup$
    – qbuffer
    7 hours ago











  • $begingroup$
    @qbuffer Have a look at the updated version of my answer.
    $endgroup$
    – Haris Gusic
    6 hours ago












  • 4




    $begingroup$
    Reflexive means that every element is related to itself. Thus, for reflexivity you have to consider one set only. Ok, we have that $ 1 mathcal R 1,2 $ but we have also $ 1 mathcal R 1 $ and $ 1,2 mathcal R 1,2 $
    $endgroup$
    – Mauro ALLEGRANZA
    7 hours ago






  • 5




    $begingroup$
    Note: “reflexive” does not mean that if $x$ is related to $y$, then $x=y$. It means that if $x=y$, then $x$ is related to $y$.
    $endgroup$
    – Arturo Magidin
    7 hours ago










  • $begingroup$
    So it must be reflexive because both $A$ and $B$ belong to the same set $mathcalX$?
    $endgroup$
    – qbuffer
    7 hours ago











  • $begingroup$
    @qbuffer Have a look at the updated version of my answer.
    $endgroup$
    – Haris Gusic
    6 hours ago







4




4




$begingroup$
Reflexive means that every element is related to itself. Thus, for reflexivity you have to consider one set only. Ok, we have that $ 1 mathcal R 1,2 $ but we have also $ 1 mathcal R 1 $ and $ 1,2 mathcal R 1,2 $
$endgroup$
– Mauro ALLEGRANZA
7 hours ago




$begingroup$
Reflexive means that every element is related to itself. Thus, for reflexivity you have to consider one set only. Ok, we have that $ 1 mathcal R 1,2 $ but we have also $ 1 mathcal R 1 $ and $ 1,2 mathcal R 1,2 $
$endgroup$
– Mauro ALLEGRANZA
7 hours ago




5




5




$begingroup$
Note: “reflexive” does not mean that if $x$ is related to $y$, then $x=y$. It means that if $x=y$, then $x$ is related to $y$.
$endgroup$
– Arturo Magidin
7 hours ago




$begingroup$
Note: “reflexive” does not mean that if $x$ is related to $y$, then $x=y$. It means that if $x=y$, then $x$ is related to $y$.
$endgroup$
– Arturo Magidin
7 hours ago












$begingroup$
So it must be reflexive because both $A$ and $B$ belong to the same set $mathcalX$?
$endgroup$
– qbuffer
7 hours ago





$begingroup$
So it must be reflexive because both $A$ and $B$ belong to the same set $mathcalX$?
$endgroup$
– qbuffer
7 hours ago













$begingroup$
@qbuffer Have a look at the updated version of my answer.
$endgroup$
– Haris Gusic
6 hours ago




$begingroup$
@qbuffer Have a look at the updated version of my answer.
$endgroup$
– Haris Gusic
6 hours ago










2 Answers
2






active

oldest

votes


















8












$begingroup$

Why are you testing reflexivity by looking at two different elements of $mathcalX$? The definition of reflexivity says that a relation is reflexive iff each element of $mathcal X$ is in relation with itself.



To check whether $mathcal R$ is reflexive, just take one element of $mathcal X$, let's call it $x$. Then check whether $x$ is in relation with $x$. Because $x=x$, the smallest element of $x$ is equal to the smallest element of $x$. Thus, by definition of $mathcal R$, $x$ is in relation with $x$. Now, prove that this is true for all $x in mathcal X$. Of course, this is true because $min(x) = min(x)$ is always true, which is intuitive. In other words, $x mathcalR x$ for all $x in mathcal X$, which is exactly what you needed to prove that $mathcal R$ is reflexive.



You must understand that the definition of reflexivity says nothing about whether different elements (say $x,y$, $xneq y$) can be in the relation $mathcal R$. The fact that $1mathcal R 1,2$ does not contradict the fact that $1,2mathcal R 1,2$ as well.






share|cite|improve this answer











$endgroup$




















    4












    $begingroup$

    A binary relation $R$ over a set $mathcalX$ is reflexive if every element of $mathcalX$ is related to itself. The more formal definition has already been given by you, i.e. $$mathcalR text is reflexive iff forall x in mathcalX, x mathcalR x$$



    Note here that you've picked two different elements of the set to make your comparison when you should be comparing an element with itself. Also make sure you understand that an element may be related to other elements as well, reflexivity does not forbid that. It just says that every element must be related to itself.






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178532%2fhow-is-this-relation-reflexive%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      8












      $begingroup$

      Why are you testing reflexivity by looking at two different elements of $mathcalX$? The definition of reflexivity says that a relation is reflexive iff each element of $mathcal X$ is in relation with itself.



      To check whether $mathcal R$ is reflexive, just take one element of $mathcal X$, let's call it $x$. Then check whether $x$ is in relation with $x$. Because $x=x$, the smallest element of $x$ is equal to the smallest element of $x$. Thus, by definition of $mathcal R$, $x$ is in relation with $x$. Now, prove that this is true for all $x in mathcal X$. Of course, this is true because $min(x) = min(x)$ is always true, which is intuitive. In other words, $x mathcalR x$ for all $x in mathcal X$, which is exactly what you needed to prove that $mathcal R$ is reflexive.



      You must understand that the definition of reflexivity says nothing about whether different elements (say $x,y$, $xneq y$) can be in the relation $mathcal R$. The fact that $1mathcal R 1,2$ does not contradict the fact that $1,2mathcal R 1,2$ as well.






      share|cite|improve this answer











      $endgroup$

















        8












        $begingroup$

        Why are you testing reflexivity by looking at two different elements of $mathcalX$? The definition of reflexivity says that a relation is reflexive iff each element of $mathcal X$ is in relation with itself.



        To check whether $mathcal R$ is reflexive, just take one element of $mathcal X$, let's call it $x$. Then check whether $x$ is in relation with $x$. Because $x=x$, the smallest element of $x$ is equal to the smallest element of $x$. Thus, by definition of $mathcal R$, $x$ is in relation with $x$. Now, prove that this is true for all $x in mathcal X$. Of course, this is true because $min(x) = min(x)$ is always true, which is intuitive. In other words, $x mathcalR x$ for all $x in mathcal X$, which is exactly what you needed to prove that $mathcal R$ is reflexive.



        You must understand that the definition of reflexivity says nothing about whether different elements (say $x,y$, $xneq y$) can be in the relation $mathcal R$. The fact that $1mathcal R 1,2$ does not contradict the fact that $1,2mathcal R 1,2$ as well.






        share|cite|improve this answer











        $endgroup$















          8












          8








          8





          $begingroup$

          Why are you testing reflexivity by looking at two different elements of $mathcalX$? The definition of reflexivity says that a relation is reflexive iff each element of $mathcal X$ is in relation with itself.



          To check whether $mathcal R$ is reflexive, just take one element of $mathcal X$, let's call it $x$. Then check whether $x$ is in relation with $x$. Because $x=x$, the smallest element of $x$ is equal to the smallest element of $x$. Thus, by definition of $mathcal R$, $x$ is in relation with $x$. Now, prove that this is true for all $x in mathcal X$. Of course, this is true because $min(x) = min(x)$ is always true, which is intuitive. In other words, $x mathcalR x$ for all $x in mathcal X$, which is exactly what you needed to prove that $mathcal R$ is reflexive.



          You must understand that the definition of reflexivity says nothing about whether different elements (say $x,y$, $xneq y$) can be in the relation $mathcal R$. The fact that $1mathcal R 1,2$ does not contradict the fact that $1,2mathcal R 1,2$ as well.






          share|cite|improve this answer











          $endgroup$



          Why are you testing reflexivity by looking at two different elements of $mathcalX$? The definition of reflexivity says that a relation is reflexive iff each element of $mathcal X$ is in relation with itself.



          To check whether $mathcal R$ is reflexive, just take one element of $mathcal X$, let's call it $x$. Then check whether $x$ is in relation with $x$. Because $x=x$, the smallest element of $x$ is equal to the smallest element of $x$. Thus, by definition of $mathcal R$, $x$ is in relation with $x$. Now, prove that this is true for all $x in mathcal X$. Of course, this is true because $min(x) = min(x)$ is always true, which is intuitive. In other words, $x mathcalR x$ for all $x in mathcal X$, which is exactly what you needed to prove that $mathcal R$ is reflexive.



          You must understand that the definition of reflexivity says nothing about whether different elements (say $x,y$, $xneq y$) can be in the relation $mathcal R$. The fact that $1mathcal R 1,2$ does not contradict the fact that $1,2mathcal R 1,2$ as well.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 6 hours ago

























          answered 7 hours ago









          Haris GusicHaris Gusic

          3,331525




          3,331525





















              4












              $begingroup$

              A binary relation $R$ over a set $mathcalX$ is reflexive if every element of $mathcalX$ is related to itself. The more formal definition has already been given by you, i.e. $$mathcalR text is reflexive iff forall x in mathcalX, x mathcalR x$$



              Note here that you've picked two different elements of the set to make your comparison when you should be comparing an element with itself. Also make sure you understand that an element may be related to other elements as well, reflexivity does not forbid that. It just says that every element must be related to itself.






              share|cite|improve this answer









              $endgroup$

















                4












                $begingroup$

                A binary relation $R$ over a set $mathcalX$ is reflexive if every element of $mathcalX$ is related to itself. The more formal definition has already been given by you, i.e. $$mathcalR text is reflexive iff forall x in mathcalX, x mathcalR x$$



                Note here that you've picked two different elements of the set to make your comparison when you should be comparing an element with itself. Also make sure you understand that an element may be related to other elements as well, reflexivity does not forbid that. It just says that every element must be related to itself.






                share|cite|improve this answer









                $endgroup$















                  4












                  4








                  4





                  $begingroup$

                  A binary relation $R$ over a set $mathcalX$ is reflexive if every element of $mathcalX$ is related to itself. The more formal definition has already been given by you, i.e. $$mathcalR text is reflexive iff forall x in mathcalX, x mathcalR x$$



                  Note here that you've picked two different elements of the set to make your comparison when you should be comparing an element with itself. Also make sure you understand that an element may be related to other elements as well, reflexivity does not forbid that. It just says that every element must be related to itself.






                  share|cite|improve this answer









                  $endgroup$



                  A binary relation $R$ over a set $mathcalX$ is reflexive if every element of $mathcalX$ is related to itself. The more formal definition has already been given by you, i.e. $$mathcalR text is reflexive iff forall x in mathcalX, x mathcalR x$$



                  Note here that you've picked two different elements of the set to make your comparison when you should be comparing an element with itself. Also make sure you understand that an element may be related to other elements as well, reflexivity does not forbid that. It just says that every element must be related to itself.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 7 hours ago









                  s0ulr3aper07s0ulr3aper07

                  658112




                  658112



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178532%2fhow-is-this-relation-reflexive%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Францішак Багушэвіч Змест Сям'я | Біяграфія | Творчасць | Мова Багушэвіча | Ацэнкі дзейнасці | Цікавыя факты | Спадчына | Выбраная бібліяграфія | Ушанаванне памяці | У філатэліі | Зноскі | Літаратура | Спасылкі | НавігацыяЛяхоўскі У. Рупіўся дзеля Бога і людзей: Жыццёвы шлях Лявона Вітан-Дубейкаўскага // Вольскі і Памідораў з песняй пра немца Адвакат, паэт, народны заступнік Ашмянскі веснікВ Минске появится площадь Богушевича и улица Сырокомли, Белорусская деловая газета, 19 июля 2001 г.Айцец беларускай нацыянальнай ідэі паўстаў у бронзе Сяргей Аляксандравіч Адашкевіч (1918, Мінск). 80-я гады. Бюст «Францішак Багушэвіч».Яўген Мікалаевіч Ціхановіч. «Партрэт Францішка Багушэвіча»Мікола Мікалаевіч Купава. «Партрэт зачынальніка новай беларускай літаратуры Францішка Багушэвіча»Уладзімір Іванавіч Мелехаў. На помніку «Змагарам за родную мову» Барэльеф «Францішак Багушэвіч»Памяць пра Багушэвіча на Віленшчыне Страчаная сталіца. Беларускія шыльды на вуліцах Вільні«Krynica». Ideologia i przywódcy białoruskiego katolicyzmuФранцішак БагушэвічТворы на knihi.comТворы Францішка Багушэвіча на bellib.byСодаль Уладзімір. Францішак Багушэвіч на Лідчыне;Луцкевіч Антон. Жыцьцё і творчасьць Фр. Багушэвіча ў успамінах ягоных сучасьнікаў // Запісы Беларускага Навуковага таварыства. Вільня, 1938. Сшытак 1. С. 16-34.Большая российская1188761710000 0000 5537 633Xn9209310021619551927869394п

                      Partai Komunis Tiongkok Daftar isi Kepemimpinan | Pranala luar | Referensi | Menu navigasidiperiksa1 perubahan tertundacpc.people.com.cnSitus resmiSurat kabar resmi"Why the Communist Party is alive, well and flourishing in China"0307-1235"Full text of Constitution of Communist Party of China"smengembangkannyas

                      ValueError: Expected n_neighbors <= n_samples, but n_samples = 1, n_neighbors = 6 (SMOTE) The 2019 Stack Overflow Developer Survey Results Are InCan SMOTE be applied over sequence of words (sentences)?ValueError when doing validation with random forestsSMOTE and multi class oversamplingLogic behind SMOTE-NC?ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)SmoteBoost: Should SMOTE be ran individually for each iteration/tree in the boosting?solving multi-class imbalance classification using smote and OSSUsing SMOTE for Synthetic Data generation to improve performance on unbalanced dataproblem of entry format for a simple model in KerasSVM SMOTE fit_resample() function runs forever with no result