Banach space and Hilbert space topologyIs any Banach space a dual space?A Banach space that is not a Hilbert spaceIs every Hilbert space a Banach algebra?Which Hilbert space is isometrically isomorphism with $B(E)$ for some Banach space $E$.Is every Banach space densely embedded in a Hilbert space?Existence of a $mathbb C$-Banach space isometric to a Hilbert Space but whose norm is not induced by an inner product?An example of a Banach space isomorphic but not isometric to a dual Banach spaceThe Hahn-Banach Theorem for Hilbert SpaceBanach spaces and Hilbert spaceBasis of infinite dimensional Banach space and separable hilbert space
How is the claim "I am in New York only if I am in America" the same as "If I am in New York, then I am in America?
A newer friend of my brother's gave him a load of baseball cards that are supposedly extremely valuable. Is this a scam?
What is the offset in a seaplane's hull?
Can an x86 CPU running in real mode be considered to be basically an 8086 CPU?
least quadratic residue under GRH: an EXPLICIT bound
How did the USSR manage to innovate in an environment characterized by government censorship and high bureaucracy?
Are tax years 2016 & 2017 back taxes deductible for tax year 2018?
What is the meaning of "of trouble" in the following sentence?
Can town administrative "code" overule state laws like those forbidding trespassing?
Shell script can be run only with sh command
Are white and non-white police officers equally likely to kill black suspects?
Draw simple lines in Inkscape
How to determine if window is maximised or minimised from bash script
What is GPS' 19 year rollover and does it present a cybersecurity issue?
How to use Pandas to get the count of every combination inclusive
How can I fix this gap between bookcases I made?
How old can references or sources in a thesis be?
When blogging recipes, how can I support both readers who want the narrative/journey and ones who want the printer-friendly recipe?
declaring a variable twice in IIFE
How do you conduct xenoanthropology after first contact?
Example of a relative pronoun
Why was the small council so happy for Tyrion to become the Master of Coin?
Can a German sentence have two subjects?
How do we improve the relationship with a client software team that performs poorly and is becoming less collaborative?
Banach space and Hilbert space topology
Is any Banach space a dual space?A Banach space that is not a Hilbert spaceIs every Hilbert space a Banach algebra?Which Hilbert space is isometrically isomorphism with $B(E)$ for some Banach space $E$.Is every Banach space densely embedded in a Hilbert space?Existence of a $mathbb C$-Banach space isometric to a Hilbert Space but whose norm is not induced by an inner product?An example of a Banach space isomorphic but not isometric to a dual Banach spaceThe Hahn-Banach Theorem for Hilbert SpaceBanach spaces and Hilbert spaceBasis of infinite dimensional Banach space and separable hilbert space
$begingroup$
Let $B$ be a Banach space. It is not necessarily true that
there exists a Hilbert space $H$ linearly isometric to $B$.
However, is it true that there exists a Hilbert space $H$
homeomorphic to $B$?
general-topology functional-analysis hilbert-spaces banach-spaces
$endgroup$
add a comment |
$begingroup$
Let $B$ be a Banach space. It is not necessarily true that
there exists a Hilbert space $H$ linearly isometric to $B$.
However, is it true that there exists a Hilbert space $H$
homeomorphic to $B$?
general-topology functional-analysis hilbert-spaces banach-spaces
$endgroup$
1
$begingroup$
If $B$ is separable, then yes. All separable Banach Spaces are homeomorphic. So homeomorphic to $ell^2$
$endgroup$
– user124910
8 hours ago
1
$begingroup$
@user124910 We can extend this to non-separable as well. See my answer.
$endgroup$
– Henno Brandsma
8 hours ago
add a comment |
$begingroup$
Let $B$ be a Banach space. It is not necessarily true that
there exists a Hilbert space $H$ linearly isometric to $B$.
However, is it true that there exists a Hilbert space $H$
homeomorphic to $B$?
general-topology functional-analysis hilbert-spaces banach-spaces
$endgroup$
Let $B$ be a Banach space. It is not necessarily true that
there exists a Hilbert space $H$ linearly isometric to $B$.
However, is it true that there exists a Hilbert space $H$
homeomorphic to $B$?
general-topology functional-analysis hilbert-spaces banach-spaces
general-topology functional-analysis hilbert-spaces banach-spaces
edited 8 hours ago
Henno Brandsma
115k349125
115k349125
asked 8 hours ago
user156213user156213
65738
65738
1
$begingroup$
If $B$ is separable, then yes. All separable Banach Spaces are homeomorphic. So homeomorphic to $ell^2$
$endgroup$
– user124910
8 hours ago
1
$begingroup$
@user124910 We can extend this to non-separable as well. See my answer.
$endgroup$
– Henno Brandsma
8 hours ago
add a comment |
1
$begingroup$
If $B$ is separable, then yes. All separable Banach Spaces are homeomorphic. So homeomorphic to $ell^2$
$endgroup$
– user124910
8 hours ago
1
$begingroup$
@user124910 We can extend this to non-separable as well. See my answer.
$endgroup$
– Henno Brandsma
8 hours ago
1
1
$begingroup$
If $B$ is separable, then yes. All separable Banach Spaces are homeomorphic. So homeomorphic to $ell^2$
$endgroup$
– user124910
8 hours ago
$begingroup$
If $B$ is separable, then yes. All separable Banach Spaces are homeomorphic. So homeomorphic to $ell^2$
$endgroup$
– user124910
8 hours ago
1
1
$begingroup$
@user124910 We can extend this to non-separable as well. See my answer.
$endgroup$
– Henno Brandsma
8 hours ago
$begingroup$
@user124910 We can extend this to non-separable as well. See my answer.
$endgroup$
– Henno Brandsma
8 hours ago
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Yes, but this is quite a deep result. Two infinite-dimensional Banach spaces $X$ and $Y$ are homeomorphic iff $d(X)=d(Y)$, where the density $d(X)$ is the minimal size of a dense subset of $X$.
So any separable infinite-dimensional Banach space is homeomorphic to the Hilbert space $ell^2$ (and even to $mathbbR^omega$, because the result extends to locally convex completely metrisable TVS's as well). And for higher densities we have Hilbert spaces $ell_2(kappa)$ as models. Finite dimensional we only have the $mathbbR^n$ up to homeomorphism, which are already Hilbert spaces.
$endgroup$
$begingroup$
Do you know of a reference with the proof of this?
$endgroup$
– user156213
5 hours ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178808%2fbanach-space-and-hilbert-space-topology%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Yes, but this is quite a deep result. Two infinite-dimensional Banach spaces $X$ and $Y$ are homeomorphic iff $d(X)=d(Y)$, where the density $d(X)$ is the minimal size of a dense subset of $X$.
So any separable infinite-dimensional Banach space is homeomorphic to the Hilbert space $ell^2$ (and even to $mathbbR^omega$, because the result extends to locally convex completely metrisable TVS's as well). And for higher densities we have Hilbert spaces $ell_2(kappa)$ as models. Finite dimensional we only have the $mathbbR^n$ up to homeomorphism, which are already Hilbert spaces.
$endgroup$
$begingroup$
Do you know of a reference with the proof of this?
$endgroup$
– user156213
5 hours ago
add a comment |
$begingroup$
Yes, but this is quite a deep result. Two infinite-dimensional Banach spaces $X$ and $Y$ are homeomorphic iff $d(X)=d(Y)$, where the density $d(X)$ is the minimal size of a dense subset of $X$.
So any separable infinite-dimensional Banach space is homeomorphic to the Hilbert space $ell^2$ (and even to $mathbbR^omega$, because the result extends to locally convex completely metrisable TVS's as well). And for higher densities we have Hilbert spaces $ell_2(kappa)$ as models. Finite dimensional we only have the $mathbbR^n$ up to homeomorphism, which are already Hilbert spaces.
$endgroup$
$begingroup$
Do you know of a reference with the proof of this?
$endgroup$
– user156213
5 hours ago
add a comment |
$begingroup$
Yes, but this is quite a deep result. Two infinite-dimensional Banach spaces $X$ and $Y$ are homeomorphic iff $d(X)=d(Y)$, where the density $d(X)$ is the minimal size of a dense subset of $X$.
So any separable infinite-dimensional Banach space is homeomorphic to the Hilbert space $ell^2$ (and even to $mathbbR^omega$, because the result extends to locally convex completely metrisable TVS's as well). And for higher densities we have Hilbert spaces $ell_2(kappa)$ as models. Finite dimensional we only have the $mathbbR^n$ up to homeomorphism, which are already Hilbert spaces.
$endgroup$
Yes, but this is quite a deep result. Two infinite-dimensional Banach spaces $X$ and $Y$ are homeomorphic iff $d(X)=d(Y)$, where the density $d(X)$ is the minimal size of a dense subset of $X$.
So any separable infinite-dimensional Banach space is homeomorphic to the Hilbert space $ell^2$ (and even to $mathbbR^omega$, because the result extends to locally convex completely metrisable TVS's as well). And for higher densities we have Hilbert spaces $ell_2(kappa)$ as models. Finite dimensional we only have the $mathbbR^n$ up to homeomorphism, which are already Hilbert spaces.
answered 8 hours ago
Henno BrandsmaHenno Brandsma
115k349125
115k349125
$begingroup$
Do you know of a reference with the proof of this?
$endgroup$
– user156213
5 hours ago
add a comment |
$begingroup$
Do you know of a reference with the proof of this?
$endgroup$
– user156213
5 hours ago
$begingroup$
Do you know of a reference with the proof of this?
$endgroup$
– user156213
5 hours ago
$begingroup$
Do you know of a reference with the proof of this?
$endgroup$
– user156213
5 hours ago
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178808%2fbanach-space-and-hilbert-space-topology%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
If $B$ is separable, then yes. All separable Banach Spaces are homeomorphic. So homeomorphic to $ell^2$
$endgroup$
– user124910
8 hours ago
1
$begingroup$
@user124910 We can extend this to non-separable as well. See my answer.
$endgroup$
– Henno Brandsma
8 hours ago