Representing power series as a function - what to do with the constant after integration?What does it really mean for the power series of a function to converge?Maclaurin Series with Power in Denominator?Function that Represents Divergent Power Series?Finding the power series of a logarithmic function.Writing $frac11 + w + w^2$ as a power series and finding the ROCPower series expansion of a complex functionPower series representing a rational functionFinding a function corresponding to the complex power seriesFind the sum for the power serieshow to find a function expression of a power series?

Chess with symmetric move-square

How to add power-LED to my small amplifier?

How does one intimidate enemies without having the capacity for violence?

Why is an old chain unsafe?

A newer friend of my brother's gave him a load of baseball cards that are supposedly extremely valuable. Is this a scam?

Can an x86 CPU running in real mode be considered to be basically an 8086 CPU?

Possibly bubble sort algorithm

Patience, young "Padovan"

What are these boxed doors outside store fronts in New York?

What Brexit solution does the DUP want?

Circuitry of TV splitters

Japan - Plan around max visa duration

Is there really no realistic way for a skeleton monster to move around without magic?

Pronouncing Dictionary.com's W.O.D "vade mecum" in English

How to report a triplet of septets in NMR tabulation?

Example of a relative pronoun

Extreme, but not acceptable situation and I can't start the work tomorrow morning

What would happen to a modern skyscraper if it rains micro blackholes?

Why don't electron-positron collisions release infinite energy?

What makes Graph invariants so useful/important?

How do we improve the relationship with a client software team that performs poorly and is becoming less collaborative?

How much RAM could one put in a typical 80386 setup?

Copycat chess is back

whey we use polarized capacitor?



Representing power series as a function - what to do with the constant after integration?


What does it really mean for the power series of a function to converge?Maclaurin Series with Power in Denominator?Function that Represents Divergent Power Series?Finding the power series of a logarithmic function.Writing $frac11 + w + w^2$ as a power series and finding the ROCPower series expansion of a complex functionPower series representing a rational functionFinding a function corresponding to the complex power seriesFind the sum for the power serieshow to find a function expression of a power series?













1












$begingroup$


This power series $$f(x)=sum_n=1^infty fracx^3n3n$$ when differentiated, loses $3n$ in the denominator, with one manipulation, one can get $$f'(x)=frac1x(1-x^3) $$ using the geometric series sum formula. Since this is $f'(x)$, integration is required so we get $$f(x)=log(x)-frac13log(1-x^3) + C$$
(the log base is probably $e$). The usual step for finding the constant is to find it's value for $x=0$ in the given power series and the new function. This obviously won't work here or in any other case where a function isn't defined for $x=0$. How do I find the constant then?










share|cite|improve this question











$endgroup$











  • $begingroup$
    I was talking about log(x) not being defined at x=0.
    $endgroup$
    – user3711671
    9 hours ago















1












$begingroup$


This power series $$f(x)=sum_n=1^infty fracx^3n3n$$ when differentiated, loses $3n$ in the denominator, with one manipulation, one can get $$f'(x)=frac1x(1-x^3) $$ using the geometric series sum formula. Since this is $f'(x)$, integration is required so we get $$f(x)=log(x)-frac13log(1-x^3) + C$$
(the log base is probably $e$). The usual step for finding the constant is to find it's value for $x=0$ in the given power series and the new function. This obviously won't work here or in any other case where a function isn't defined for $x=0$. How do I find the constant then?










share|cite|improve this question











$endgroup$











  • $begingroup$
    I was talking about log(x) not being defined at x=0.
    $endgroup$
    – user3711671
    9 hours ago













1












1








1





$begingroup$


This power series $$f(x)=sum_n=1^infty fracx^3n3n$$ when differentiated, loses $3n$ in the denominator, with one manipulation, one can get $$f'(x)=frac1x(1-x^3) $$ using the geometric series sum formula. Since this is $f'(x)$, integration is required so we get $$f(x)=log(x)-frac13log(1-x^3) + C$$
(the log base is probably $e$). The usual step for finding the constant is to find it's value for $x=0$ in the given power series and the new function. This obviously won't work here or in any other case where a function isn't defined for $x=0$. How do I find the constant then?










share|cite|improve this question











$endgroup$




This power series $$f(x)=sum_n=1^infty fracx^3n3n$$ when differentiated, loses $3n$ in the denominator, with one manipulation, one can get $$f'(x)=frac1x(1-x^3) $$ using the geometric series sum formula. Since this is $f'(x)$, integration is required so we get $$f(x)=log(x)-frac13log(1-x^3) + C$$
(the log base is probably $e$). The usual step for finding the constant is to find it's value for $x=0$ in the given power series and the new function. This obviously won't work here or in any other case where a function isn't defined for $x=0$. How do I find the constant then?







power-series






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 7 hours ago









Leucippus

19.8k102871




19.8k102871










asked 9 hours ago









user3711671user3711671

418




418











  • $begingroup$
    I was talking about log(x) not being defined at x=0.
    $endgroup$
    – user3711671
    9 hours ago
















  • $begingroup$
    I was talking about log(x) not being defined at x=0.
    $endgroup$
    – user3711671
    9 hours ago















$begingroup$
I was talking about log(x) not being defined at x=0.
$endgroup$
– user3711671
9 hours ago




$begingroup$
I was talking about log(x) not being defined at x=0.
$endgroup$
– user3711671
9 hours ago










2 Answers
2






active

oldest

votes


















4












$begingroup$

Differentiating $f(x)$:



$$f(x)=fracx^33+fracx^66+cdotsimplies f'(x)=x^2+x^5+cdots=sum_n=1^inftyx^3n-1=fracx^21-x^3$$ for $|x|<1$, which results in $$f(x)=-frac13ln(1-x^3)+C$$ after integration. Your function now is well-defined at $x=0$, and this implies $C=0$.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Right, I've made a mistake at the geometric series, n starts at 1, not 0.My question still remains, what should one do if plugging in x=0 can't be done (because of functions like log(x), 1/x etc)?The interesting thing is that if log(x) remains untouched, C will equal -log(x).
    $endgroup$
    – user3711671
    9 hours ago










  • $begingroup$
    Then plug in another number, e.g. $x=1$. The constant after integration can be "fixed" by moving the graph of the function up or down the $y$-axis. This can be done by using any point; not only $x=0$.
    $endgroup$
    – st.math
    9 hours ago











  • $begingroup$
    But what about the infinite sum of 1/3n then?Shouldn't I find out what the constant is by inserting the value for which the sum and it's function representation are equal (when x=0 both are equal to zero)?
    $endgroup$
    – user3711671
    9 hours ago











  • $begingroup$
    You can plug in any point where the function is defined. After plugging in $x=0$ into the sum, you get $f(0)=0$. The closed form you obtained after integration ($f(x)=ln(1-x^3)/3+C$) is undetermined by the constant $C$ only, which you can find after plugging in $0$ there, which directly implies $f(0)=0+C$ or $C=0$ (because we know that $f(0)$ has to be $0$ by the sum). You will get the same result $C=0$ after plugging in $x=0.5$, for example.
    $endgroup$
    – st.math
    9 hours ago







  • 1




    $begingroup$
    @user3711671: The only kicker is that your value of $x$ must be within the interval of convergence for the power series. The center point is typically the simplest to plug in. I explain a bit further in my answer.
    $endgroup$
    – Cameron Buie
    8 hours ago



















2












$begingroup$

You're not quite on track. One way to know that for sure is that your function isn't defined at $x=0,$ but the power series certainly is!



For $|t|<1,$ we have that $$sum_n=0^infty t^n=frac11-t,$$ so $$sum_n=1^infty t^n=frac11-t-1=fract1-t.$$ Thus, we have for $|x|<1$ that $$f'(x)=sum_n=1^infty x^3n-1=frac1xsum_n=1left(x^3right)^n=frac1xcdotfracx^31-x^3=left(1-x^3right)^-1cdot-frac13fracdleft(1-x^3right)dx.$$ This has the antiderivative family $$f(x)=-frac13lnleft(1-x^3right)+C,$$ which is defined at every $x$ in the radius of convergence, allowing you to find your constant in the usual way.




More generally, let's suppose that you've used a power series $$sum_n=k^infty a_n(x-a)^n$$ for some real $a$ and some integer $kge 0,$ and have (by differentiation and then integration) determined that $$f(x)+C=sum_n=k^infty a_n(x-a)^n$$ for some constant $C.$ Even without determining the radius of convergence, if you haven't made any errors, then the function is necessarily defined at $x=a,$ so you can use $x=a$ to determine what your value of $C$ will be.



Namely, we will have $C=-f(a)$ if $kge 1,$ and $C=a_0-f(a)$ otherwise.






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178460%2frepresenting-power-series-as-a-function-what-to-do-with-the-constant-after-int%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    Differentiating $f(x)$:



    $$f(x)=fracx^33+fracx^66+cdotsimplies f'(x)=x^2+x^5+cdots=sum_n=1^inftyx^3n-1=fracx^21-x^3$$ for $|x|<1$, which results in $$f(x)=-frac13ln(1-x^3)+C$$ after integration. Your function now is well-defined at $x=0$, and this implies $C=0$.






    share|cite|improve this answer











    $endgroup$












    • $begingroup$
      Right, I've made a mistake at the geometric series, n starts at 1, not 0.My question still remains, what should one do if plugging in x=0 can't be done (because of functions like log(x), 1/x etc)?The interesting thing is that if log(x) remains untouched, C will equal -log(x).
      $endgroup$
      – user3711671
      9 hours ago










    • $begingroup$
      Then plug in another number, e.g. $x=1$. The constant after integration can be "fixed" by moving the graph of the function up or down the $y$-axis. This can be done by using any point; not only $x=0$.
      $endgroup$
      – st.math
      9 hours ago











    • $begingroup$
      But what about the infinite sum of 1/3n then?Shouldn't I find out what the constant is by inserting the value for which the sum and it's function representation are equal (when x=0 both are equal to zero)?
      $endgroup$
      – user3711671
      9 hours ago











    • $begingroup$
      You can plug in any point where the function is defined. After plugging in $x=0$ into the sum, you get $f(0)=0$. The closed form you obtained after integration ($f(x)=ln(1-x^3)/3+C$) is undetermined by the constant $C$ only, which you can find after plugging in $0$ there, which directly implies $f(0)=0+C$ or $C=0$ (because we know that $f(0)$ has to be $0$ by the sum). You will get the same result $C=0$ after plugging in $x=0.5$, for example.
      $endgroup$
      – st.math
      9 hours ago







    • 1




      $begingroup$
      @user3711671: The only kicker is that your value of $x$ must be within the interval of convergence for the power series. The center point is typically the simplest to plug in. I explain a bit further in my answer.
      $endgroup$
      – Cameron Buie
      8 hours ago
















    4












    $begingroup$

    Differentiating $f(x)$:



    $$f(x)=fracx^33+fracx^66+cdotsimplies f'(x)=x^2+x^5+cdots=sum_n=1^inftyx^3n-1=fracx^21-x^3$$ for $|x|<1$, which results in $$f(x)=-frac13ln(1-x^3)+C$$ after integration. Your function now is well-defined at $x=0$, and this implies $C=0$.






    share|cite|improve this answer











    $endgroup$












    • $begingroup$
      Right, I've made a mistake at the geometric series, n starts at 1, not 0.My question still remains, what should one do if plugging in x=0 can't be done (because of functions like log(x), 1/x etc)?The interesting thing is that if log(x) remains untouched, C will equal -log(x).
      $endgroup$
      – user3711671
      9 hours ago










    • $begingroup$
      Then plug in another number, e.g. $x=1$. The constant after integration can be "fixed" by moving the graph of the function up or down the $y$-axis. This can be done by using any point; not only $x=0$.
      $endgroup$
      – st.math
      9 hours ago











    • $begingroup$
      But what about the infinite sum of 1/3n then?Shouldn't I find out what the constant is by inserting the value for which the sum and it's function representation are equal (when x=0 both are equal to zero)?
      $endgroup$
      – user3711671
      9 hours ago











    • $begingroup$
      You can plug in any point where the function is defined. After plugging in $x=0$ into the sum, you get $f(0)=0$. The closed form you obtained after integration ($f(x)=ln(1-x^3)/3+C$) is undetermined by the constant $C$ only, which you can find after plugging in $0$ there, which directly implies $f(0)=0+C$ or $C=0$ (because we know that $f(0)$ has to be $0$ by the sum). You will get the same result $C=0$ after plugging in $x=0.5$, for example.
      $endgroup$
      – st.math
      9 hours ago







    • 1




      $begingroup$
      @user3711671: The only kicker is that your value of $x$ must be within the interval of convergence for the power series. The center point is typically the simplest to plug in. I explain a bit further in my answer.
      $endgroup$
      – Cameron Buie
      8 hours ago














    4












    4








    4





    $begingroup$

    Differentiating $f(x)$:



    $$f(x)=fracx^33+fracx^66+cdotsimplies f'(x)=x^2+x^5+cdots=sum_n=1^inftyx^3n-1=fracx^21-x^3$$ for $|x|<1$, which results in $$f(x)=-frac13ln(1-x^3)+C$$ after integration. Your function now is well-defined at $x=0$, and this implies $C=0$.






    share|cite|improve this answer











    $endgroup$



    Differentiating $f(x)$:



    $$f(x)=fracx^33+fracx^66+cdotsimplies f'(x)=x^2+x^5+cdots=sum_n=1^inftyx^3n-1=fracx^21-x^3$$ for $|x|<1$, which results in $$f(x)=-frac13ln(1-x^3)+C$$ after integration. Your function now is well-defined at $x=0$, and this implies $C=0$.







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited 9 hours ago

























    answered 9 hours ago









    st.mathst.math

    1,110115




    1,110115











    • $begingroup$
      Right, I've made a mistake at the geometric series, n starts at 1, not 0.My question still remains, what should one do if plugging in x=0 can't be done (because of functions like log(x), 1/x etc)?The interesting thing is that if log(x) remains untouched, C will equal -log(x).
      $endgroup$
      – user3711671
      9 hours ago










    • $begingroup$
      Then plug in another number, e.g. $x=1$. The constant after integration can be "fixed" by moving the graph of the function up or down the $y$-axis. This can be done by using any point; not only $x=0$.
      $endgroup$
      – st.math
      9 hours ago











    • $begingroup$
      But what about the infinite sum of 1/3n then?Shouldn't I find out what the constant is by inserting the value for which the sum and it's function representation are equal (when x=0 both are equal to zero)?
      $endgroup$
      – user3711671
      9 hours ago











    • $begingroup$
      You can plug in any point where the function is defined. After plugging in $x=0$ into the sum, you get $f(0)=0$. The closed form you obtained after integration ($f(x)=ln(1-x^3)/3+C$) is undetermined by the constant $C$ only, which you can find after plugging in $0$ there, which directly implies $f(0)=0+C$ or $C=0$ (because we know that $f(0)$ has to be $0$ by the sum). You will get the same result $C=0$ after plugging in $x=0.5$, for example.
      $endgroup$
      – st.math
      9 hours ago







    • 1




      $begingroup$
      @user3711671: The only kicker is that your value of $x$ must be within the interval of convergence for the power series. The center point is typically the simplest to plug in. I explain a bit further in my answer.
      $endgroup$
      – Cameron Buie
      8 hours ago

















    • $begingroup$
      Right, I've made a mistake at the geometric series, n starts at 1, not 0.My question still remains, what should one do if plugging in x=0 can't be done (because of functions like log(x), 1/x etc)?The interesting thing is that if log(x) remains untouched, C will equal -log(x).
      $endgroup$
      – user3711671
      9 hours ago










    • $begingroup$
      Then plug in another number, e.g. $x=1$. The constant after integration can be "fixed" by moving the graph of the function up or down the $y$-axis. This can be done by using any point; not only $x=0$.
      $endgroup$
      – st.math
      9 hours ago











    • $begingroup$
      But what about the infinite sum of 1/3n then?Shouldn't I find out what the constant is by inserting the value for which the sum and it's function representation are equal (when x=0 both are equal to zero)?
      $endgroup$
      – user3711671
      9 hours ago











    • $begingroup$
      You can plug in any point where the function is defined. After plugging in $x=0$ into the sum, you get $f(0)=0$. The closed form you obtained after integration ($f(x)=ln(1-x^3)/3+C$) is undetermined by the constant $C$ only, which you can find after plugging in $0$ there, which directly implies $f(0)=0+C$ or $C=0$ (because we know that $f(0)$ has to be $0$ by the sum). You will get the same result $C=0$ after plugging in $x=0.5$, for example.
      $endgroup$
      – st.math
      9 hours ago







    • 1




      $begingroup$
      @user3711671: The only kicker is that your value of $x$ must be within the interval of convergence for the power series. The center point is typically the simplest to plug in. I explain a bit further in my answer.
      $endgroup$
      – Cameron Buie
      8 hours ago
















    $begingroup$
    Right, I've made a mistake at the geometric series, n starts at 1, not 0.My question still remains, what should one do if plugging in x=0 can't be done (because of functions like log(x), 1/x etc)?The interesting thing is that if log(x) remains untouched, C will equal -log(x).
    $endgroup$
    – user3711671
    9 hours ago




    $begingroup$
    Right, I've made a mistake at the geometric series, n starts at 1, not 0.My question still remains, what should one do if plugging in x=0 can't be done (because of functions like log(x), 1/x etc)?The interesting thing is that if log(x) remains untouched, C will equal -log(x).
    $endgroup$
    – user3711671
    9 hours ago












    $begingroup$
    Then plug in another number, e.g. $x=1$. The constant after integration can be "fixed" by moving the graph of the function up or down the $y$-axis. This can be done by using any point; not only $x=0$.
    $endgroup$
    – st.math
    9 hours ago





    $begingroup$
    Then plug in another number, e.g. $x=1$. The constant after integration can be "fixed" by moving the graph of the function up or down the $y$-axis. This can be done by using any point; not only $x=0$.
    $endgroup$
    – st.math
    9 hours ago













    $begingroup$
    But what about the infinite sum of 1/3n then?Shouldn't I find out what the constant is by inserting the value for which the sum and it's function representation are equal (when x=0 both are equal to zero)?
    $endgroup$
    – user3711671
    9 hours ago





    $begingroup$
    But what about the infinite sum of 1/3n then?Shouldn't I find out what the constant is by inserting the value for which the sum and it's function representation are equal (when x=0 both are equal to zero)?
    $endgroup$
    – user3711671
    9 hours ago













    $begingroup$
    You can plug in any point where the function is defined. After plugging in $x=0$ into the sum, you get $f(0)=0$. The closed form you obtained after integration ($f(x)=ln(1-x^3)/3+C$) is undetermined by the constant $C$ only, which you can find after plugging in $0$ there, which directly implies $f(0)=0+C$ or $C=0$ (because we know that $f(0)$ has to be $0$ by the sum). You will get the same result $C=0$ after plugging in $x=0.5$, for example.
    $endgroup$
    – st.math
    9 hours ago





    $begingroup$
    You can plug in any point where the function is defined. After plugging in $x=0$ into the sum, you get $f(0)=0$. The closed form you obtained after integration ($f(x)=ln(1-x^3)/3+C$) is undetermined by the constant $C$ only, which you can find after plugging in $0$ there, which directly implies $f(0)=0+C$ or $C=0$ (because we know that $f(0)$ has to be $0$ by the sum). You will get the same result $C=0$ after plugging in $x=0.5$, for example.
    $endgroup$
    – st.math
    9 hours ago





    1




    1




    $begingroup$
    @user3711671: The only kicker is that your value of $x$ must be within the interval of convergence for the power series. The center point is typically the simplest to plug in. I explain a bit further in my answer.
    $endgroup$
    – Cameron Buie
    8 hours ago





    $begingroup$
    @user3711671: The only kicker is that your value of $x$ must be within the interval of convergence for the power series. The center point is typically the simplest to plug in. I explain a bit further in my answer.
    $endgroup$
    – Cameron Buie
    8 hours ago












    2












    $begingroup$

    You're not quite on track. One way to know that for sure is that your function isn't defined at $x=0,$ but the power series certainly is!



    For $|t|<1,$ we have that $$sum_n=0^infty t^n=frac11-t,$$ so $$sum_n=1^infty t^n=frac11-t-1=fract1-t.$$ Thus, we have for $|x|<1$ that $$f'(x)=sum_n=1^infty x^3n-1=frac1xsum_n=1left(x^3right)^n=frac1xcdotfracx^31-x^3=left(1-x^3right)^-1cdot-frac13fracdleft(1-x^3right)dx.$$ This has the antiderivative family $$f(x)=-frac13lnleft(1-x^3right)+C,$$ which is defined at every $x$ in the radius of convergence, allowing you to find your constant in the usual way.




    More generally, let's suppose that you've used a power series $$sum_n=k^infty a_n(x-a)^n$$ for some real $a$ and some integer $kge 0,$ and have (by differentiation and then integration) determined that $$f(x)+C=sum_n=k^infty a_n(x-a)^n$$ for some constant $C.$ Even without determining the radius of convergence, if you haven't made any errors, then the function is necessarily defined at $x=a,$ so you can use $x=a$ to determine what your value of $C$ will be.



    Namely, we will have $C=-f(a)$ if $kge 1,$ and $C=a_0-f(a)$ otherwise.






    share|cite|improve this answer











    $endgroup$

















      2












      $begingroup$

      You're not quite on track. One way to know that for sure is that your function isn't defined at $x=0,$ but the power series certainly is!



      For $|t|<1,$ we have that $$sum_n=0^infty t^n=frac11-t,$$ so $$sum_n=1^infty t^n=frac11-t-1=fract1-t.$$ Thus, we have for $|x|<1$ that $$f'(x)=sum_n=1^infty x^3n-1=frac1xsum_n=1left(x^3right)^n=frac1xcdotfracx^31-x^3=left(1-x^3right)^-1cdot-frac13fracdleft(1-x^3right)dx.$$ This has the antiderivative family $$f(x)=-frac13lnleft(1-x^3right)+C,$$ which is defined at every $x$ in the radius of convergence, allowing you to find your constant in the usual way.




      More generally, let's suppose that you've used a power series $$sum_n=k^infty a_n(x-a)^n$$ for some real $a$ and some integer $kge 0,$ and have (by differentiation and then integration) determined that $$f(x)+C=sum_n=k^infty a_n(x-a)^n$$ for some constant $C.$ Even without determining the radius of convergence, if you haven't made any errors, then the function is necessarily defined at $x=a,$ so you can use $x=a$ to determine what your value of $C$ will be.



      Namely, we will have $C=-f(a)$ if $kge 1,$ and $C=a_0-f(a)$ otherwise.






      share|cite|improve this answer











      $endgroup$















        2












        2








        2





        $begingroup$

        You're not quite on track. One way to know that for sure is that your function isn't defined at $x=0,$ but the power series certainly is!



        For $|t|<1,$ we have that $$sum_n=0^infty t^n=frac11-t,$$ so $$sum_n=1^infty t^n=frac11-t-1=fract1-t.$$ Thus, we have for $|x|<1$ that $$f'(x)=sum_n=1^infty x^3n-1=frac1xsum_n=1left(x^3right)^n=frac1xcdotfracx^31-x^3=left(1-x^3right)^-1cdot-frac13fracdleft(1-x^3right)dx.$$ This has the antiderivative family $$f(x)=-frac13lnleft(1-x^3right)+C,$$ which is defined at every $x$ in the radius of convergence, allowing you to find your constant in the usual way.




        More generally, let's suppose that you've used a power series $$sum_n=k^infty a_n(x-a)^n$$ for some real $a$ and some integer $kge 0,$ and have (by differentiation and then integration) determined that $$f(x)+C=sum_n=k^infty a_n(x-a)^n$$ for some constant $C.$ Even without determining the radius of convergence, if you haven't made any errors, then the function is necessarily defined at $x=a,$ so you can use $x=a$ to determine what your value of $C$ will be.



        Namely, we will have $C=-f(a)$ if $kge 1,$ and $C=a_0-f(a)$ otherwise.






        share|cite|improve this answer











        $endgroup$



        You're not quite on track. One way to know that for sure is that your function isn't defined at $x=0,$ but the power series certainly is!



        For $|t|<1,$ we have that $$sum_n=0^infty t^n=frac11-t,$$ so $$sum_n=1^infty t^n=frac11-t-1=fract1-t.$$ Thus, we have for $|x|<1$ that $$f'(x)=sum_n=1^infty x^3n-1=frac1xsum_n=1left(x^3right)^n=frac1xcdotfracx^31-x^3=left(1-x^3right)^-1cdot-frac13fracdleft(1-x^3right)dx.$$ This has the antiderivative family $$f(x)=-frac13lnleft(1-x^3right)+C,$$ which is defined at every $x$ in the radius of convergence, allowing you to find your constant in the usual way.




        More generally, let's suppose that you've used a power series $$sum_n=k^infty a_n(x-a)^n$$ for some real $a$ and some integer $kge 0,$ and have (by differentiation and then integration) determined that $$f(x)+C=sum_n=k^infty a_n(x-a)^n$$ for some constant $C.$ Even without determining the radius of convergence, if you haven't made any errors, then the function is necessarily defined at $x=a,$ so you can use $x=a$ to determine what your value of $C$ will be.



        Namely, we will have $C=-f(a)$ if $kge 1,$ and $C=a_0-f(a)$ otherwise.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited 7 hours ago

























        answered 9 hours ago









        Cameron BuieCameron Buie

        86.6k773161




        86.6k773161



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178460%2frepresenting-power-series-as-a-function-what-to-do-with-the-constant-after-int%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            ValueError: Error when checking input: expected conv2d_13_input to have shape (3, 150, 150) but got array with shape (150, 150, 3)2019 Community Moderator ElectionError when checking : expected dense_1_input to have shape (None, 5) but got array with shape (200, 1)Error 'Expected 2D array, got 1D array instead:'ValueError: Error when checking input: expected lstm_41_input to have 3 dimensions, but got array with shape (40000,100)ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)ValueError: Error when checking target: expected dense_2 to have shape (1,) but got array with shape (0,)Keras exception: ValueError: Error when checking input: expected conv2d_1_input to have shape (150, 150, 3) but got array with shape (256, 256, 3)Steps taking too long to completewhen checking input: expected dense_1_input to have shape (13328,) but got array with shape (317,)ValueError: Error when checking target: expected dense_3 to have shape (None, 1) but got array with shape (7715, 40000)Keras exception: Error when checking input: expected dense_input to have shape (2,) but got array with shape (1,)

            Ружовы пелікан Змест Знешні выгляд | Пашырэнне | Асаблівасці біялогіі | Літаратура | НавігацыяДагледжаная версіяправерана1 зменаДагледжаная версіяправерана1 змена/ 22697590 Сістэматыкана ВіківідахВыявына Вікісховішчы174693363011049382

            Illegal assignment from SObject to ContactFetching String, Id from Map - Illegal Assignment Id to Field / ObjectError: Compile Error: Illegal assignment from String to BooleanError: List has no rows for assignment to SObjectError on Test Class - System.QueryException: List has no rows for assignment to SObjectRemote action problemDML requires SObject or SObject list type error“Illegal assignment from List to List”Test Class Fail: Batch Class: System.QueryException: List has no rows for assignment to SObjectMapping to a user'List has no rows for assignment to SObject' Mystery