Binary Classification on small dataset < 200 samplesBalanced Linear SVM wins every class except One vs AllMulti-label Text ClassificationCould not convert string to float error on KDDCup99 datasetHow To Merge Features in the Dataset Forest Cover Type Classification Problem?Imbalanced data causing mis-classification on multiclass datasetBinary classification, precision-recall curve and thresholdsInterpreting 1vs1 support vectors in an SVMWhy does Bagging or Boosting algorithm give better accuracy than basic Algorithms in small datasets?Multiple classification algorithms are predicting always exactly with the same scores. Is that normal? If not, what should I suspect?Train classifier on balanced dataset and apply on imbalanced dataset?
Do native speakers use "ultima" and "proxima" frequently in spoken English?
Pre-Employment Background Check With Consent For Future Checks
Travelling in US for more than 90 days
Calculate Pi using Monte Carlo
Weird lines in Microsoft Word
Has the laser at Magurele, Romania reached a tenth of the Sun's power?
Why is participating in the European Parliamentary elections used as a threat?
Why would five hundred and five same as one?
Extract substring according to regexp with sed or grep
Unfrosted light bulb
Can you describe someone as luxurious? As in someone who likes luxurious things?
How to get directions in deep space?
How would a solely written language work mechanically
What is this high flying aircraft over Pennsylvania?
Do people actually use the word "kaputt" in conversation?
Derivative of an interpolated function
I keep switching characters, how do I stop?
Highest stage count that are used one right after the other?
Why do Radio Buttons not fill the entire outer circle?
Is divisi notation needed for brass or woodwind in an orchestra?
categorizing a variable turns it from insignificant to significant
What is the meaning of "You've never met a graph you didn't like?"
Is this saw blade faulty?
Why does the frost depth increase when the surface temperature warms up?
Binary Classification on small dataset
Balanced Linear SVM wins every class except One vs AllMulti-label Text ClassificationCould not convert string to float error on KDDCup99 datasetHow To Merge Features in the Dataset Forest Cover Type Classification Problem?Imbalanced data causing mis-classification on multiclass datasetBinary classification, precision-recall curve and thresholdsInterpreting 1vs1 support vectors in an SVMWhy does Bagging or Boosting algorithm give better accuracy than basic Algorithms in small datasets?Multiple classification algorithms are predicting always exactly with the same scores. Is that normal? If not, what should I suspect?Train classifier on balanced dataset and apply on imbalanced dataset?
$begingroup$
I have a dataset consisting of 181 samples(classes are not balanced there are 41 data points with 1 label and rest 140 are with label 0) and 10 features and one target variable. The 10 features are numeric and continuous in nature. I have to perform binary classification. I have done the following work:-
I have performed 3 Fold cross validation and got following accuracy results using various models:-
LinearSVC:
0.873
DecisionTreeClassifier:
0.840
Gaussian Naive Bayes:
0.845
Logistic Regression:
0.867
Gradient Boosting Classifier
0.867
Support vector classifier rbf:
0.818
Random forest:
0.867
K-nearest-neighbors:
0.823
Please guide me how could I choose the best model for this size of dataset and make sure my model is not overfitting ? I am thinking of applying random under sampling to handle the unbalanced data.
machine-learning python classification predictive-modeling scikit-learn
$endgroup$
add a comment |
$begingroup$
I have a dataset consisting of 181 samples(classes are not balanced there are 41 data points with 1 label and rest 140 are with label 0) and 10 features and one target variable. The 10 features are numeric and continuous in nature. I have to perform binary classification. I have done the following work:-
I have performed 3 Fold cross validation and got following accuracy results using various models:-
LinearSVC:
0.873
DecisionTreeClassifier:
0.840
Gaussian Naive Bayes:
0.845
Logistic Regression:
0.867
Gradient Boosting Classifier
0.867
Support vector classifier rbf:
0.818
Random forest:
0.867
K-nearest-neighbors:
0.823
Please guide me how could I choose the best model for this size of dataset and make sure my model is not overfitting ? I am thinking of applying random under sampling to handle the unbalanced data.
machine-learning python classification predictive-modeling scikit-learn
$endgroup$
1
$begingroup$
Hey Archit, did you create a test out of the data you have. If not then please do, and update the accuracies you achieve on the training and test set. Also calculate precision and recall, because if your dataset is imbalanced you might be getting a decent accuracy but your model will really fail at the test set. Update the question with these metrics please. Thanks.
$endgroup$
– Himanshu Rai
Jan 12 '17 at 6:40
$begingroup$
Could you give some more context as to what was sampled and which concept you are trying to label?
$endgroup$
– S van Balen
Jan 12 '17 at 13:52
$begingroup$
@HimanshuRai I have updated the question, data is imbalanced. I am thinking of random under sampling but It would result in loss of some data points then there would be only 82 observations. What would you suggest?
$endgroup$
– Archit Garg
Jan 13 '17 at 2:51
$begingroup$
Adding an answer.
$endgroup$
– Himanshu Rai
Jan 13 '17 at 4:11
add a comment |
$begingroup$
I have a dataset consisting of 181 samples(classes are not balanced there are 41 data points with 1 label and rest 140 are with label 0) and 10 features and one target variable. The 10 features are numeric and continuous in nature. I have to perform binary classification. I have done the following work:-
I have performed 3 Fold cross validation and got following accuracy results using various models:-
LinearSVC:
0.873
DecisionTreeClassifier:
0.840
Gaussian Naive Bayes:
0.845
Logistic Regression:
0.867
Gradient Boosting Classifier
0.867
Support vector classifier rbf:
0.818
Random forest:
0.867
K-nearest-neighbors:
0.823
Please guide me how could I choose the best model for this size of dataset and make sure my model is not overfitting ? I am thinking of applying random under sampling to handle the unbalanced data.
machine-learning python classification predictive-modeling scikit-learn
$endgroup$
I have a dataset consisting of 181 samples(classes are not balanced there are 41 data points with 1 label and rest 140 are with label 0) and 10 features and one target variable. The 10 features are numeric and continuous in nature. I have to perform binary classification. I have done the following work:-
I have performed 3 Fold cross validation and got following accuracy results using various models:-
LinearSVC:
0.873
DecisionTreeClassifier:
0.840
Gaussian Naive Bayes:
0.845
Logistic Regression:
0.867
Gradient Boosting Classifier
0.867
Support vector classifier rbf:
0.818
Random forest:
0.867
K-nearest-neighbors:
0.823
Please guide me how could I choose the best model for this size of dataset and make sure my model is not overfitting ? I am thinking of applying random under sampling to handle the unbalanced data.
machine-learning python classification predictive-modeling scikit-learn
machine-learning python classification predictive-modeling scikit-learn
edited Jan 13 '17 at 2:43
Archit Garg
asked Jan 12 '17 at 1:02
Archit GargArchit Garg
10614
10614
1
$begingroup$
Hey Archit, did you create a test out of the data you have. If not then please do, and update the accuracies you achieve on the training and test set. Also calculate precision and recall, because if your dataset is imbalanced you might be getting a decent accuracy but your model will really fail at the test set. Update the question with these metrics please. Thanks.
$endgroup$
– Himanshu Rai
Jan 12 '17 at 6:40
$begingroup$
Could you give some more context as to what was sampled and which concept you are trying to label?
$endgroup$
– S van Balen
Jan 12 '17 at 13:52
$begingroup$
@HimanshuRai I have updated the question, data is imbalanced. I am thinking of random under sampling but It would result in loss of some data points then there would be only 82 observations. What would you suggest?
$endgroup$
– Archit Garg
Jan 13 '17 at 2:51
$begingroup$
Adding an answer.
$endgroup$
– Himanshu Rai
Jan 13 '17 at 4:11
add a comment |
1
$begingroup$
Hey Archit, did you create a test out of the data you have. If not then please do, and update the accuracies you achieve on the training and test set. Also calculate precision and recall, because if your dataset is imbalanced you might be getting a decent accuracy but your model will really fail at the test set. Update the question with these metrics please. Thanks.
$endgroup$
– Himanshu Rai
Jan 12 '17 at 6:40
$begingroup$
Could you give some more context as to what was sampled and which concept you are trying to label?
$endgroup$
– S van Balen
Jan 12 '17 at 13:52
$begingroup$
@HimanshuRai I have updated the question, data is imbalanced. I am thinking of random under sampling but It would result in loss of some data points then there would be only 82 observations. What would you suggest?
$endgroup$
– Archit Garg
Jan 13 '17 at 2:51
$begingroup$
Adding an answer.
$endgroup$
– Himanshu Rai
Jan 13 '17 at 4:11
1
1
$begingroup$
Hey Archit, did you create a test out of the data you have. If not then please do, and update the accuracies you achieve on the training and test set. Also calculate precision and recall, because if your dataset is imbalanced you might be getting a decent accuracy but your model will really fail at the test set. Update the question with these metrics please. Thanks.
$endgroup$
– Himanshu Rai
Jan 12 '17 at 6:40
$begingroup$
Hey Archit, did you create a test out of the data you have. If not then please do, and update the accuracies you achieve on the training and test set. Also calculate precision and recall, because if your dataset is imbalanced you might be getting a decent accuracy but your model will really fail at the test set. Update the question with these metrics please. Thanks.
$endgroup$
– Himanshu Rai
Jan 12 '17 at 6:40
$begingroup$
Could you give some more context as to what was sampled and which concept you are trying to label?
$endgroup$
– S van Balen
Jan 12 '17 at 13:52
$begingroup$
Could you give some more context as to what was sampled and which concept you are trying to label?
$endgroup$
– S van Balen
Jan 12 '17 at 13:52
$begingroup$
@HimanshuRai I have updated the question, data is imbalanced. I am thinking of random under sampling but It would result in loss of some data points then there would be only 82 observations. What would you suggest?
$endgroup$
– Archit Garg
Jan 13 '17 at 2:51
$begingroup$
@HimanshuRai I have updated the question, data is imbalanced. I am thinking of random under sampling but It would result in loss of some data points then there would be only 82 observations. What would you suggest?
$endgroup$
– Archit Garg
Jan 13 '17 at 2:51
$begingroup$
Adding an answer.
$endgroup$
– Himanshu Rai
Jan 13 '17 at 4:11
$begingroup$
Adding an answer.
$endgroup$
– Himanshu Rai
Jan 13 '17 at 4:11
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
This post might be of interest. Basically by selecting the model with the best crossvalidation score, you already account for overfitting.
Also, you should separate your dataset into two parts. For the first one (validation) you run the crossvalidation on to select a model, in your case LinearSVC. For the second one (testing) you run crossvalidation again, but this time only with LinearSVC to get unbiased estimates of the accuracy.
$endgroup$
add a comment |
$begingroup$
Firstly your data's amount is very small for any kind of analysis, so if it was posssible to get more data then that would be better. Secondly as you mentioned that your data was imbalanced then the accuracy metrics you have posted lose all meaning, since 140 samples are of the same class, the algorithm is predicting that class for every sample. So for better evaluation calculate precision, recall and f-score. Thirdly, since your data is already less than needed don't undersample, instead oversample using the SMOTE (Synthetic Minority Over Sampling Technique) implementation. Using a stratified KFold, and a Random Forest will mostly be your best bet here. But remember with this less than needed data, it would be impossible to achieve a model without underfitting or overfitting.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "557"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f16266%2fbinary-classification-on-small-dataset-200-samples%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
This post might be of interest. Basically by selecting the model with the best crossvalidation score, you already account for overfitting.
Also, you should separate your dataset into two parts. For the first one (validation) you run the crossvalidation on to select a model, in your case LinearSVC. For the second one (testing) you run crossvalidation again, but this time only with LinearSVC to get unbiased estimates of the accuracy.
$endgroup$
add a comment |
$begingroup$
This post might be of interest. Basically by selecting the model with the best crossvalidation score, you already account for overfitting.
Also, you should separate your dataset into two parts. For the first one (validation) you run the crossvalidation on to select a model, in your case LinearSVC. For the second one (testing) you run crossvalidation again, but this time only with LinearSVC to get unbiased estimates of the accuracy.
$endgroup$
add a comment |
$begingroup$
This post might be of interest. Basically by selecting the model with the best crossvalidation score, you already account for overfitting.
Also, you should separate your dataset into two parts. For the first one (validation) you run the crossvalidation on to select a model, in your case LinearSVC. For the second one (testing) you run crossvalidation again, but this time only with LinearSVC to get unbiased estimates of the accuracy.
$endgroup$
This post might be of interest. Basically by selecting the model with the best crossvalidation score, you already account for overfitting.
Also, you should separate your dataset into two parts. For the first one (validation) you run the crossvalidation on to select a model, in your case LinearSVC. For the second one (testing) you run crossvalidation again, but this time only with LinearSVC to get unbiased estimates of the accuracy.
edited Apr 13 '17 at 12:44
Community♦
1
1
answered Jan 12 '17 at 21:17
Constantin WeisserConstantin Weisser
464
464
add a comment |
add a comment |
$begingroup$
Firstly your data's amount is very small for any kind of analysis, so if it was posssible to get more data then that would be better. Secondly as you mentioned that your data was imbalanced then the accuracy metrics you have posted lose all meaning, since 140 samples are of the same class, the algorithm is predicting that class for every sample. So for better evaluation calculate precision, recall and f-score. Thirdly, since your data is already less than needed don't undersample, instead oversample using the SMOTE (Synthetic Minority Over Sampling Technique) implementation. Using a stratified KFold, and a Random Forest will mostly be your best bet here. But remember with this less than needed data, it would be impossible to achieve a model without underfitting or overfitting.
$endgroup$
add a comment |
$begingroup$
Firstly your data's amount is very small for any kind of analysis, so if it was posssible to get more data then that would be better. Secondly as you mentioned that your data was imbalanced then the accuracy metrics you have posted lose all meaning, since 140 samples are of the same class, the algorithm is predicting that class for every sample. So for better evaluation calculate precision, recall and f-score. Thirdly, since your data is already less than needed don't undersample, instead oversample using the SMOTE (Synthetic Minority Over Sampling Technique) implementation. Using a stratified KFold, and a Random Forest will mostly be your best bet here. But remember with this less than needed data, it would be impossible to achieve a model without underfitting or overfitting.
$endgroup$
add a comment |
$begingroup$
Firstly your data's amount is very small for any kind of analysis, so if it was posssible to get more data then that would be better. Secondly as you mentioned that your data was imbalanced then the accuracy metrics you have posted lose all meaning, since 140 samples are of the same class, the algorithm is predicting that class for every sample. So for better evaluation calculate precision, recall and f-score. Thirdly, since your data is already less than needed don't undersample, instead oversample using the SMOTE (Synthetic Minority Over Sampling Technique) implementation. Using a stratified KFold, and a Random Forest will mostly be your best bet here. But remember with this less than needed data, it would be impossible to achieve a model without underfitting or overfitting.
$endgroup$
Firstly your data's amount is very small for any kind of analysis, so if it was posssible to get more data then that would be better. Secondly as you mentioned that your data was imbalanced then the accuracy metrics you have posted lose all meaning, since 140 samples are of the same class, the algorithm is predicting that class for every sample. So for better evaluation calculate precision, recall and f-score. Thirdly, since your data is already less than needed don't undersample, instead oversample using the SMOTE (Synthetic Minority Over Sampling Technique) implementation. Using a stratified KFold, and a Random Forest will mostly be your best bet here. But remember with this less than needed data, it would be impossible to achieve a model without underfitting or overfitting.
edited 17 mins ago
Blenzus
234
234
answered Jan 13 '17 at 4:17
Himanshu RaiHimanshu Rai
1,29748
1,29748
add a comment |
add a comment |
Thanks for contributing an answer to Data Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f16266%2fbinary-classification-on-small-dataset-200-samples%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Hey Archit, did you create a test out of the data you have. If not then please do, and update the accuracies you achieve on the training and test set. Also calculate precision and recall, because if your dataset is imbalanced you might be getting a decent accuracy but your model will really fail at the test set. Update the question with these metrics please. Thanks.
$endgroup$
– Himanshu Rai
Jan 12 '17 at 6:40
$begingroup$
Could you give some more context as to what was sampled and which concept you are trying to label?
$endgroup$
– S van Balen
Jan 12 '17 at 13:52
$begingroup$
@HimanshuRai I have updated the question, data is imbalanced. I am thinking of random under sampling but It would result in loss of some data points then there would be only 82 observations. What would you suggest?
$endgroup$
– Archit Garg
Jan 13 '17 at 2:51
$begingroup$
Adding an answer.
$endgroup$
– Himanshu Rai
Jan 13 '17 at 4:11