Web scrapping with beautifulSoup is done slowly Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) 2019 Moderator Election Q&A - Questionnaire 2019 Community Moderator Election Results

When do you get frequent flier miles - when you buy, or when you fly?

What causes the vertical darker bands in my photo?

Output the ŋarâþ crîþ alphabet song without using (m)any letters

Sci-Fi book where patients in a coma ward all live in a subconscious world linked together

Why did the Falcon Heavy center core fall off the ASDS OCISLY barge?

Why do we bend a book to keep it straight?

Dating a Former Employee

What's the purpose of writing one's academic biography in the third person?

English words in a non-english sci-fi novel

porting install scripts : can rpm replace apt?

Error "illegal generic type for instanceof" when using local classes

51k Euros annually for a family of 4 in Berlin: Is it enough?

Echoing a tail command produces unexpected output?

ListPlot join points by nearest neighbor rather than order

Storing hydrofluoric acid before the invention of plastics

List of Python versions

Is it ethical to give a final exam after the professor has quit before teaching the remaining chapters of the course?

How discoverable are IPv6 addresses and AAAA names by potential attackers?

How do I keep my slimes from escaping their pens?

Identify plant with long narrow paired leaves and reddish stems

What does an IRS interview request entail when called in to verify expenses for a sole proprietor small business?

Can a non-EU citizen traveling with me come with me through the EU passport line?

What exactly is a "Meth" in Altered Carbon?

Apollo command module space walk?



Web scrapping with beautifulSoup is done slowly



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)
2019 Moderator Election Q&A - Questionnaire
2019 Community Moderator Election Results










0












$begingroup$


I have developed a web scrapping code in Python which takes data from Hattrick.org's matches and returns them in a table so it can be mined, determined likelihood of goals, etc.



I have the difficult that is really slow, returning 20.000 rows in 5 hours or so.



This question is to ask if there is a way to improve the web scrapping technique so it does not take that amount of time.



This is the code in Python.



import requests
from bs4 import BeautifulSoup
import re
import pandas as pd
import numpy as np

ini = 631163587
q = 200000 # Change to q = 10 to try a sample

Cols = '01. Local MF',
'02. Away MF',
'03. Local RD',
'04. Away RD',
'05. Local CD',
'06. Away CD',
'07. Local LD',
'08. Away LD',
'09. Local RA',
'10. Away RA',
'11. Local CA',
'12. Away CA',
'13. Local LA',
'14. Away LA',
'15. Local IndD',
'16. Away IndD',
'17. Local IndA',
'18. Away IndA',
'19. Local Attitude',
'20. Away Attitude',
'21. Local Tactic',
'22. Away Tactic',
'23. Local Tactic Level',
'24. Away Tactic Level',
'25. Local Score',
'26. Away Score'

df_ht = pd.DataFrame(data=np.nan,index=range(ini,ini+q),columns=Cols)
cont=[]

for i in range(ini,ini+q):
url2 = 'https://www74.hattrick.org/Club/Matches/Match.aspx?matchID='+str(i)
response = requests.get(url2)
soup = BeautifulSoup(response.text, 'html.parser')
s1 = soup.findAll('td')

m = soup.findAll('meta')[10].attrs['content']
d = re.findall('[ ,.,A-Z,a-z,0-9]* - [., ,A-Z,a-z,0-9]*',m)
d2 = re.findall('[0-9]+',d[1])

partido = d[0]

try:
D = '01. Local MF': float(s1[3].contents[0]),
'02. Away MF': float(s1[4].contents[0]),
'03. Local RD': float(s1[10].contents[0]),
'04. Away RD': float(s1[11].contents[0]),
'05. Local CD': float(s1[17].contents[0]),
'06. Away CD': float(s1[18].contents[0]),
'07. Local LD': float(s1[24].contents[0]),
'08. Away LD': float(s1[25].contents[0]),
'09. Local RA': float(s1[31].contents[0]),
'10. Away RA': float(s1[32].contents[0]),
'11. Local CA': float(s1[38].contents[0]),
'12. Away CA': float(s1[39].contents[0]),
'13. Local LA': float(s1[45].contents[0]),
'14. Away LA': float(s1[46].contents[0]),
'15. Local IndD': float(s1[54].contents[0]),
'16. Away IndD': float(s1[55].contents[0]),
'17. Local IndA': float(s1[61].contents[0]),
'18. Away IndA': float(s1[62].contents[0]),
'19. Local Attitude': (s1[67].contents[0]),
'20. Away Attitude': (s1[68].contents[0]),
'21. Local Tactic': s1[70].contents[0],
'22. Away Tactic': s1[71].contents[0],
'23. Local Tactic Level': s1[75].contents[0],
'24. Away Tactic Level': s1[76].contents[0],
'25. Local Score': float(d2[0]),
'26. Away Score': float(d2[1])


df_ht.loc[i,:] = D

except:
cont.append(i)

df_ht.to_csv(r"Datos9.csv")








share







New contributor




Juan Esteban de la Calle is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$
















    0












    $begingroup$


    I have developed a web scrapping code in Python which takes data from Hattrick.org's matches and returns them in a table so it can be mined, determined likelihood of goals, etc.



    I have the difficult that is really slow, returning 20.000 rows in 5 hours or so.



    This question is to ask if there is a way to improve the web scrapping technique so it does not take that amount of time.



    This is the code in Python.



    import requests
    from bs4 import BeautifulSoup
    import re
    import pandas as pd
    import numpy as np

    ini = 631163587
    q = 200000 # Change to q = 10 to try a sample

    Cols = '01. Local MF',
    '02. Away MF',
    '03. Local RD',
    '04. Away RD',
    '05. Local CD',
    '06. Away CD',
    '07. Local LD',
    '08. Away LD',
    '09. Local RA',
    '10. Away RA',
    '11. Local CA',
    '12. Away CA',
    '13. Local LA',
    '14. Away LA',
    '15. Local IndD',
    '16. Away IndD',
    '17. Local IndA',
    '18. Away IndA',
    '19. Local Attitude',
    '20. Away Attitude',
    '21. Local Tactic',
    '22. Away Tactic',
    '23. Local Tactic Level',
    '24. Away Tactic Level',
    '25. Local Score',
    '26. Away Score'

    df_ht = pd.DataFrame(data=np.nan,index=range(ini,ini+q),columns=Cols)
    cont=[]

    for i in range(ini,ini+q):
    url2 = 'https://www74.hattrick.org/Club/Matches/Match.aspx?matchID='+str(i)
    response = requests.get(url2)
    soup = BeautifulSoup(response.text, 'html.parser')
    s1 = soup.findAll('td')

    m = soup.findAll('meta')[10].attrs['content']
    d = re.findall('[ ,.,A-Z,a-z,0-9]* - [., ,A-Z,a-z,0-9]*',m)
    d2 = re.findall('[0-9]+',d[1])

    partido = d[0]

    try:
    D = '01. Local MF': float(s1[3].contents[0]),
    '02. Away MF': float(s1[4].contents[0]),
    '03. Local RD': float(s1[10].contents[0]),
    '04. Away RD': float(s1[11].contents[0]),
    '05. Local CD': float(s1[17].contents[0]),
    '06. Away CD': float(s1[18].contents[0]),
    '07. Local LD': float(s1[24].contents[0]),
    '08. Away LD': float(s1[25].contents[0]),
    '09. Local RA': float(s1[31].contents[0]),
    '10. Away RA': float(s1[32].contents[0]),
    '11. Local CA': float(s1[38].contents[0]),
    '12. Away CA': float(s1[39].contents[0]),
    '13. Local LA': float(s1[45].contents[0]),
    '14. Away LA': float(s1[46].contents[0]),
    '15. Local IndD': float(s1[54].contents[0]),
    '16. Away IndD': float(s1[55].contents[0]),
    '17. Local IndA': float(s1[61].contents[0]),
    '18. Away IndA': float(s1[62].contents[0]),
    '19. Local Attitude': (s1[67].contents[0]),
    '20. Away Attitude': (s1[68].contents[0]),
    '21. Local Tactic': s1[70].contents[0],
    '22. Away Tactic': s1[71].contents[0],
    '23. Local Tactic Level': s1[75].contents[0],
    '24. Away Tactic Level': s1[76].contents[0],
    '25. Local Score': float(d2[0]),
    '26. Away Score': float(d2[1])


    df_ht.loc[i,:] = D

    except:
    cont.append(i)

    df_ht.to_csv(r"Datos9.csv")








    share







    New contributor




    Juan Esteban de la Calle is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$














      0












      0








      0





      $begingroup$


      I have developed a web scrapping code in Python which takes data from Hattrick.org's matches and returns them in a table so it can be mined, determined likelihood of goals, etc.



      I have the difficult that is really slow, returning 20.000 rows in 5 hours or so.



      This question is to ask if there is a way to improve the web scrapping technique so it does not take that amount of time.



      This is the code in Python.



      import requests
      from bs4 import BeautifulSoup
      import re
      import pandas as pd
      import numpy as np

      ini = 631163587
      q = 200000 # Change to q = 10 to try a sample

      Cols = '01. Local MF',
      '02. Away MF',
      '03. Local RD',
      '04. Away RD',
      '05. Local CD',
      '06. Away CD',
      '07. Local LD',
      '08. Away LD',
      '09. Local RA',
      '10. Away RA',
      '11. Local CA',
      '12. Away CA',
      '13. Local LA',
      '14. Away LA',
      '15. Local IndD',
      '16. Away IndD',
      '17. Local IndA',
      '18. Away IndA',
      '19. Local Attitude',
      '20. Away Attitude',
      '21. Local Tactic',
      '22. Away Tactic',
      '23. Local Tactic Level',
      '24. Away Tactic Level',
      '25. Local Score',
      '26. Away Score'

      df_ht = pd.DataFrame(data=np.nan,index=range(ini,ini+q),columns=Cols)
      cont=[]

      for i in range(ini,ini+q):
      url2 = 'https://www74.hattrick.org/Club/Matches/Match.aspx?matchID='+str(i)
      response = requests.get(url2)
      soup = BeautifulSoup(response.text, 'html.parser')
      s1 = soup.findAll('td')

      m = soup.findAll('meta')[10].attrs['content']
      d = re.findall('[ ,.,A-Z,a-z,0-9]* - [., ,A-Z,a-z,0-9]*',m)
      d2 = re.findall('[0-9]+',d[1])

      partido = d[0]

      try:
      D = '01. Local MF': float(s1[3].contents[0]),
      '02. Away MF': float(s1[4].contents[0]),
      '03. Local RD': float(s1[10].contents[0]),
      '04. Away RD': float(s1[11].contents[0]),
      '05. Local CD': float(s1[17].contents[0]),
      '06. Away CD': float(s1[18].contents[0]),
      '07. Local LD': float(s1[24].contents[0]),
      '08. Away LD': float(s1[25].contents[0]),
      '09. Local RA': float(s1[31].contents[0]),
      '10. Away RA': float(s1[32].contents[0]),
      '11. Local CA': float(s1[38].contents[0]),
      '12. Away CA': float(s1[39].contents[0]),
      '13. Local LA': float(s1[45].contents[0]),
      '14. Away LA': float(s1[46].contents[0]),
      '15. Local IndD': float(s1[54].contents[0]),
      '16. Away IndD': float(s1[55].contents[0]),
      '17. Local IndA': float(s1[61].contents[0]),
      '18. Away IndA': float(s1[62].contents[0]),
      '19. Local Attitude': (s1[67].contents[0]),
      '20. Away Attitude': (s1[68].contents[0]),
      '21. Local Tactic': s1[70].contents[0],
      '22. Away Tactic': s1[71].contents[0],
      '23. Local Tactic Level': s1[75].contents[0],
      '24. Away Tactic Level': s1[76].contents[0],
      '25. Local Score': float(d2[0]),
      '26. Away Score': float(d2[1])


      df_ht.loc[i,:] = D

      except:
      cont.append(i)

      df_ht.to_csv(r"Datos9.csv")








      share







      New contributor




      Juan Esteban de la Calle is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      I have developed a web scrapping code in Python which takes data from Hattrick.org's matches and returns them in a table so it can be mined, determined likelihood of goals, etc.



      I have the difficult that is really slow, returning 20.000 rows in 5 hours or so.



      This question is to ask if there is a way to improve the web scrapping technique so it does not take that amount of time.



      This is the code in Python.



      import requests
      from bs4 import BeautifulSoup
      import re
      import pandas as pd
      import numpy as np

      ini = 631163587
      q = 200000 # Change to q = 10 to try a sample

      Cols = '01. Local MF',
      '02. Away MF',
      '03. Local RD',
      '04. Away RD',
      '05. Local CD',
      '06. Away CD',
      '07. Local LD',
      '08. Away LD',
      '09. Local RA',
      '10. Away RA',
      '11. Local CA',
      '12. Away CA',
      '13. Local LA',
      '14. Away LA',
      '15. Local IndD',
      '16. Away IndD',
      '17. Local IndA',
      '18. Away IndA',
      '19. Local Attitude',
      '20. Away Attitude',
      '21. Local Tactic',
      '22. Away Tactic',
      '23. Local Tactic Level',
      '24. Away Tactic Level',
      '25. Local Score',
      '26. Away Score'

      df_ht = pd.DataFrame(data=np.nan,index=range(ini,ini+q),columns=Cols)
      cont=[]

      for i in range(ini,ini+q):
      url2 = 'https://www74.hattrick.org/Club/Matches/Match.aspx?matchID='+str(i)
      response = requests.get(url2)
      soup = BeautifulSoup(response.text, 'html.parser')
      s1 = soup.findAll('td')

      m = soup.findAll('meta')[10].attrs['content']
      d = re.findall('[ ,.,A-Z,a-z,0-9]* - [., ,A-Z,a-z,0-9]*',m)
      d2 = re.findall('[0-9]+',d[1])

      partido = d[0]

      try:
      D = '01. Local MF': float(s1[3].contents[0]),
      '02. Away MF': float(s1[4].contents[0]),
      '03. Local RD': float(s1[10].contents[0]),
      '04. Away RD': float(s1[11].contents[0]),
      '05. Local CD': float(s1[17].contents[0]),
      '06. Away CD': float(s1[18].contents[0]),
      '07. Local LD': float(s1[24].contents[0]),
      '08. Away LD': float(s1[25].contents[0]),
      '09. Local RA': float(s1[31].contents[0]),
      '10. Away RA': float(s1[32].contents[0]),
      '11. Local CA': float(s1[38].contents[0]),
      '12. Away CA': float(s1[39].contents[0]),
      '13. Local LA': float(s1[45].contents[0]),
      '14. Away LA': float(s1[46].contents[0]),
      '15. Local IndD': float(s1[54].contents[0]),
      '16. Away IndD': float(s1[55].contents[0]),
      '17. Local IndA': float(s1[61].contents[0]),
      '18. Away IndA': float(s1[62].contents[0]),
      '19. Local Attitude': (s1[67].contents[0]),
      '20. Away Attitude': (s1[68].contents[0]),
      '21. Local Tactic': s1[70].contents[0],
      '22. Away Tactic': s1[71].contents[0],
      '23. Local Tactic Level': s1[75].contents[0],
      '24. Away Tactic Level': s1[76].contents[0],
      '25. Local Score': float(d2[0]),
      '26. Away Score': float(d2[1])


      df_ht.loc[i,:] = D

      except:
      cont.append(i)

      df_ht.to_csv(r"Datos9.csv")






      web-scrapping





      share







      New contributor




      Juan Esteban de la Calle is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.










      share







      New contributor




      Juan Esteban de la Calle is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.








      share



      share






      New contributor




      Juan Esteban de la Calle is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 3 mins ago









      Juan Esteban de la CalleJuan Esteban de la Calle

      35811




      35811




      New contributor




      Juan Esteban de la Calle is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Juan Esteban de la Calle is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Juan Esteban de la Calle is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




















          0






          active

          oldest

          votes












          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "557"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );






          Juan Esteban de la Calle is a new contributor. Be nice, and check out our Code of Conduct.









          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f49440%2fweb-scrapping-with-beautifulsoup-is-done-slowly%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          Juan Esteban de la Calle is a new contributor. Be nice, and check out our Code of Conduct.









          draft saved

          draft discarded


















          Juan Esteban de la Calle is a new contributor. Be nice, and check out our Code of Conduct.












          Juan Esteban de la Calle is a new contributor. Be nice, and check out our Code of Conduct.











          Juan Esteban de la Calle is a new contributor. Be nice, and check out our Code of Conduct.














          Thanks for contributing an answer to Data Science Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f49440%2fweb-scrapping-with-beautifulsoup-is-done-slowly%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Францішак Багушэвіч Змест Сям'я | Біяграфія | Творчасць | Мова Багушэвіча | Ацэнкі дзейнасці | Цікавыя факты | Спадчына | Выбраная бібліяграфія | Ушанаванне памяці | У філатэліі | Зноскі | Літаратура | Спасылкі | НавігацыяЛяхоўскі У. Рупіўся дзеля Бога і людзей: Жыццёвы шлях Лявона Вітан-Дубейкаўскага // Вольскі і Памідораў з песняй пра немца Адвакат, паэт, народны заступнік Ашмянскі веснікВ Минске появится площадь Богушевича и улица Сырокомли, Белорусская деловая газета, 19 июля 2001 г.Айцец беларускай нацыянальнай ідэі паўстаў у бронзе Сяргей Аляксандравіч Адашкевіч (1918, Мінск). 80-я гады. Бюст «Францішак Багушэвіч».Яўген Мікалаевіч Ціхановіч. «Партрэт Францішка Багушэвіча»Мікола Мікалаевіч Купава. «Партрэт зачынальніка новай беларускай літаратуры Францішка Багушэвіча»Уладзімір Іванавіч Мелехаў. На помніку «Змагарам за родную мову» Барэльеф «Францішак Багушэвіч»Памяць пра Багушэвіча на Віленшчыне Страчаная сталіца. Беларускія шыльды на вуліцах Вільні«Krynica». Ideologia i przywódcy białoruskiego katolicyzmuФранцішак БагушэвічТворы на knihi.comТворы Францішка Багушэвіча на bellib.byСодаль Уладзімір. Францішак Багушэвіч на Лідчыне;Луцкевіч Антон. Жыцьцё і творчасьць Фр. Багушэвіча ў успамінах ягоных сучасьнікаў // Запісы Беларускага Навуковага таварыства. Вільня, 1938. Сшытак 1. С. 16-34.Большая российская1188761710000 0000 5537 633Xn9209310021619551927869394п

          Partai Komunis Tiongkok Daftar isi Kepemimpinan | Pranala luar | Referensi | Menu navigasidiperiksa1 perubahan tertundacpc.people.com.cnSitus resmiSurat kabar resmi"Why the Communist Party is alive, well and flourishing in China"0307-1235"Full text of Constitution of Communist Party of China"smengembangkannyas

          ValueError: Expected n_neighbors <= n_samples, but n_samples = 1, n_neighbors = 6 (SMOTE) The 2019 Stack Overflow Developer Survey Results Are InCan SMOTE be applied over sequence of words (sentences)?ValueError when doing validation with random forestsSMOTE and multi class oversamplingLogic behind SMOTE-NC?ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)SmoteBoost: Should SMOTE be ran individually for each iteration/tree in the boosting?solving multi-class imbalance classification using smote and OSSUsing SMOTE for Synthetic Data generation to improve performance on unbalanced dataproblem of entry format for a simple model in KerasSVM SMOTE fit_resample() function runs forever with no result