Something is disastrously wrong with my neural network and what it's produced Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) 2019 Moderator Election Q&A - Questionnaire 2019 Community Moderator Election ResultsDetecting anomalies with neural networkpredict sinus with keras feed forward neural networkMy Neural network in Tensorflow does a bad job in comparison to the same Neural network in KerasValue error in Merging two different models in kerasUnderstanding a Neural Network with Keras (preferably), TensorFlow or PyTorchHow to define a multi-dimensional neural network with kerasRunning Neural Network experiments in loopDealing with Error in Neural Network inputNeural Network Data Normalization SetupNeural network with different input shapes

What's the purpose of writing one's academic biography in the third person?

The logistics of corpse disposal

2001: A Space Odyssey's use of the song "Daisy Bell" (Bicycle Built for Two); life imitates art or vice-versa?

Why am I getting the error "non-boolean type specified in a context where a condition is expected" for this request?

Do I really need recursive chmod to restrict access to a folder?

What is a non-alternating simple group with big order, but relatively few conjugacy classes?

How does the particle を relate to the verb 行く in the structure「A を + B に行く」?

Echoing a tail command produces unexpected output?

What is Arya's weapon design?

Identify plant with long narrow paired leaves and reddish stems

Why do we bend a book to keep it straight?

If a contract sometimes uses the wrong name, is it still valid?

How to answer "Have you ever been terminated?"

How does debian/ubuntu knows a package has a updated version

How to call a function with default parameter through a pointer to function that is the return of another function?

How do I keep my slimes from escaping their pens?

Sci-Fi book where patients in a coma ward all live in a subconscious world linked together

Using audio cues to encourage good posture

Why was the term "discrete" used in discrete logarithm?

What LEGO pieces have "real-world" functionality?

Error "illegal generic type for instanceof" when using local classes

porting install scripts : can rpm replace apt?

Why did the Falcon Heavy center core fall off the ASDS OCISLY barge?

What exactly is a "Meth" in Altered Carbon?



Something is disastrously wrong with my neural network and what it's produced



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)
2019 Moderator Election Q&A - Questionnaire
2019 Community Moderator Election ResultsDetecting anomalies with neural networkpredict sinus with keras feed forward neural networkMy Neural network in Tensorflow does a bad job in comparison to the same Neural network in KerasValue error in Merging two different models in kerasUnderstanding a Neural Network with Keras (preferably), TensorFlow or PyTorchHow to define a multi-dimensional neural network with kerasRunning Neural Network experiments in loopDealing with Error in Neural Network inputNeural Network Data Normalization SetupNeural network with different input shapes










0












$begingroup$


I just got a neural network to run and although it doesn't raise any exceptions, I'm left with a horrible mess after 80 to 100 epochs:



After 100 epochs: After 100 epochs



I am trying to generate a synthetic image of a cat from my own database of cat photos that I compiled using a crawler. I am using an adapted code originally intended for the MNSIT handwritten digits database (hence the shape of the grid).



The network doesn't appear to be training, generating or discriminating properly because the epochs aren't taking long at all and what is being produced is very poor.



To be clear, I've tried to adapt another author's code that I found online and I've added other snippets of code to try to get it to work. It's evident that my 'FrankenNet' has fallen to bits and my 'bolt it together and see what happens' approach has its limitations. In the future I plan to be more efficient and logical with how I learn Python because my experimental method has proved to be both time consuming and unpredictable.



Maybe I haven't loaded in the data correctly or perhaps there are a few other issues such as converting the data to a numpy array?



For the simple fact that I don't know exactly what is causing this (I have limited experience in programming), and because there are no exceptions raised when I run the program, I will offer the entire code below.



I'd love some advice because I really want to generate something and I've spent a long time trying to work it out through trial and error with no results. I'd especially appreciate some specific suggestions about what lines I need to change, add or remove to get this beast up to scratch.



Thank you for your time!



import os
import numpy as np
from sklearn.model_selection import train_test_split
import matplotlib

matplotlib.use("TkAgg")
from matplotlib import pyplot as plt
from tqdm import tqdm
from keras.layers import Input
from keras.models import Model, Sequential
from keras.layers.core import Dense, Dropout
from keras.layers.advanced_activations import LeakyReLU
from keras.optimizers import Adam
from keras import initializers

os.environ["KERAS_BACKEND"] = "tensorflow"
np.random.seed(10)
random_dim = 100
from os import listdir
from PIL import Image as PImage


def loadImages(path):
# return array of images
imagesList = listdir(path)
loadedImages = []
for image in imagesList:
img = PImage.open(path + image)
loadedImages.append(img)
return loadedImages


DATASET_NAME = 'cats'
ROOT_DIR = '/Users/Darren/desktop'
DATASET_DIR = f'ROOT_DIR/DATASET_NAME'
input_files = [os.path.join(dp, f) for dp, dn, fn in
os.walk(os.path.expanduser(f'DATASET_DIR/processed')) for f in fn
if f != '.DS_Store']
imgs = np.ndarray(shape=(len(input_files), 100, 100, 3),
dtype=np.int)
for i, input_file in enumerate(input_files):
# print('processing file: '.format(input_file))
image = imread(input_file)
imgs[i] = image
# your images in an array
imgs = loadImages(path)

PATH = os.getcwd()

train_path = PATH + '/cats/train'
train_batch = os.listdir(train_path)
x_train = []

# if data are in form of images
img_path = train_path
test_path = PATH + '/cats/test'
test_batch = os.listdir(test_path)
x_test = []

# finally converting list into numpy array
x_train = np.array(x_train)
x_test = np.array(x_test)

def get_optimizer():
return Adam(lr=0.0002, beta_1=0.5)


def get_generator(optimizer):
generator = Sequential()
generator.add(Dense(256, input_dim=random_dim,
kernel_initializer=initializers.RandomNormal(stddev=0.02)))
generator.add(LeakyReLU(0.2))
generator.add(Dense(512))
generator.add(LeakyReLU(0.2))
generator.add(Dense(1024))
generator.add(LeakyReLU(0.2))
generator.add(Dense(784, activation='tanh'))
generator.compile(loss='binary_crossentropy', optimizer=optimizer)
return generator


def get_discriminator(optimizer):
discriminator = Sequential()
discriminator.add(Dense(1024, input_dim=784,
kernel_initializer=initializers.RandomNormal(stddev=0.02)))
discriminator.add(LeakyReLU(0.2))
discriminator.add(Dropout(0.3))
discriminator.add(Dense(512))
discriminator.add(LeakyReLU(0.2))
discriminator.add(Dropout(0.3))
discriminator.add(Dense(256))
discriminator.add(LeakyReLU(0.2))
discriminator.add(Dropout(0.3))
discriminator.add(Dense(1, activation='sigmoid'))
discriminator.compile(loss='binary_crossentropy', optimizer=optimizer)
return discriminator


def get_gan_network(discriminator, random_dim, generator, optimizer):
discriminator.trainable = False
gan_input = Input(shape=(random_dim,))
x = generator(gan_input)
gan_output = discriminator(x)
gan = Model(inputs=gan_input, outputs=gan_output)
gan.compile(loss='binary_crossentropy', optimizer=optimizer)
return gan


def plot_generated_images(epoch, generator, examples=100, dim=(10, 10),
figsize=(10, 10)):
noise = np.random.normal(0, 1, size=[examples, random_dim])
generated_images = generator.predict(noise)
generated_images = generated_images.reshape(examples, 28, 28)
plt.figure(figsize=figsize)
for i in range(generated_images.shape[0]):
plt.subplot(dim[0], dim[1], i + 1)
plt.imshow(generated_images[i], interpolation='nearest', cmap='gray_r')
plt.axis('off')
plt.tight_layout()
plt.savefig('gan_generated_image_epoch_%d.png' % epoch)


def train(epochs=1, batch_size=128):
batch_count = x_train.shape[0] // batch_size
adam = get_optimizer()
generator = get_generator(adam)
discriminator = get_discriminator(adam)
gan = get_gan_network(discriminator, random_dim, generator, adam)
for e in range(1, epochs + 1):
print('-' * 15, 'Epoch %d' % e, '-' * 15)
for _ in tqdm(range(batch_count)):
noise = np.random.normal(0, 1, size=[batch_size, random_dim])
image_batch = x_train[np.random.randint(0, x_train.shape[0], size=batch_size)]
generated_images = generator.predict(noise)
X = np.concatenate([image_batch, generated_images])
y_dis = np.zeros(2 * batch_size)
y_dis[:batch_size] = 0.9
discriminator.trainable = True
discriminator.train_on_batch(X, y_dis)
noise = np.random.normal(0, 1, size=[batch_size, random_dim])
y_gen = np.ones(batch_size)
discriminator.trainable = False
gan.train_on_batch(noise, y_gen)
if e == 1 or e % 20 == 0:
plot_generated_images(e, generator)


if __name__ == '__main__':
train(400, 128)









share|improve this question









New contributor




Darren is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$
















    0












    $begingroup$


    I just got a neural network to run and although it doesn't raise any exceptions, I'm left with a horrible mess after 80 to 100 epochs:



    After 100 epochs: After 100 epochs



    I am trying to generate a synthetic image of a cat from my own database of cat photos that I compiled using a crawler. I am using an adapted code originally intended for the MNSIT handwritten digits database (hence the shape of the grid).



    The network doesn't appear to be training, generating or discriminating properly because the epochs aren't taking long at all and what is being produced is very poor.



    To be clear, I've tried to adapt another author's code that I found online and I've added other snippets of code to try to get it to work. It's evident that my 'FrankenNet' has fallen to bits and my 'bolt it together and see what happens' approach has its limitations. In the future I plan to be more efficient and logical with how I learn Python because my experimental method has proved to be both time consuming and unpredictable.



    Maybe I haven't loaded in the data correctly or perhaps there are a few other issues such as converting the data to a numpy array?



    For the simple fact that I don't know exactly what is causing this (I have limited experience in programming), and because there are no exceptions raised when I run the program, I will offer the entire code below.



    I'd love some advice because I really want to generate something and I've spent a long time trying to work it out through trial and error with no results. I'd especially appreciate some specific suggestions about what lines I need to change, add or remove to get this beast up to scratch.



    Thank you for your time!



    import os
    import numpy as np
    from sklearn.model_selection import train_test_split
    import matplotlib

    matplotlib.use("TkAgg")
    from matplotlib import pyplot as plt
    from tqdm import tqdm
    from keras.layers import Input
    from keras.models import Model, Sequential
    from keras.layers.core import Dense, Dropout
    from keras.layers.advanced_activations import LeakyReLU
    from keras.optimizers import Adam
    from keras import initializers

    os.environ["KERAS_BACKEND"] = "tensorflow"
    np.random.seed(10)
    random_dim = 100
    from os import listdir
    from PIL import Image as PImage


    def loadImages(path):
    # return array of images
    imagesList = listdir(path)
    loadedImages = []
    for image in imagesList:
    img = PImage.open(path + image)
    loadedImages.append(img)
    return loadedImages


    DATASET_NAME = 'cats'
    ROOT_DIR = '/Users/Darren/desktop'
    DATASET_DIR = f'ROOT_DIR/DATASET_NAME'
    input_files = [os.path.join(dp, f) for dp, dn, fn in
    os.walk(os.path.expanduser(f'DATASET_DIR/processed')) for f in fn
    if f != '.DS_Store']
    imgs = np.ndarray(shape=(len(input_files), 100, 100, 3),
    dtype=np.int)
    for i, input_file in enumerate(input_files):
    # print('processing file: '.format(input_file))
    image = imread(input_file)
    imgs[i] = image
    # your images in an array
    imgs = loadImages(path)

    PATH = os.getcwd()

    train_path = PATH + '/cats/train'
    train_batch = os.listdir(train_path)
    x_train = []

    # if data are in form of images
    img_path = train_path
    test_path = PATH + '/cats/test'
    test_batch = os.listdir(test_path)
    x_test = []

    # finally converting list into numpy array
    x_train = np.array(x_train)
    x_test = np.array(x_test)

    def get_optimizer():
    return Adam(lr=0.0002, beta_1=0.5)


    def get_generator(optimizer):
    generator = Sequential()
    generator.add(Dense(256, input_dim=random_dim,
    kernel_initializer=initializers.RandomNormal(stddev=0.02)))
    generator.add(LeakyReLU(0.2))
    generator.add(Dense(512))
    generator.add(LeakyReLU(0.2))
    generator.add(Dense(1024))
    generator.add(LeakyReLU(0.2))
    generator.add(Dense(784, activation='tanh'))
    generator.compile(loss='binary_crossentropy', optimizer=optimizer)
    return generator


    def get_discriminator(optimizer):
    discriminator = Sequential()
    discriminator.add(Dense(1024, input_dim=784,
    kernel_initializer=initializers.RandomNormal(stddev=0.02)))
    discriminator.add(LeakyReLU(0.2))
    discriminator.add(Dropout(0.3))
    discriminator.add(Dense(512))
    discriminator.add(LeakyReLU(0.2))
    discriminator.add(Dropout(0.3))
    discriminator.add(Dense(256))
    discriminator.add(LeakyReLU(0.2))
    discriminator.add(Dropout(0.3))
    discriminator.add(Dense(1, activation='sigmoid'))
    discriminator.compile(loss='binary_crossentropy', optimizer=optimizer)
    return discriminator


    def get_gan_network(discriminator, random_dim, generator, optimizer):
    discriminator.trainable = False
    gan_input = Input(shape=(random_dim,))
    x = generator(gan_input)
    gan_output = discriminator(x)
    gan = Model(inputs=gan_input, outputs=gan_output)
    gan.compile(loss='binary_crossentropy', optimizer=optimizer)
    return gan


    def plot_generated_images(epoch, generator, examples=100, dim=(10, 10),
    figsize=(10, 10)):
    noise = np.random.normal(0, 1, size=[examples, random_dim])
    generated_images = generator.predict(noise)
    generated_images = generated_images.reshape(examples, 28, 28)
    plt.figure(figsize=figsize)
    for i in range(generated_images.shape[0]):
    plt.subplot(dim[0], dim[1], i + 1)
    plt.imshow(generated_images[i], interpolation='nearest', cmap='gray_r')
    plt.axis('off')
    plt.tight_layout()
    plt.savefig('gan_generated_image_epoch_%d.png' % epoch)


    def train(epochs=1, batch_size=128):
    batch_count = x_train.shape[0] // batch_size
    adam = get_optimizer()
    generator = get_generator(adam)
    discriminator = get_discriminator(adam)
    gan = get_gan_network(discriminator, random_dim, generator, adam)
    for e in range(1, epochs + 1):
    print('-' * 15, 'Epoch %d' % e, '-' * 15)
    for _ in tqdm(range(batch_count)):
    noise = np.random.normal(0, 1, size=[batch_size, random_dim])
    image_batch = x_train[np.random.randint(0, x_train.shape[0], size=batch_size)]
    generated_images = generator.predict(noise)
    X = np.concatenate([image_batch, generated_images])
    y_dis = np.zeros(2 * batch_size)
    y_dis[:batch_size] = 0.9
    discriminator.trainable = True
    discriminator.train_on_batch(X, y_dis)
    noise = np.random.normal(0, 1, size=[batch_size, random_dim])
    y_gen = np.ones(batch_size)
    discriminator.trainable = False
    gan.train_on_batch(noise, y_gen)
    if e == 1 or e % 20 == 0:
    plot_generated_images(e, generator)


    if __name__ == '__main__':
    train(400, 128)









    share|improve this question









    New contributor




    Darren is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$














      0












      0








      0





      $begingroup$


      I just got a neural network to run and although it doesn't raise any exceptions, I'm left with a horrible mess after 80 to 100 epochs:



      After 100 epochs: After 100 epochs



      I am trying to generate a synthetic image of a cat from my own database of cat photos that I compiled using a crawler. I am using an adapted code originally intended for the MNSIT handwritten digits database (hence the shape of the grid).



      The network doesn't appear to be training, generating or discriminating properly because the epochs aren't taking long at all and what is being produced is very poor.



      To be clear, I've tried to adapt another author's code that I found online and I've added other snippets of code to try to get it to work. It's evident that my 'FrankenNet' has fallen to bits and my 'bolt it together and see what happens' approach has its limitations. In the future I plan to be more efficient and logical with how I learn Python because my experimental method has proved to be both time consuming and unpredictable.



      Maybe I haven't loaded in the data correctly or perhaps there are a few other issues such as converting the data to a numpy array?



      For the simple fact that I don't know exactly what is causing this (I have limited experience in programming), and because there are no exceptions raised when I run the program, I will offer the entire code below.



      I'd love some advice because I really want to generate something and I've spent a long time trying to work it out through trial and error with no results. I'd especially appreciate some specific suggestions about what lines I need to change, add or remove to get this beast up to scratch.



      Thank you for your time!



      import os
      import numpy as np
      from sklearn.model_selection import train_test_split
      import matplotlib

      matplotlib.use("TkAgg")
      from matplotlib import pyplot as plt
      from tqdm import tqdm
      from keras.layers import Input
      from keras.models import Model, Sequential
      from keras.layers.core import Dense, Dropout
      from keras.layers.advanced_activations import LeakyReLU
      from keras.optimizers import Adam
      from keras import initializers

      os.environ["KERAS_BACKEND"] = "tensorflow"
      np.random.seed(10)
      random_dim = 100
      from os import listdir
      from PIL import Image as PImage


      def loadImages(path):
      # return array of images
      imagesList = listdir(path)
      loadedImages = []
      for image in imagesList:
      img = PImage.open(path + image)
      loadedImages.append(img)
      return loadedImages


      DATASET_NAME = 'cats'
      ROOT_DIR = '/Users/Darren/desktop'
      DATASET_DIR = f'ROOT_DIR/DATASET_NAME'
      input_files = [os.path.join(dp, f) for dp, dn, fn in
      os.walk(os.path.expanduser(f'DATASET_DIR/processed')) for f in fn
      if f != '.DS_Store']
      imgs = np.ndarray(shape=(len(input_files), 100, 100, 3),
      dtype=np.int)
      for i, input_file in enumerate(input_files):
      # print('processing file: '.format(input_file))
      image = imread(input_file)
      imgs[i] = image
      # your images in an array
      imgs = loadImages(path)

      PATH = os.getcwd()

      train_path = PATH + '/cats/train'
      train_batch = os.listdir(train_path)
      x_train = []

      # if data are in form of images
      img_path = train_path
      test_path = PATH + '/cats/test'
      test_batch = os.listdir(test_path)
      x_test = []

      # finally converting list into numpy array
      x_train = np.array(x_train)
      x_test = np.array(x_test)

      def get_optimizer():
      return Adam(lr=0.0002, beta_1=0.5)


      def get_generator(optimizer):
      generator = Sequential()
      generator.add(Dense(256, input_dim=random_dim,
      kernel_initializer=initializers.RandomNormal(stddev=0.02)))
      generator.add(LeakyReLU(0.2))
      generator.add(Dense(512))
      generator.add(LeakyReLU(0.2))
      generator.add(Dense(1024))
      generator.add(LeakyReLU(0.2))
      generator.add(Dense(784, activation='tanh'))
      generator.compile(loss='binary_crossentropy', optimizer=optimizer)
      return generator


      def get_discriminator(optimizer):
      discriminator = Sequential()
      discriminator.add(Dense(1024, input_dim=784,
      kernel_initializer=initializers.RandomNormal(stddev=0.02)))
      discriminator.add(LeakyReLU(0.2))
      discriminator.add(Dropout(0.3))
      discriminator.add(Dense(512))
      discriminator.add(LeakyReLU(0.2))
      discriminator.add(Dropout(0.3))
      discriminator.add(Dense(256))
      discriminator.add(LeakyReLU(0.2))
      discriminator.add(Dropout(0.3))
      discriminator.add(Dense(1, activation='sigmoid'))
      discriminator.compile(loss='binary_crossentropy', optimizer=optimizer)
      return discriminator


      def get_gan_network(discriminator, random_dim, generator, optimizer):
      discriminator.trainable = False
      gan_input = Input(shape=(random_dim,))
      x = generator(gan_input)
      gan_output = discriminator(x)
      gan = Model(inputs=gan_input, outputs=gan_output)
      gan.compile(loss='binary_crossentropy', optimizer=optimizer)
      return gan


      def plot_generated_images(epoch, generator, examples=100, dim=(10, 10),
      figsize=(10, 10)):
      noise = np.random.normal(0, 1, size=[examples, random_dim])
      generated_images = generator.predict(noise)
      generated_images = generated_images.reshape(examples, 28, 28)
      plt.figure(figsize=figsize)
      for i in range(generated_images.shape[0]):
      plt.subplot(dim[0], dim[1], i + 1)
      plt.imshow(generated_images[i], interpolation='nearest', cmap='gray_r')
      plt.axis('off')
      plt.tight_layout()
      plt.savefig('gan_generated_image_epoch_%d.png' % epoch)


      def train(epochs=1, batch_size=128):
      batch_count = x_train.shape[0] // batch_size
      adam = get_optimizer()
      generator = get_generator(adam)
      discriminator = get_discriminator(adam)
      gan = get_gan_network(discriminator, random_dim, generator, adam)
      for e in range(1, epochs + 1):
      print('-' * 15, 'Epoch %d' % e, '-' * 15)
      for _ in tqdm(range(batch_count)):
      noise = np.random.normal(0, 1, size=[batch_size, random_dim])
      image_batch = x_train[np.random.randint(0, x_train.shape[0], size=batch_size)]
      generated_images = generator.predict(noise)
      X = np.concatenate([image_batch, generated_images])
      y_dis = np.zeros(2 * batch_size)
      y_dis[:batch_size] = 0.9
      discriminator.trainable = True
      discriminator.train_on_batch(X, y_dis)
      noise = np.random.normal(0, 1, size=[batch_size, random_dim])
      y_gen = np.ones(batch_size)
      discriminator.trainable = False
      gan.train_on_batch(noise, y_gen)
      if e == 1 or e % 20 == 0:
      plot_generated_images(e, generator)


      if __name__ == '__main__':
      train(400, 128)









      share|improve this question









      New contributor




      Darren is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      I just got a neural network to run and although it doesn't raise any exceptions, I'm left with a horrible mess after 80 to 100 epochs:



      After 100 epochs: After 100 epochs



      I am trying to generate a synthetic image of a cat from my own database of cat photos that I compiled using a crawler. I am using an adapted code originally intended for the MNSIT handwritten digits database (hence the shape of the grid).



      The network doesn't appear to be training, generating or discriminating properly because the epochs aren't taking long at all and what is being produced is very poor.



      To be clear, I've tried to adapt another author's code that I found online and I've added other snippets of code to try to get it to work. It's evident that my 'FrankenNet' has fallen to bits and my 'bolt it together and see what happens' approach has its limitations. In the future I plan to be more efficient and logical with how I learn Python because my experimental method has proved to be both time consuming and unpredictable.



      Maybe I haven't loaded in the data correctly or perhaps there are a few other issues such as converting the data to a numpy array?



      For the simple fact that I don't know exactly what is causing this (I have limited experience in programming), and because there are no exceptions raised when I run the program, I will offer the entire code below.



      I'd love some advice because I really want to generate something and I've spent a long time trying to work it out through trial and error with no results. I'd especially appreciate some specific suggestions about what lines I need to change, add or remove to get this beast up to scratch.



      Thank you for your time!



      import os
      import numpy as np
      from sklearn.model_selection import train_test_split
      import matplotlib

      matplotlib.use("TkAgg")
      from matplotlib import pyplot as plt
      from tqdm import tqdm
      from keras.layers import Input
      from keras.models import Model, Sequential
      from keras.layers.core import Dense, Dropout
      from keras.layers.advanced_activations import LeakyReLU
      from keras.optimizers import Adam
      from keras import initializers

      os.environ["KERAS_BACKEND"] = "tensorflow"
      np.random.seed(10)
      random_dim = 100
      from os import listdir
      from PIL import Image as PImage


      def loadImages(path):
      # return array of images
      imagesList = listdir(path)
      loadedImages = []
      for image in imagesList:
      img = PImage.open(path + image)
      loadedImages.append(img)
      return loadedImages


      DATASET_NAME = 'cats'
      ROOT_DIR = '/Users/Darren/desktop'
      DATASET_DIR = f'ROOT_DIR/DATASET_NAME'
      input_files = [os.path.join(dp, f) for dp, dn, fn in
      os.walk(os.path.expanduser(f'DATASET_DIR/processed')) for f in fn
      if f != '.DS_Store']
      imgs = np.ndarray(shape=(len(input_files), 100, 100, 3),
      dtype=np.int)
      for i, input_file in enumerate(input_files):
      # print('processing file: '.format(input_file))
      image = imread(input_file)
      imgs[i] = image
      # your images in an array
      imgs = loadImages(path)

      PATH = os.getcwd()

      train_path = PATH + '/cats/train'
      train_batch = os.listdir(train_path)
      x_train = []

      # if data are in form of images
      img_path = train_path
      test_path = PATH + '/cats/test'
      test_batch = os.listdir(test_path)
      x_test = []

      # finally converting list into numpy array
      x_train = np.array(x_train)
      x_test = np.array(x_test)

      def get_optimizer():
      return Adam(lr=0.0002, beta_1=0.5)


      def get_generator(optimizer):
      generator = Sequential()
      generator.add(Dense(256, input_dim=random_dim,
      kernel_initializer=initializers.RandomNormal(stddev=0.02)))
      generator.add(LeakyReLU(0.2))
      generator.add(Dense(512))
      generator.add(LeakyReLU(0.2))
      generator.add(Dense(1024))
      generator.add(LeakyReLU(0.2))
      generator.add(Dense(784, activation='tanh'))
      generator.compile(loss='binary_crossentropy', optimizer=optimizer)
      return generator


      def get_discriminator(optimizer):
      discriminator = Sequential()
      discriminator.add(Dense(1024, input_dim=784,
      kernel_initializer=initializers.RandomNormal(stddev=0.02)))
      discriminator.add(LeakyReLU(0.2))
      discriminator.add(Dropout(0.3))
      discriminator.add(Dense(512))
      discriminator.add(LeakyReLU(0.2))
      discriminator.add(Dropout(0.3))
      discriminator.add(Dense(256))
      discriminator.add(LeakyReLU(0.2))
      discriminator.add(Dropout(0.3))
      discriminator.add(Dense(1, activation='sigmoid'))
      discriminator.compile(loss='binary_crossentropy', optimizer=optimizer)
      return discriminator


      def get_gan_network(discriminator, random_dim, generator, optimizer):
      discriminator.trainable = False
      gan_input = Input(shape=(random_dim,))
      x = generator(gan_input)
      gan_output = discriminator(x)
      gan = Model(inputs=gan_input, outputs=gan_output)
      gan.compile(loss='binary_crossentropy', optimizer=optimizer)
      return gan


      def plot_generated_images(epoch, generator, examples=100, dim=(10, 10),
      figsize=(10, 10)):
      noise = np.random.normal(0, 1, size=[examples, random_dim])
      generated_images = generator.predict(noise)
      generated_images = generated_images.reshape(examples, 28, 28)
      plt.figure(figsize=figsize)
      for i in range(generated_images.shape[0]):
      plt.subplot(dim[0], dim[1], i + 1)
      plt.imshow(generated_images[i], interpolation='nearest', cmap='gray_r')
      plt.axis('off')
      plt.tight_layout()
      plt.savefig('gan_generated_image_epoch_%d.png' % epoch)


      def train(epochs=1, batch_size=128):
      batch_count = x_train.shape[0] // batch_size
      adam = get_optimizer()
      generator = get_generator(adam)
      discriminator = get_discriminator(adam)
      gan = get_gan_network(discriminator, random_dim, generator, adam)
      for e in range(1, epochs + 1):
      print('-' * 15, 'Epoch %d' % e, '-' * 15)
      for _ in tqdm(range(batch_count)):
      noise = np.random.normal(0, 1, size=[batch_size, random_dim])
      image_batch = x_train[np.random.randint(0, x_train.shape[0], size=batch_size)]
      generated_images = generator.predict(noise)
      X = np.concatenate([image_batch, generated_images])
      y_dis = np.zeros(2 * batch_size)
      y_dis[:batch_size] = 0.9
      discriminator.trainable = True
      discriminator.train_on_batch(X, y_dis)
      noise = np.random.normal(0, 1, size=[batch_size, random_dim])
      y_gen = np.ones(batch_size)
      discriminator.trainable = False
      gan.train_on_batch(noise, y_gen)
      if e == 1 or e % 20 == 0:
      plot_generated_images(e, generator)


      if __name__ == '__main__':
      train(400, 128)






      python keras tensorflow gan






      share|improve this question









      New contributor




      Darren is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|improve this question









      New contributor




      Darren is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|improve this question




      share|improve this question








      edited 5 mins ago









      Pedro Henrique Monforte

      502115




      502115






      New contributor




      Darren is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 18 mins ago









      DarrenDarren

      11




      11




      New contributor




      Darren is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Darren is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Darren is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




















          0






          active

          oldest

          votes












          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "557"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );






          Darren is a new contributor. Be nice, and check out our Code of Conduct.









          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f49446%2fsomething-is-disastrously-wrong-with-my-neural-network-and-what-its-produced%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          Darren is a new contributor. Be nice, and check out our Code of Conduct.









          draft saved

          draft discarded


















          Darren is a new contributor. Be nice, and check out our Code of Conduct.












          Darren is a new contributor. Be nice, and check out our Code of Conduct.











          Darren is a new contributor. Be nice, and check out our Code of Conduct.














          Thanks for contributing an answer to Data Science Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f49446%2fsomething-is-disastrously-wrong-with-my-neural-network-and-what-its-produced%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Францішак Багушэвіч Змест Сям'я | Біяграфія | Творчасць | Мова Багушэвіча | Ацэнкі дзейнасці | Цікавыя факты | Спадчына | Выбраная бібліяграфія | Ушанаванне памяці | У філатэліі | Зноскі | Літаратура | Спасылкі | НавігацыяЛяхоўскі У. Рупіўся дзеля Бога і людзей: Жыццёвы шлях Лявона Вітан-Дубейкаўскага // Вольскі і Памідораў з песняй пра немца Адвакат, паэт, народны заступнік Ашмянскі веснікВ Минске появится площадь Богушевича и улица Сырокомли, Белорусская деловая газета, 19 июля 2001 г.Айцец беларускай нацыянальнай ідэі паўстаў у бронзе Сяргей Аляксандравіч Адашкевіч (1918, Мінск). 80-я гады. Бюст «Францішак Багушэвіч».Яўген Мікалаевіч Ціхановіч. «Партрэт Францішка Багушэвіча»Мікола Мікалаевіч Купава. «Партрэт зачынальніка новай беларускай літаратуры Францішка Багушэвіча»Уладзімір Іванавіч Мелехаў. На помніку «Змагарам за родную мову» Барэльеф «Францішак Багушэвіч»Памяць пра Багушэвіча на Віленшчыне Страчаная сталіца. Беларускія шыльды на вуліцах Вільні«Krynica». Ideologia i przywódcy białoruskiego katolicyzmuФранцішак БагушэвічТворы на knihi.comТворы Францішка Багушэвіча на bellib.byСодаль Уладзімір. Францішак Багушэвіч на Лідчыне;Луцкевіч Антон. Жыцьцё і творчасьць Фр. Багушэвіча ў успамінах ягоных сучасьнікаў // Запісы Беларускага Навуковага таварыства. Вільня, 1938. Сшытак 1. С. 16-34.Большая российская1188761710000 0000 5537 633Xn9209310021619551927869394п

          Беларусь Змест Назва Гісторыя Геаграфія Сімволіка Дзяржаўны лад Палітычныя партыі Міжнароднае становішча і знешняя палітыка Адміністрацыйны падзел Насельніцтва Эканоміка Культура і грамадства Сацыяльная сфера Узброеныя сілы Заўвагі Літаратура Спасылкі НавігацыяHGЯOiТоп-2011 г. (па версіі ej.by)Топ-2013 г. (па версіі ej.by)Топ-2016 г. (па версіі ej.by)Топ-2017 г. (па версіі ej.by)Нацыянальны статыстычны камітэт Рэспублікі БеларусьШчыльнасць насельніцтва па краінахhttp://naviny.by/rubrics/society/2011/09/16/ic_articles_116_175144/А. Калечыц, У. Ксяндзоў. Спробы засялення краю неандэртальскім чалавекам.І ў Менску былі мамантыА. Калечыц, У. Ксяндзоў. Старажытны каменны век (палеаліт). Першапачатковае засяленне тэрыторыіГ. Штыхаў. Балты і славяне ў VI—VIII стст.М. Клімаў. Полацкае княства ў IX—XI стст.Г. Штыхаў, В. Ляўко. Палітычная гісторыя Полацкай зямліГ. Штыхаў. Дзяржаўны лад у землях-княствахГ. Штыхаў. Дзяржаўны лад у землях-княствахБеларускія землі ў складзе Вялікага Княства ЛітоўскагаЛюблінская унія 1569 г."The Early Stages of Independence"Zapomniane prawdy25 гадоў таму было аб'яўлена, што Язэп Пілсудскі — беларус (фота)Наша вадаДакументы ЧАЭС: Забруджванне тэрыторыі Беларусі « ЧАЭС Зона адчужэнняСведения о политических партиях, зарегистрированных в Республике Беларусь // Министерство юстиции Республики БеларусьСтатыстычны бюлетэнь „Полаўзроставая структура насельніцтва Рэспублікі Беларусь на 1 студзеня 2012 года і сярэднегадовая колькасць насельніцтва за 2011 год“Индекс человеческого развития Беларуси — не было бы нижеБеларусь занимает первое место в СНГ по индексу развития с учетом гендерного факцёраНацыянальны статыстычны камітэт Рэспублікі БеларусьКанстытуцыя РБ. Артыкул 17Трансфармацыйныя задачы БеларусіВыйсце з крызісу — далейшае рэфармаванне Беларускі рубель — сусветны лідар па дэвальвацыяхПра змену коштаў у кастрычніку 2011 г.Бядней за беларусаў у СНД толькі таджыкіСярэдні заробак у верасні дасягнуў 2,26 мільёна рублёўЭканомікаГаласуем за ТОП-100 беларускай прозыСучасныя беларускія мастакіАрхитектура Беларуси BELARUS.BYА. Каханоўскі. Культура Беларусі ўсярэдзіне XVII—XVIII ст.Анталогія беларускай народнай песні, гуказапісы спеваўБеларускія Музычныя IнструментыБеларускі рок, які мы страцілі. Топ-10 гуртоў«Мясцовы час» — нязгаслая легенда беларускай рок-музыкіСЯРГЕЙ БУДКІН. МЫ НЯ ЗНАЕМ СВАЁЙ МУЗЫКІМ. А. Каладзінскі. НАРОДНЫ ТЭАТРМагнацкія культурныя цэнтрыПублічная дыскусія «Беларуская новая пьеса: без беларускай мовы ці беларуская?»Беларускія драматургі па-ранейшаму лепш ставяцца за мяжой, чым на радзіме«Працэс незалежнага кіно пайшоў, і дзяржаву турбуе яго непадкантрольнасць»Беларускія філосафы ў пошуках прасторыВсе идём в библиотекуАрхіваванаАб Нацыянальнай праграме даследавання і выкарыстання касмічнай прасторы ў мірных мэтах на 2008—2012 гадыУ космас — разам.У суседнім з Барысаўскім раёне пабудуюць Камандна-вымяральны пунктСвяты і абрады беларусаў«Мірныя бульбашы з малой краіны» — 5 непраўдзівых стэрэатыпаў пра БеларусьМ. Раманюк. Беларускае народнае адзеннеУ Беларусі скарачаецца колькасць злачынстваўЛукашэнка незадаволены мінскімі ўладамі Крадзяжы складаюць у Мінску каля 70% злачынстваў Узровень злачыннасці ў Мінскай вобласці — адзін з самых высокіх у краіне Генпракуратура аналізуе стан са злачыннасцю ў Беларусі па каэфіцыенце злачыннасці У Беларусі стабілізавалася крымінагеннае становішча, лічыць генпракурорЗамежнікі сталі здзяйсняць у Беларусі больш злачынстваўМУС Беларусі турбуе рост рэцыдыўнай злачыннасціЯ з ЖЭСа. Дазволіце вас абкрасці! Рэйтынг усіх службаў і падраздзяленняў ГУУС Мінгарвыканкама вырасАб КДБ РБГісторыя Аператыўна-аналітычнага цэнтра РБГісторыя ДКФРТаможняagentura.ruБеларусьBelarus.by — Афіцыйны сайт Рэспублікі БеларусьСайт урада БеларусіRadzima.org — Збор архітэктурных помнікаў, гісторыя Беларусі«Глобус Беларуси»Гербы и флаги БеларусиАсаблівасці каменнага веку на БеларусіА. Калечыц, У. Ксяндзоў. Старажытны каменны век (палеаліт). Першапачатковае засяленне тэрыторыіУ. Ксяндзоў. Сярэдні каменны век (мезаліт). Засяленне краю плямёнамі паляўнічых, рыбакоў і збіральнікаўА. Калечыц, М. Чарняўскі. Плямёны на тэрыторыі Беларусі ў новым каменным веку (неаліце)А. Калечыц, У. Ксяндзоў, М. Чарняўскі. Гаспадарчыя заняткі ў каменным векуЭ. Зайкоўскі. Духоўная культура ў каменным векуАсаблівасці бронзавага веку на БеларусіФарміраванне супольнасцей ранняга перыяду бронзавага векуФотографии БеларусиРоля беларускіх зямель ва ўтварэнні і ўмацаванні ВКЛВ. Фадзеева. З гісторыі развіцця беларускай народнай вышыўкіDMOZGran catalanaБольшая российскаяBritannica (анлайн)Швейцарскі гістарычны15325917611952699xDA123282154079143-90000 0001 2171 2080n9112870100577502ge128882171858027501086026362074122714179пппппп

          ValueError: Expected n_neighbors <= n_samples, but n_samples = 1, n_neighbors = 6 (SMOTE) The 2019 Stack Overflow Developer Survey Results Are InCan SMOTE be applied over sequence of words (sentences)?ValueError when doing validation with random forestsSMOTE and multi class oversamplingLogic behind SMOTE-NC?ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)SmoteBoost: Should SMOTE be ran individually for each iteration/tree in the boosting?solving multi-class imbalance classification using smote and OSSUsing SMOTE for Synthetic Data generation to improve performance on unbalanced dataproblem of entry format for a simple model in KerasSVM SMOTE fit_resample() function runs forever with no result