LSTM not converging2019 Community Moderator Election

Can compressed videos be decoded back to their uncompresed original format?

Is the myth that if you can play one instrument, you can learn another instrument with ease true?

Mathematica command that allows it to read my intentions

CAST throwing error when run in stored procedure but not when run as raw query

What are some good books on Machine Learning and AI like Krugman, Wells and Graddy's "Essentials of Economics"

Avoiding the "not like other girls" trope?

How does a predictive coding aid in lossless compression?

How would I stat a creature to be immune to everything but the Magic Missile spell? (just for fun)

Avoiding direct proof while writing proof by induction

Am I breaking OOP practice with this architecture?

Venezuelan girlfriend wants to travel the USA to be with me. What is the process?

Why no variance term in Bayesian logistic regression?

What mechanic is there to disable a threat instead of killing it?

Why can't we play rap on piano?

Would Slavery Reparations be considered Bills of Attainder and hence Illegal?

In 'Revenger,' what does 'cove' come from?

Do UK voters know if their MP will be the Speaker of the House?

How did the Super Star Destroyer Executor get destroyed exactly?

How to compactly explain secondary and tertiary characters without resorting to stereotypes?

ssTTsSTtRrriinInnnnNNNIiinngg

What's the in-universe reasoning behind sorcerers needing material components?

Should I cover my bicycle overnight while bikepacking?

What does the expression "A Mann!" means

Arrow those variables!



LSTM not converging



2019 Community Moderator Election










0












$begingroup$


I am sorry if this questions is basic but I am quite new to NN in general. I am trying to build an LSTM to predict certain properties of a light curve (the output is 0 or 1). I build it in pytorch. Here is my code:



import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import torch.optim as optim
import numpy as np

torch.manual_seed(1)
torch.cuda.set_device(0)

from fastai.learner import *

n_hidden = 64
n_classes = 2
bs = 1

class TESS_LSTM(nn.Module):
def __init__(self, nl):
super().__init__()
self.nl = nl
self.rnn = nn.LSTM(1, n_hidden, nl, dropout=0.01, bidirectional=True)
self.l_out = nn.Linear(n_hidden*2, n_classes)
self.init_hidden(bs)

def forward(self, input):
outp,h = self.rnn(input.view(len(input), bs, -1), self.h)
#self.h = repackage_var(h)
return F.log_softmax(self.l_out(outp),dim=2)

def init_hidden(self, bs):
self.h = (V(torch.zeros(self.nl*2, bs, n_hidden)),
V(torch.zeros(self.nl*2, bs, n_hidden)))

model = TESS_LSTM(2).cuda()
loss_function = nn.NLLLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

for epoch in range(50):
model.zero_grad()
tag_scores = model(data_x)
loss = loss_function(tag_scores.reshape(len(data_x),n_classes), data_y.reshape(len(data_y)))
loss.backward()
optimizer.step()

if epoch%10==0:
print("Loss at epoch %d = " %epoch, loss)


Also:



data_x = tensor([[0.9995450377],
[0.9991207719],
[0.9986526966],
[1.0017241240],
[1.0016067028],
[1.0000480413],
[1.0016841888],
[1.0010652542],
[0.9991232157],
[1.0004128218],
[0.9986800551],
[1.0011130571],
[1.0001415014],
[1.0004080534],
[1.0016922951],
[1.0008358955],
[1.0001622438],
[1.0004277229],
[1.0011759996],
[1.0013391972],
[0.9995799065],
[1.0019282103],
[1.0006642342],
[1.0006272793],
[1.0011570454],
[1.0015332699],
[1.0011225939],
[1.0003337860],
[1.0014277697],
[1.0003565550],
[0.9989787340],
[1.0006136894],
[1.0003052950],
[1.0001049042],
[1.0020918846],
[0.9999115467],
[1.0006635189],
[1.0007561445],
[1.0016170740],
[1.0008252859],
[0.9997656345],
[1.0001330376],
[1.0017272234],
[1.0004107952],
[1.0012439489],
[0.9994274378],
[1.0014992952],
[1.0015807152],
[1.0004781485],
[1.0010997057],
[1.0011326075],
[1.0005493164],
[1.0014353991],
[0.9990324974],
[1.0012129545],
[0.9990709424],
[1.0006347895],
[1.0000327826],
[1.0005196333],
[1.0012207031],
[1.0003460646],
[1.0004434586],
[1.0003618002],
[1.0005420446],
[1.0005528927],
[1.0006977320],
[1.0005317926],
[1.0000808239],
[1.0005664825],
[0.9994245768],
[0.9999254942],
[1.0011985302],
[1.0009841919],
[0.9999029040],
[1.0014100075],
[1.0014085770],
[1.0005567074],
[1.0016088486],
[0.9997186661],
[0.9998687506],
[0.9988344908],
[0.9999858141],
[1.0004914999],
[1.0003308058],
[1.0001890659],
[1.0002681017],
[1.0029908419],
[1.0005286932],
[1.0004363060],
[0.9994311333],
[1.0011523962],
[1.0008679628],
[1.0014137030],
[0.9994244576],
[1.0003470182],
[1.0001592636],
[1.0002418756],
[0.9992931485],
[1.0016175508],
[1.0000959635],
[1.0005099773],
[1.0008889437],
[0.9998087287],
[0.9995828867],
[0.9997566342],
[1.0002474785],
[1.0010808706],
[1.0002821684],
[1.0013456345],
[1.0013040304],
[1.0010949373],
[1.0002720356],
[0.9996811152],
[1.0006061792],
[1.0012511015],
[0.9999302626],
[0.9985374212],
[1.0002642870],
[0.9996038675],
[1.0007606745],
[0.9992995858],
[1.0000385046],
[0.9997834563],
[1.0005996227],
[1.0006167889],
[1.0015753508],
[1.0010306835],
[0.9997833371],
[1.0010590553],
[1.0008200407],
[1.0008001328],
[1.0014072657],
[0.9994395375],
[0.9991182089],
[1.0011717081],
[1.0007920265],
[1.0011025667],
[1.0004047155],
[1.0017303228],
[1.0014981031],
[0.9995774031],
[0.9999650121],
[0.9992966652],
[1.0013586283],
[1.0003392696],
[1.0005040169],
[1.0008341074],
[1.0014744997],
[0.9996585250],
[1.0019916296],
[1.0007069111],
[1.0004591942],
[1.0004271269],
[0.9991059303],
[1.0003436804],
[0.9990482330],
[0.9980322123],
[0.9980198145],
[0.9966595173],
[0.9969686270],
[0.9977232814],
[0.9969192147],
[0.9962794185],
[0.9947851300],
[0.9946336746],
[0.9943053722],
[0.9946651459],
[0.9930071235],
[0.9940539598],
[0.9950682521],
[0.9947031140],
[0.9950703979],
[0.9945428371],
[0.9945927858],
[0.9937841296],
[0.9944553375],
[0.9929991364],
[0.9940859079],
[0.9930059314],
[0.9942978621],
[0.9950152636],
[0.9943225384],
[0.9934711456],
[0.9929080606],
[0.9934846163],
[0.9954113960],
[0.9925802350],
[0.9929560423],
[0.9933584929],
[0.9929228425],
[0.9930893779],
[0.9936142564],
[0.9943635464],
[0.9933300614],
[0.9925817847],
[0.9927681088],
[0.9930697680],
[0.9937900901],
[0.9919354320],
[0.9937084913],
[0.9951301217],
[0.9926426411],
[0.9933566451],
[0.9937180877],
[0.9922621250],
[0.9933888316],
[0.9936477542],
[0.9916112423],
[0.9943441153],
[0.9934164286],
[0.9949553013],
[0.9941871166],
[0.9933763146],
[0.9959306121],
[0.9930690527],
[0.9928541183],
[0.9936354756],
[0.9931223392],
[0.9936516881],
[0.9935654402],
[0.9932218790],
[0.9943401814],
[0.9931038022],
[0.9926875830],
[0.9928631186],
[0.9936705232],
[0.9939361215],
[0.9942125678],
[0.9939611554],
[0.9936586618],
[0.9933990240],
[0.9948219061],
[0.9940339923],
[0.9950091243],
[0.9952197671],
[0.9947227240],
[0.9935435653],
[0.9956403971],
[0.9943848252],
[0.9942221045],
[0.9960014224],
[0.9931004643],
[0.9960579872],
[0.9951166511],
[0.9964768291],
[0.9968702793],
[0.9967978597],
[0.9971982837],
[0.9977793097],
[0.9982623458],
[0.9988413453],
[1.0008778572],
[1.0013417006],
[1.0000336170],
[0.9979853630],
[0.9988892674],
[0.9994396567],
[1.0002176762],
[1.0017417669],
[1.0013097525],
[1.0011264086],
[1.0004124641],
[1.0003939867],
[0.9996479750],
[0.9995540380],
[1.0003930330],
[1.0016323328],
[1.0004589558],
[0.9996963739],
[0.9989817142],
[0.9998068213],
[1.0011200905],
[1.0006275177],
[1.0000452995],
[1.0012514591],
[1.0002357960],
[0.9993159175],
[1.0002738237],
[0.9994575381],
[0.9986617565],
[0.9982920289],
[0.9998571873],
[0.9996472597],
[1.0012613535],
[1.0015693903],
[0.9999635220],
[1.0006184578],
[1.0010757446],
[0.9988756776],
[1.0004955530],
[1.0011548996],
[1.0007628202],
[1.0006260872],
[0.9989725947],
[1.0013129711],
[0.9994829297],
[0.9998571873],
[0.9994959831],
[1.0007432699],
[0.9995724559],
[0.9999076724],
[0.9992097020],
[1.0011855364],
[0.9987785220],
[1.0010210276],
[0.9998293519],
[0.9996315837],
[0.9999501705],
[1.0001417398],
[1.0005141497],
[0.9993781447],
[1.0003532171],
[0.9999422431],
[1.0014258623],
[1.0012118816],
[0.9994109273],
[1.0019438267],
[1.0012354851],
[1.0009905100],
[1.0001032352],
[0.9999653101],
[0.9991906881],
[1.0004152060],
[0.9998226762],
[0.9999175668],
[0.9994540215],
[1.0000722408],
[1.0019129515],
[0.9997307658],
[0.9996227026],
[1.0011816025],
[0.9993667006],
[1.0010036230],
[0.9993645549],
[1.0004647970],
[0.9995272160],
[0.9989504814],
[0.9981039166],
[1.0006005764],
[0.9998896718],
[1.0004893541],
[0.9991874099],
[1.0005015135],
[0.9995905161],
[0.9990965128],
[1.0012912750],
[1.0004948378],
[1.0002779961],
[0.9988743067],
[1.0019037724],
[1.0006437302],
[0.9999380112],
[1.0001602173],
[0.9997741580],
[0.9988395572],
[0.9999371171],
[0.9989091754],
[0.9987531900],
[1.0003957748],
[0.9997722507],
[0.9988819361],
[0.9998422265],
[0.9986129999],
[0.9989410639],
[1.0016149282],
[0.9997441173],
[1.0002747774],
[0.9990793467],
[1.0006495714],
[1.0004252195],
[0.9997921586],
[0.9987344146],
[0.9998763800],
[0.9988097548],
[1.0007627010],
[1.0004670620],
[1.0007309914],
[0.9987894297],
[1.0000542402],
[1.0004990101],
[0.9999514818],
[0.9998412132],
[1.0000183582],
[1.0003197193],
[0.9991712570],
[0.9992188215],
[0.9986482859],
[1.0010583401],
[1.0011837482],
[0.9993829727],
[0.9995718002],
[0.9997168183],
[1.0017461777],
[0.9998381138],
[0.9990652204],
[1.0001449585],
[0.9998424053],
[1.0011798143],
[1.0013160706],
[0.9995942712],
[1.0001651049],
[1.0001466274],
[0.9982855320],
[0.9992064238],
[1.0009102821],
[0.9982813597],
[1.0000503063],
[0.9982630014],
[1.0017516613],
[0.9995808005],
[0.9989835620],
[1.0003046989],
[1.0019340515],
[0.9996930957],
[1.0000711679],
[1.0011881590],
[1.0009138584],
[1.0013902187],
[0.9994105101],
[0.9986224174],
[0.9995336533],
[1.0006912947],
[0.9995169044],
[0.9998968840],
[0.9989182949],
[0.9999300838],
[0.9991120696],
[0.9996063709],
[1.0008803606],
[1.0019868612],
[1.0004760027],
[0.9996407032],
[1.0011100769],
[1.0026890039],
[0.9996611476],
[0.9991108775],
[0.9982090592],
[1.0000833273],
[1.0015701056],
[0.9994426966],
[0.9999341369],
[1.0002813339],
[0.9998958707],
[1.0011670589],
[1.0009137392],
[0.9994600415],
[1.0010378361],
[1.0008393526],
[1.0013997555],
[0.9994245768],
[0.9995403886],
[0.9997746348],
[0.9997846484],
[1.0012620687],
[1.0009645224],
[0.9995513558],
[1.0008162260],
[1.0008013248],
[0.9990139604],
[1.0004394054],
[0.9991726875],
[1.0009342432],
[1.0008635521],
[1.0007735491],
[1.0013785362],
[0.9997245073],
[0.9989474416],
[0.9996470809],
[1.0008428097],
[1.0017400980],
[0.9994468689],
[0.9999369979],
[1.0007227659],
[1.0012919903],
[0.9981160164],
[0.9999316335],
[0.9997596741],
[1.0008264780],
[0.9994930029],
[1.0001339912],
[0.9998437166],
[0.9999112487],
[1.0001872778],
[1.0006663799],
[1.0007426739],
[1.0016776323],
[0.9996471405],
[0.9981047511],
[1.0007015467],
[1.0006203651],
[0.9987628460],
[0.9981441498],
[0.9981172085],
[0.9999507666],
[1.0002735853],
[1.0006685257],
[1.0001268387],
[1.0000184774],
[0.9998023510],
[1.0006322861]], device='cuda:0')


and



data_y = tensor([[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0]], device='cuda:0')


I read data_x and data_y from a file, so that's why I just pasted the values here. See the image below: 0 corresponds to blue and 1 to red.



And this is the output:



Loss at epoch 0 = tensor(0.6795, device='cuda:0', grad_fn=<NllLossBackward>)
Loss at epoch 10 = tensor(0.4872, device='cuda:0', grad_fn=<NllLossBackward>)
Loss at epoch 20 = tensor(0.4818, device='cuda:0', grad_fn=<NllLossBackward>)
Loss at epoch 30 = tensor(0.4834, device='cuda:0', grad_fn=<NllLossBackward>)
Loss at epoch 40 = tensor(0.4828, device='cuda:0', grad_fn=<NllLossBackward>)


I tried reducing and increasing the learning rate, trying SGD and RMSprop increasing the number of epochs, but the loss always stops at 0.48. This is part of the output of model(data_x):



tensor([[[-0.3617, -1.1924]],

[[-0.3046, -1.3373]],

[[-0.2696, -1.4424]],

[[-0.2477, -1.5169]],

[[-0.2345, -1.5654]],

[[-0.2262, -1.5971]],


And all the other values are similar to this. I expected at least that the LSTM will overfit my model, or at least predict 0 for everything (given that I have just few ones, the loss would still be pretty small). But instead it just predicts these number and I am not sure why it stops there. I tried any debugging method I know (which are not very many given my AI experience). Can someone help me please? Thank you!



enter image description here









share







New contributor




Bill is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$
















    0












    $begingroup$


    I am sorry if this questions is basic but I am quite new to NN in general. I am trying to build an LSTM to predict certain properties of a light curve (the output is 0 or 1). I build it in pytorch. Here is my code:



    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    from torch.autograd import Variable
    import torch.optim as optim
    import numpy as np

    torch.manual_seed(1)
    torch.cuda.set_device(0)

    from fastai.learner import *

    n_hidden = 64
    n_classes = 2
    bs = 1

    class TESS_LSTM(nn.Module):
    def __init__(self, nl):
    super().__init__()
    self.nl = nl
    self.rnn = nn.LSTM(1, n_hidden, nl, dropout=0.01, bidirectional=True)
    self.l_out = nn.Linear(n_hidden*2, n_classes)
    self.init_hidden(bs)

    def forward(self, input):
    outp,h = self.rnn(input.view(len(input), bs, -1), self.h)
    #self.h = repackage_var(h)
    return F.log_softmax(self.l_out(outp),dim=2)

    def init_hidden(self, bs):
    self.h = (V(torch.zeros(self.nl*2, bs, n_hidden)),
    V(torch.zeros(self.nl*2, bs, n_hidden)))

    model = TESS_LSTM(2).cuda()
    loss_function = nn.NLLLoss()
    optimizer = optim.Adam(model.parameters(), lr=0.001)

    for epoch in range(50):
    model.zero_grad()
    tag_scores = model(data_x)
    loss = loss_function(tag_scores.reshape(len(data_x),n_classes), data_y.reshape(len(data_y)))
    loss.backward()
    optimizer.step()

    if epoch%10==0:
    print("Loss at epoch %d = " %epoch, loss)


    Also:



    data_x = tensor([[0.9995450377],
    [0.9991207719],
    [0.9986526966],
    [1.0017241240],
    [1.0016067028],
    [1.0000480413],
    [1.0016841888],
    [1.0010652542],
    [0.9991232157],
    [1.0004128218],
    [0.9986800551],
    [1.0011130571],
    [1.0001415014],
    [1.0004080534],
    [1.0016922951],
    [1.0008358955],
    [1.0001622438],
    [1.0004277229],
    [1.0011759996],
    [1.0013391972],
    [0.9995799065],
    [1.0019282103],
    [1.0006642342],
    [1.0006272793],
    [1.0011570454],
    [1.0015332699],
    [1.0011225939],
    [1.0003337860],
    [1.0014277697],
    [1.0003565550],
    [0.9989787340],
    [1.0006136894],
    [1.0003052950],
    [1.0001049042],
    [1.0020918846],
    [0.9999115467],
    [1.0006635189],
    [1.0007561445],
    [1.0016170740],
    [1.0008252859],
    [0.9997656345],
    [1.0001330376],
    [1.0017272234],
    [1.0004107952],
    [1.0012439489],
    [0.9994274378],
    [1.0014992952],
    [1.0015807152],
    [1.0004781485],
    [1.0010997057],
    [1.0011326075],
    [1.0005493164],
    [1.0014353991],
    [0.9990324974],
    [1.0012129545],
    [0.9990709424],
    [1.0006347895],
    [1.0000327826],
    [1.0005196333],
    [1.0012207031],
    [1.0003460646],
    [1.0004434586],
    [1.0003618002],
    [1.0005420446],
    [1.0005528927],
    [1.0006977320],
    [1.0005317926],
    [1.0000808239],
    [1.0005664825],
    [0.9994245768],
    [0.9999254942],
    [1.0011985302],
    [1.0009841919],
    [0.9999029040],
    [1.0014100075],
    [1.0014085770],
    [1.0005567074],
    [1.0016088486],
    [0.9997186661],
    [0.9998687506],
    [0.9988344908],
    [0.9999858141],
    [1.0004914999],
    [1.0003308058],
    [1.0001890659],
    [1.0002681017],
    [1.0029908419],
    [1.0005286932],
    [1.0004363060],
    [0.9994311333],
    [1.0011523962],
    [1.0008679628],
    [1.0014137030],
    [0.9994244576],
    [1.0003470182],
    [1.0001592636],
    [1.0002418756],
    [0.9992931485],
    [1.0016175508],
    [1.0000959635],
    [1.0005099773],
    [1.0008889437],
    [0.9998087287],
    [0.9995828867],
    [0.9997566342],
    [1.0002474785],
    [1.0010808706],
    [1.0002821684],
    [1.0013456345],
    [1.0013040304],
    [1.0010949373],
    [1.0002720356],
    [0.9996811152],
    [1.0006061792],
    [1.0012511015],
    [0.9999302626],
    [0.9985374212],
    [1.0002642870],
    [0.9996038675],
    [1.0007606745],
    [0.9992995858],
    [1.0000385046],
    [0.9997834563],
    [1.0005996227],
    [1.0006167889],
    [1.0015753508],
    [1.0010306835],
    [0.9997833371],
    [1.0010590553],
    [1.0008200407],
    [1.0008001328],
    [1.0014072657],
    [0.9994395375],
    [0.9991182089],
    [1.0011717081],
    [1.0007920265],
    [1.0011025667],
    [1.0004047155],
    [1.0017303228],
    [1.0014981031],
    [0.9995774031],
    [0.9999650121],
    [0.9992966652],
    [1.0013586283],
    [1.0003392696],
    [1.0005040169],
    [1.0008341074],
    [1.0014744997],
    [0.9996585250],
    [1.0019916296],
    [1.0007069111],
    [1.0004591942],
    [1.0004271269],
    [0.9991059303],
    [1.0003436804],
    [0.9990482330],
    [0.9980322123],
    [0.9980198145],
    [0.9966595173],
    [0.9969686270],
    [0.9977232814],
    [0.9969192147],
    [0.9962794185],
    [0.9947851300],
    [0.9946336746],
    [0.9943053722],
    [0.9946651459],
    [0.9930071235],
    [0.9940539598],
    [0.9950682521],
    [0.9947031140],
    [0.9950703979],
    [0.9945428371],
    [0.9945927858],
    [0.9937841296],
    [0.9944553375],
    [0.9929991364],
    [0.9940859079],
    [0.9930059314],
    [0.9942978621],
    [0.9950152636],
    [0.9943225384],
    [0.9934711456],
    [0.9929080606],
    [0.9934846163],
    [0.9954113960],
    [0.9925802350],
    [0.9929560423],
    [0.9933584929],
    [0.9929228425],
    [0.9930893779],
    [0.9936142564],
    [0.9943635464],
    [0.9933300614],
    [0.9925817847],
    [0.9927681088],
    [0.9930697680],
    [0.9937900901],
    [0.9919354320],
    [0.9937084913],
    [0.9951301217],
    [0.9926426411],
    [0.9933566451],
    [0.9937180877],
    [0.9922621250],
    [0.9933888316],
    [0.9936477542],
    [0.9916112423],
    [0.9943441153],
    [0.9934164286],
    [0.9949553013],
    [0.9941871166],
    [0.9933763146],
    [0.9959306121],
    [0.9930690527],
    [0.9928541183],
    [0.9936354756],
    [0.9931223392],
    [0.9936516881],
    [0.9935654402],
    [0.9932218790],
    [0.9943401814],
    [0.9931038022],
    [0.9926875830],
    [0.9928631186],
    [0.9936705232],
    [0.9939361215],
    [0.9942125678],
    [0.9939611554],
    [0.9936586618],
    [0.9933990240],
    [0.9948219061],
    [0.9940339923],
    [0.9950091243],
    [0.9952197671],
    [0.9947227240],
    [0.9935435653],
    [0.9956403971],
    [0.9943848252],
    [0.9942221045],
    [0.9960014224],
    [0.9931004643],
    [0.9960579872],
    [0.9951166511],
    [0.9964768291],
    [0.9968702793],
    [0.9967978597],
    [0.9971982837],
    [0.9977793097],
    [0.9982623458],
    [0.9988413453],
    [1.0008778572],
    [1.0013417006],
    [1.0000336170],
    [0.9979853630],
    [0.9988892674],
    [0.9994396567],
    [1.0002176762],
    [1.0017417669],
    [1.0013097525],
    [1.0011264086],
    [1.0004124641],
    [1.0003939867],
    [0.9996479750],
    [0.9995540380],
    [1.0003930330],
    [1.0016323328],
    [1.0004589558],
    [0.9996963739],
    [0.9989817142],
    [0.9998068213],
    [1.0011200905],
    [1.0006275177],
    [1.0000452995],
    [1.0012514591],
    [1.0002357960],
    [0.9993159175],
    [1.0002738237],
    [0.9994575381],
    [0.9986617565],
    [0.9982920289],
    [0.9998571873],
    [0.9996472597],
    [1.0012613535],
    [1.0015693903],
    [0.9999635220],
    [1.0006184578],
    [1.0010757446],
    [0.9988756776],
    [1.0004955530],
    [1.0011548996],
    [1.0007628202],
    [1.0006260872],
    [0.9989725947],
    [1.0013129711],
    [0.9994829297],
    [0.9998571873],
    [0.9994959831],
    [1.0007432699],
    [0.9995724559],
    [0.9999076724],
    [0.9992097020],
    [1.0011855364],
    [0.9987785220],
    [1.0010210276],
    [0.9998293519],
    [0.9996315837],
    [0.9999501705],
    [1.0001417398],
    [1.0005141497],
    [0.9993781447],
    [1.0003532171],
    [0.9999422431],
    [1.0014258623],
    [1.0012118816],
    [0.9994109273],
    [1.0019438267],
    [1.0012354851],
    [1.0009905100],
    [1.0001032352],
    [0.9999653101],
    [0.9991906881],
    [1.0004152060],
    [0.9998226762],
    [0.9999175668],
    [0.9994540215],
    [1.0000722408],
    [1.0019129515],
    [0.9997307658],
    [0.9996227026],
    [1.0011816025],
    [0.9993667006],
    [1.0010036230],
    [0.9993645549],
    [1.0004647970],
    [0.9995272160],
    [0.9989504814],
    [0.9981039166],
    [1.0006005764],
    [0.9998896718],
    [1.0004893541],
    [0.9991874099],
    [1.0005015135],
    [0.9995905161],
    [0.9990965128],
    [1.0012912750],
    [1.0004948378],
    [1.0002779961],
    [0.9988743067],
    [1.0019037724],
    [1.0006437302],
    [0.9999380112],
    [1.0001602173],
    [0.9997741580],
    [0.9988395572],
    [0.9999371171],
    [0.9989091754],
    [0.9987531900],
    [1.0003957748],
    [0.9997722507],
    [0.9988819361],
    [0.9998422265],
    [0.9986129999],
    [0.9989410639],
    [1.0016149282],
    [0.9997441173],
    [1.0002747774],
    [0.9990793467],
    [1.0006495714],
    [1.0004252195],
    [0.9997921586],
    [0.9987344146],
    [0.9998763800],
    [0.9988097548],
    [1.0007627010],
    [1.0004670620],
    [1.0007309914],
    [0.9987894297],
    [1.0000542402],
    [1.0004990101],
    [0.9999514818],
    [0.9998412132],
    [1.0000183582],
    [1.0003197193],
    [0.9991712570],
    [0.9992188215],
    [0.9986482859],
    [1.0010583401],
    [1.0011837482],
    [0.9993829727],
    [0.9995718002],
    [0.9997168183],
    [1.0017461777],
    [0.9998381138],
    [0.9990652204],
    [1.0001449585],
    [0.9998424053],
    [1.0011798143],
    [1.0013160706],
    [0.9995942712],
    [1.0001651049],
    [1.0001466274],
    [0.9982855320],
    [0.9992064238],
    [1.0009102821],
    [0.9982813597],
    [1.0000503063],
    [0.9982630014],
    [1.0017516613],
    [0.9995808005],
    [0.9989835620],
    [1.0003046989],
    [1.0019340515],
    [0.9996930957],
    [1.0000711679],
    [1.0011881590],
    [1.0009138584],
    [1.0013902187],
    [0.9994105101],
    [0.9986224174],
    [0.9995336533],
    [1.0006912947],
    [0.9995169044],
    [0.9998968840],
    [0.9989182949],
    [0.9999300838],
    [0.9991120696],
    [0.9996063709],
    [1.0008803606],
    [1.0019868612],
    [1.0004760027],
    [0.9996407032],
    [1.0011100769],
    [1.0026890039],
    [0.9996611476],
    [0.9991108775],
    [0.9982090592],
    [1.0000833273],
    [1.0015701056],
    [0.9994426966],
    [0.9999341369],
    [1.0002813339],
    [0.9998958707],
    [1.0011670589],
    [1.0009137392],
    [0.9994600415],
    [1.0010378361],
    [1.0008393526],
    [1.0013997555],
    [0.9994245768],
    [0.9995403886],
    [0.9997746348],
    [0.9997846484],
    [1.0012620687],
    [1.0009645224],
    [0.9995513558],
    [1.0008162260],
    [1.0008013248],
    [0.9990139604],
    [1.0004394054],
    [0.9991726875],
    [1.0009342432],
    [1.0008635521],
    [1.0007735491],
    [1.0013785362],
    [0.9997245073],
    [0.9989474416],
    [0.9996470809],
    [1.0008428097],
    [1.0017400980],
    [0.9994468689],
    [0.9999369979],
    [1.0007227659],
    [1.0012919903],
    [0.9981160164],
    [0.9999316335],
    [0.9997596741],
    [1.0008264780],
    [0.9994930029],
    [1.0001339912],
    [0.9998437166],
    [0.9999112487],
    [1.0001872778],
    [1.0006663799],
    [1.0007426739],
    [1.0016776323],
    [0.9996471405],
    [0.9981047511],
    [1.0007015467],
    [1.0006203651],
    [0.9987628460],
    [0.9981441498],
    [0.9981172085],
    [0.9999507666],
    [1.0002735853],
    [1.0006685257],
    [1.0001268387],
    [1.0000184774],
    [0.9998023510],
    [1.0006322861]], device='cuda:0')


    and



    data_y = tensor([[0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [1],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0],
    [0]], device='cuda:0')


    I read data_x and data_y from a file, so that's why I just pasted the values here. See the image below: 0 corresponds to blue and 1 to red.



    And this is the output:



    Loss at epoch 0 = tensor(0.6795, device='cuda:0', grad_fn=<NllLossBackward>)
    Loss at epoch 10 = tensor(0.4872, device='cuda:0', grad_fn=<NllLossBackward>)
    Loss at epoch 20 = tensor(0.4818, device='cuda:0', grad_fn=<NllLossBackward>)
    Loss at epoch 30 = tensor(0.4834, device='cuda:0', grad_fn=<NllLossBackward>)
    Loss at epoch 40 = tensor(0.4828, device='cuda:0', grad_fn=<NllLossBackward>)


    I tried reducing and increasing the learning rate, trying SGD and RMSprop increasing the number of epochs, but the loss always stops at 0.48. This is part of the output of model(data_x):



    tensor([[[-0.3617, -1.1924]],

    [[-0.3046, -1.3373]],

    [[-0.2696, -1.4424]],

    [[-0.2477, -1.5169]],

    [[-0.2345, -1.5654]],

    [[-0.2262, -1.5971]],


    And all the other values are similar to this. I expected at least that the LSTM will overfit my model, or at least predict 0 for everything (given that I have just few ones, the loss would still be pretty small). But instead it just predicts these number and I am not sure why it stops there. I tried any debugging method I know (which are not very many given my AI experience). Can someone help me please? Thank you!



    enter image description here









    share







    New contributor




    Bill is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$














      0












      0








      0





      $begingroup$


      I am sorry if this questions is basic but I am quite new to NN in general. I am trying to build an LSTM to predict certain properties of a light curve (the output is 0 or 1). I build it in pytorch. Here is my code:



      import torch
      import torch.nn as nn
      import torch.nn.functional as F
      from torch.autograd import Variable
      import torch.optim as optim
      import numpy as np

      torch.manual_seed(1)
      torch.cuda.set_device(0)

      from fastai.learner import *

      n_hidden = 64
      n_classes = 2
      bs = 1

      class TESS_LSTM(nn.Module):
      def __init__(self, nl):
      super().__init__()
      self.nl = nl
      self.rnn = nn.LSTM(1, n_hidden, nl, dropout=0.01, bidirectional=True)
      self.l_out = nn.Linear(n_hidden*2, n_classes)
      self.init_hidden(bs)

      def forward(self, input):
      outp,h = self.rnn(input.view(len(input), bs, -1), self.h)
      #self.h = repackage_var(h)
      return F.log_softmax(self.l_out(outp),dim=2)

      def init_hidden(self, bs):
      self.h = (V(torch.zeros(self.nl*2, bs, n_hidden)),
      V(torch.zeros(self.nl*2, bs, n_hidden)))

      model = TESS_LSTM(2).cuda()
      loss_function = nn.NLLLoss()
      optimizer = optim.Adam(model.parameters(), lr=0.001)

      for epoch in range(50):
      model.zero_grad()
      tag_scores = model(data_x)
      loss = loss_function(tag_scores.reshape(len(data_x),n_classes), data_y.reshape(len(data_y)))
      loss.backward()
      optimizer.step()

      if epoch%10==0:
      print("Loss at epoch %d = " %epoch, loss)


      Also:



      data_x = tensor([[0.9995450377],
      [0.9991207719],
      [0.9986526966],
      [1.0017241240],
      [1.0016067028],
      [1.0000480413],
      [1.0016841888],
      [1.0010652542],
      [0.9991232157],
      [1.0004128218],
      [0.9986800551],
      [1.0011130571],
      [1.0001415014],
      [1.0004080534],
      [1.0016922951],
      [1.0008358955],
      [1.0001622438],
      [1.0004277229],
      [1.0011759996],
      [1.0013391972],
      [0.9995799065],
      [1.0019282103],
      [1.0006642342],
      [1.0006272793],
      [1.0011570454],
      [1.0015332699],
      [1.0011225939],
      [1.0003337860],
      [1.0014277697],
      [1.0003565550],
      [0.9989787340],
      [1.0006136894],
      [1.0003052950],
      [1.0001049042],
      [1.0020918846],
      [0.9999115467],
      [1.0006635189],
      [1.0007561445],
      [1.0016170740],
      [1.0008252859],
      [0.9997656345],
      [1.0001330376],
      [1.0017272234],
      [1.0004107952],
      [1.0012439489],
      [0.9994274378],
      [1.0014992952],
      [1.0015807152],
      [1.0004781485],
      [1.0010997057],
      [1.0011326075],
      [1.0005493164],
      [1.0014353991],
      [0.9990324974],
      [1.0012129545],
      [0.9990709424],
      [1.0006347895],
      [1.0000327826],
      [1.0005196333],
      [1.0012207031],
      [1.0003460646],
      [1.0004434586],
      [1.0003618002],
      [1.0005420446],
      [1.0005528927],
      [1.0006977320],
      [1.0005317926],
      [1.0000808239],
      [1.0005664825],
      [0.9994245768],
      [0.9999254942],
      [1.0011985302],
      [1.0009841919],
      [0.9999029040],
      [1.0014100075],
      [1.0014085770],
      [1.0005567074],
      [1.0016088486],
      [0.9997186661],
      [0.9998687506],
      [0.9988344908],
      [0.9999858141],
      [1.0004914999],
      [1.0003308058],
      [1.0001890659],
      [1.0002681017],
      [1.0029908419],
      [1.0005286932],
      [1.0004363060],
      [0.9994311333],
      [1.0011523962],
      [1.0008679628],
      [1.0014137030],
      [0.9994244576],
      [1.0003470182],
      [1.0001592636],
      [1.0002418756],
      [0.9992931485],
      [1.0016175508],
      [1.0000959635],
      [1.0005099773],
      [1.0008889437],
      [0.9998087287],
      [0.9995828867],
      [0.9997566342],
      [1.0002474785],
      [1.0010808706],
      [1.0002821684],
      [1.0013456345],
      [1.0013040304],
      [1.0010949373],
      [1.0002720356],
      [0.9996811152],
      [1.0006061792],
      [1.0012511015],
      [0.9999302626],
      [0.9985374212],
      [1.0002642870],
      [0.9996038675],
      [1.0007606745],
      [0.9992995858],
      [1.0000385046],
      [0.9997834563],
      [1.0005996227],
      [1.0006167889],
      [1.0015753508],
      [1.0010306835],
      [0.9997833371],
      [1.0010590553],
      [1.0008200407],
      [1.0008001328],
      [1.0014072657],
      [0.9994395375],
      [0.9991182089],
      [1.0011717081],
      [1.0007920265],
      [1.0011025667],
      [1.0004047155],
      [1.0017303228],
      [1.0014981031],
      [0.9995774031],
      [0.9999650121],
      [0.9992966652],
      [1.0013586283],
      [1.0003392696],
      [1.0005040169],
      [1.0008341074],
      [1.0014744997],
      [0.9996585250],
      [1.0019916296],
      [1.0007069111],
      [1.0004591942],
      [1.0004271269],
      [0.9991059303],
      [1.0003436804],
      [0.9990482330],
      [0.9980322123],
      [0.9980198145],
      [0.9966595173],
      [0.9969686270],
      [0.9977232814],
      [0.9969192147],
      [0.9962794185],
      [0.9947851300],
      [0.9946336746],
      [0.9943053722],
      [0.9946651459],
      [0.9930071235],
      [0.9940539598],
      [0.9950682521],
      [0.9947031140],
      [0.9950703979],
      [0.9945428371],
      [0.9945927858],
      [0.9937841296],
      [0.9944553375],
      [0.9929991364],
      [0.9940859079],
      [0.9930059314],
      [0.9942978621],
      [0.9950152636],
      [0.9943225384],
      [0.9934711456],
      [0.9929080606],
      [0.9934846163],
      [0.9954113960],
      [0.9925802350],
      [0.9929560423],
      [0.9933584929],
      [0.9929228425],
      [0.9930893779],
      [0.9936142564],
      [0.9943635464],
      [0.9933300614],
      [0.9925817847],
      [0.9927681088],
      [0.9930697680],
      [0.9937900901],
      [0.9919354320],
      [0.9937084913],
      [0.9951301217],
      [0.9926426411],
      [0.9933566451],
      [0.9937180877],
      [0.9922621250],
      [0.9933888316],
      [0.9936477542],
      [0.9916112423],
      [0.9943441153],
      [0.9934164286],
      [0.9949553013],
      [0.9941871166],
      [0.9933763146],
      [0.9959306121],
      [0.9930690527],
      [0.9928541183],
      [0.9936354756],
      [0.9931223392],
      [0.9936516881],
      [0.9935654402],
      [0.9932218790],
      [0.9943401814],
      [0.9931038022],
      [0.9926875830],
      [0.9928631186],
      [0.9936705232],
      [0.9939361215],
      [0.9942125678],
      [0.9939611554],
      [0.9936586618],
      [0.9933990240],
      [0.9948219061],
      [0.9940339923],
      [0.9950091243],
      [0.9952197671],
      [0.9947227240],
      [0.9935435653],
      [0.9956403971],
      [0.9943848252],
      [0.9942221045],
      [0.9960014224],
      [0.9931004643],
      [0.9960579872],
      [0.9951166511],
      [0.9964768291],
      [0.9968702793],
      [0.9967978597],
      [0.9971982837],
      [0.9977793097],
      [0.9982623458],
      [0.9988413453],
      [1.0008778572],
      [1.0013417006],
      [1.0000336170],
      [0.9979853630],
      [0.9988892674],
      [0.9994396567],
      [1.0002176762],
      [1.0017417669],
      [1.0013097525],
      [1.0011264086],
      [1.0004124641],
      [1.0003939867],
      [0.9996479750],
      [0.9995540380],
      [1.0003930330],
      [1.0016323328],
      [1.0004589558],
      [0.9996963739],
      [0.9989817142],
      [0.9998068213],
      [1.0011200905],
      [1.0006275177],
      [1.0000452995],
      [1.0012514591],
      [1.0002357960],
      [0.9993159175],
      [1.0002738237],
      [0.9994575381],
      [0.9986617565],
      [0.9982920289],
      [0.9998571873],
      [0.9996472597],
      [1.0012613535],
      [1.0015693903],
      [0.9999635220],
      [1.0006184578],
      [1.0010757446],
      [0.9988756776],
      [1.0004955530],
      [1.0011548996],
      [1.0007628202],
      [1.0006260872],
      [0.9989725947],
      [1.0013129711],
      [0.9994829297],
      [0.9998571873],
      [0.9994959831],
      [1.0007432699],
      [0.9995724559],
      [0.9999076724],
      [0.9992097020],
      [1.0011855364],
      [0.9987785220],
      [1.0010210276],
      [0.9998293519],
      [0.9996315837],
      [0.9999501705],
      [1.0001417398],
      [1.0005141497],
      [0.9993781447],
      [1.0003532171],
      [0.9999422431],
      [1.0014258623],
      [1.0012118816],
      [0.9994109273],
      [1.0019438267],
      [1.0012354851],
      [1.0009905100],
      [1.0001032352],
      [0.9999653101],
      [0.9991906881],
      [1.0004152060],
      [0.9998226762],
      [0.9999175668],
      [0.9994540215],
      [1.0000722408],
      [1.0019129515],
      [0.9997307658],
      [0.9996227026],
      [1.0011816025],
      [0.9993667006],
      [1.0010036230],
      [0.9993645549],
      [1.0004647970],
      [0.9995272160],
      [0.9989504814],
      [0.9981039166],
      [1.0006005764],
      [0.9998896718],
      [1.0004893541],
      [0.9991874099],
      [1.0005015135],
      [0.9995905161],
      [0.9990965128],
      [1.0012912750],
      [1.0004948378],
      [1.0002779961],
      [0.9988743067],
      [1.0019037724],
      [1.0006437302],
      [0.9999380112],
      [1.0001602173],
      [0.9997741580],
      [0.9988395572],
      [0.9999371171],
      [0.9989091754],
      [0.9987531900],
      [1.0003957748],
      [0.9997722507],
      [0.9988819361],
      [0.9998422265],
      [0.9986129999],
      [0.9989410639],
      [1.0016149282],
      [0.9997441173],
      [1.0002747774],
      [0.9990793467],
      [1.0006495714],
      [1.0004252195],
      [0.9997921586],
      [0.9987344146],
      [0.9998763800],
      [0.9988097548],
      [1.0007627010],
      [1.0004670620],
      [1.0007309914],
      [0.9987894297],
      [1.0000542402],
      [1.0004990101],
      [0.9999514818],
      [0.9998412132],
      [1.0000183582],
      [1.0003197193],
      [0.9991712570],
      [0.9992188215],
      [0.9986482859],
      [1.0010583401],
      [1.0011837482],
      [0.9993829727],
      [0.9995718002],
      [0.9997168183],
      [1.0017461777],
      [0.9998381138],
      [0.9990652204],
      [1.0001449585],
      [0.9998424053],
      [1.0011798143],
      [1.0013160706],
      [0.9995942712],
      [1.0001651049],
      [1.0001466274],
      [0.9982855320],
      [0.9992064238],
      [1.0009102821],
      [0.9982813597],
      [1.0000503063],
      [0.9982630014],
      [1.0017516613],
      [0.9995808005],
      [0.9989835620],
      [1.0003046989],
      [1.0019340515],
      [0.9996930957],
      [1.0000711679],
      [1.0011881590],
      [1.0009138584],
      [1.0013902187],
      [0.9994105101],
      [0.9986224174],
      [0.9995336533],
      [1.0006912947],
      [0.9995169044],
      [0.9998968840],
      [0.9989182949],
      [0.9999300838],
      [0.9991120696],
      [0.9996063709],
      [1.0008803606],
      [1.0019868612],
      [1.0004760027],
      [0.9996407032],
      [1.0011100769],
      [1.0026890039],
      [0.9996611476],
      [0.9991108775],
      [0.9982090592],
      [1.0000833273],
      [1.0015701056],
      [0.9994426966],
      [0.9999341369],
      [1.0002813339],
      [0.9998958707],
      [1.0011670589],
      [1.0009137392],
      [0.9994600415],
      [1.0010378361],
      [1.0008393526],
      [1.0013997555],
      [0.9994245768],
      [0.9995403886],
      [0.9997746348],
      [0.9997846484],
      [1.0012620687],
      [1.0009645224],
      [0.9995513558],
      [1.0008162260],
      [1.0008013248],
      [0.9990139604],
      [1.0004394054],
      [0.9991726875],
      [1.0009342432],
      [1.0008635521],
      [1.0007735491],
      [1.0013785362],
      [0.9997245073],
      [0.9989474416],
      [0.9996470809],
      [1.0008428097],
      [1.0017400980],
      [0.9994468689],
      [0.9999369979],
      [1.0007227659],
      [1.0012919903],
      [0.9981160164],
      [0.9999316335],
      [0.9997596741],
      [1.0008264780],
      [0.9994930029],
      [1.0001339912],
      [0.9998437166],
      [0.9999112487],
      [1.0001872778],
      [1.0006663799],
      [1.0007426739],
      [1.0016776323],
      [0.9996471405],
      [0.9981047511],
      [1.0007015467],
      [1.0006203651],
      [0.9987628460],
      [0.9981441498],
      [0.9981172085],
      [0.9999507666],
      [1.0002735853],
      [1.0006685257],
      [1.0001268387],
      [1.0000184774],
      [0.9998023510],
      [1.0006322861]], device='cuda:0')


      and



      data_y = tensor([[0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0]], device='cuda:0')


      I read data_x and data_y from a file, so that's why I just pasted the values here. See the image below: 0 corresponds to blue and 1 to red.



      And this is the output:



      Loss at epoch 0 = tensor(0.6795, device='cuda:0', grad_fn=<NllLossBackward>)
      Loss at epoch 10 = tensor(0.4872, device='cuda:0', grad_fn=<NllLossBackward>)
      Loss at epoch 20 = tensor(0.4818, device='cuda:0', grad_fn=<NllLossBackward>)
      Loss at epoch 30 = tensor(0.4834, device='cuda:0', grad_fn=<NllLossBackward>)
      Loss at epoch 40 = tensor(0.4828, device='cuda:0', grad_fn=<NllLossBackward>)


      I tried reducing and increasing the learning rate, trying SGD and RMSprop increasing the number of epochs, but the loss always stops at 0.48. This is part of the output of model(data_x):



      tensor([[[-0.3617, -1.1924]],

      [[-0.3046, -1.3373]],

      [[-0.2696, -1.4424]],

      [[-0.2477, -1.5169]],

      [[-0.2345, -1.5654]],

      [[-0.2262, -1.5971]],


      And all the other values are similar to this. I expected at least that the LSTM will overfit my model, or at least predict 0 for everything (given that I have just few ones, the loss would still be pretty small). But instead it just predicts these number and I am not sure why it stops there. I tried any debugging method I know (which are not very many given my AI experience). Can someone help me please? Thank you!



      enter image description here









      share







      New contributor




      Bill is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      I am sorry if this questions is basic but I am quite new to NN in general. I am trying to build an LSTM to predict certain properties of a light curve (the output is 0 or 1). I build it in pytorch. Here is my code:



      import torch
      import torch.nn as nn
      import torch.nn.functional as F
      from torch.autograd import Variable
      import torch.optim as optim
      import numpy as np

      torch.manual_seed(1)
      torch.cuda.set_device(0)

      from fastai.learner import *

      n_hidden = 64
      n_classes = 2
      bs = 1

      class TESS_LSTM(nn.Module):
      def __init__(self, nl):
      super().__init__()
      self.nl = nl
      self.rnn = nn.LSTM(1, n_hidden, nl, dropout=0.01, bidirectional=True)
      self.l_out = nn.Linear(n_hidden*2, n_classes)
      self.init_hidden(bs)

      def forward(self, input):
      outp,h = self.rnn(input.view(len(input), bs, -1), self.h)
      #self.h = repackage_var(h)
      return F.log_softmax(self.l_out(outp),dim=2)

      def init_hidden(self, bs):
      self.h = (V(torch.zeros(self.nl*2, bs, n_hidden)),
      V(torch.zeros(self.nl*2, bs, n_hidden)))

      model = TESS_LSTM(2).cuda()
      loss_function = nn.NLLLoss()
      optimizer = optim.Adam(model.parameters(), lr=0.001)

      for epoch in range(50):
      model.zero_grad()
      tag_scores = model(data_x)
      loss = loss_function(tag_scores.reshape(len(data_x),n_classes), data_y.reshape(len(data_y)))
      loss.backward()
      optimizer.step()

      if epoch%10==0:
      print("Loss at epoch %d = " %epoch, loss)


      Also:



      data_x = tensor([[0.9995450377],
      [0.9991207719],
      [0.9986526966],
      [1.0017241240],
      [1.0016067028],
      [1.0000480413],
      [1.0016841888],
      [1.0010652542],
      [0.9991232157],
      [1.0004128218],
      [0.9986800551],
      [1.0011130571],
      [1.0001415014],
      [1.0004080534],
      [1.0016922951],
      [1.0008358955],
      [1.0001622438],
      [1.0004277229],
      [1.0011759996],
      [1.0013391972],
      [0.9995799065],
      [1.0019282103],
      [1.0006642342],
      [1.0006272793],
      [1.0011570454],
      [1.0015332699],
      [1.0011225939],
      [1.0003337860],
      [1.0014277697],
      [1.0003565550],
      [0.9989787340],
      [1.0006136894],
      [1.0003052950],
      [1.0001049042],
      [1.0020918846],
      [0.9999115467],
      [1.0006635189],
      [1.0007561445],
      [1.0016170740],
      [1.0008252859],
      [0.9997656345],
      [1.0001330376],
      [1.0017272234],
      [1.0004107952],
      [1.0012439489],
      [0.9994274378],
      [1.0014992952],
      [1.0015807152],
      [1.0004781485],
      [1.0010997057],
      [1.0011326075],
      [1.0005493164],
      [1.0014353991],
      [0.9990324974],
      [1.0012129545],
      [0.9990709424],
      [1.0006347895],
      [1.0000327826],
      [1.0005196333],
      [1.0012207031],
      [1.0003460646],
      [1.0004434586],
      [1.0003618002],
      [1.0005420446],
      [1.0005528927],
      [1.0006977320],
      [1.0005317926],
      [1.0000808239],
      [1.0005664825],
      [0.9994245768],
      [0.9999254942],
      [1.0011985302],
      [1.0009841919],
      [0.9999029040],
      [1.0014100075],
      [1.0014085770],
      [1.0005567074],
      [1.0016088486],
      [0.9997186661],
      [0.9998687506],
      [0.9988344908],
      [0.9999858141],
      [1.0004914999],
      [1.0003308058],
      [1.0001890659],
      [1.0002681017],
      [1.0029908419],
      [1.0005286932],
      [1.0004363060],
      [0.9994311333],
      [1.0011523962],
      [1.0008679628],
      [1.0014137030],
      [0.9994244576],
      [1.0003470182],
      [1.0001592636],
      [1.0002418756],
      [0.9992931485],
      [1.0016175508],
      [1.0000959635],
      [1.0005099773],
      [1.0008889437],
      [0.9998087287],
      [0.9995828867],
      [0.9997566342],
      [1.0002474785],
      [1.0010808706],
      [1.0002821684],
      [1.0013456345],
      [1.0013040304],
      [1.0010949373],
      [1.0002720356],
      [0.9996811152],
      [1.0006061792],
      [1.0012511015],
      [0.9999302626],
      [0.9985374212],
      [1.0002642870],
      [0.9996038675],
      [1.0007606745],
      [0.9992995858],
      [1.0000385046],
      [0.9997834563],
      [1.0005996227],
      [1.0006167889],
      [1.0015753508],
      [1.0010306835],
      [0.9997833371],
      [1.0010590553],
      [1.0008200407],
      [1.0008001328],
      [1.0014072657],
      [0.9994395375],
      [0.9991182089],
      [1.0011717081],
      [1.0007920265],
      [1.0011025667],
      [1.0004047155],
      [1.0017303228],
      [1.0014981031],
      [0.9995774031],
      [0.9999650121],
      [0.9992966652],
      [1.0013586283],
      [1.0003392696],
      [1.0005040169],
      [1.0008341074],
      [1.0014744997],
      [0.9996585250],
      [1.0019916296],
      [1.0007069111],
      [1.0004591942],
      [1.0004271269],
      [0.9991059303],
      [1.0003436804],
      [0.9990482330],
      [0.9980322123],
      [0.9980198145],
      [0.9966595173],
      [0.9969686270],
      [0.9977232814],
      [0.9969192147],
      [0.9962794185],
      [0.9947851300],
      [0.9946336746],
      [0.9943053722],
      [0.9946651459],
      [0.9930071235],
      [0.9940539598],
      [0.9950682521],
      [0.9947031140],
      [0.9950703979],
      [0.9945428371],
      [0.9945927858],
      [0.9937841296],
      [0.9944553375],
      [0.9929991364],
      [0.9940859079],
      [0.9930059314],
      [0.9942978621],
      [0.9950152636],
      [0.9943225384],
      [0.9934711456],
      [0.9929080606],
      [0.9934846163],
      [0.9954113960],
      [0.9925802350],
      [0.9929560423],
      [0.9933584929],
      [0.9929228425],
      [0.9930893779],
      [0.9936142564],
      [0.9943635464],
      [0.9933300614],
      [0.9925817847],
      [0.9927681088],
      [0.9930697680],
      [0.9937900901],
      [0.9919354320],
      [0.9937084913],
      [0.9951301217],
      [0.9926426411],
      [0.9933566451],
      [0.9937180877],
      [0.9922621250],
      [0.9933888316],
      [0.9936477542],
      [0.9916112423],
      [0.9943441153],
      [0.9934164286],
      [0.9949553013],
      [0.9941871166],
      [0.9933763146],
      [0.9959306121],
      [0.9930690527],
      [0.9928541183],
      [0.9936354756],
      [0.9931223392],
      [0.9936516881],
      [0.9935654402],
      [0.9932218790],
      [0.9943401814],
      [0.9931038022],
      [0.9926875830],
      [0.9928631186],
      [0.9936705232],
      [0.9939361215],
      [0.9942125678],
      [0.9939611554],
      [0.9936586618],
      [0.9933990240],
      [0.9948219061],
      [0.9940339923],
      [0.9950091243],
      [0.9952197671],
      [0.9947227240],
      [0.9935435653],
      [0.9956403971],
      [0.9943848252],
      [0.9942221045],
      [0.9960014224],
      [0.9931004643],
      [0.9960579872],
      [0.9951166511],
      [0.9964768291],
      [0.9968702793],
      [0.9967978597],
      [0.9971982837],
      [0.9977793097],
      [0.9982623458],
      [0.9988413453],
      [1.0008778572],
      [1.0013417006],
      [1.0000336170],
      [0.9979853630],
      [0.9988892674],
      [0.9994396567],
      [1.0002176762],
      [1.0017417669],
      [1.0013097525],
      [1.0011264086],
      [1.0004124641],
      [1.0003939867],
      [0.9996479750],
      [0.9995540380],
      [1.0003930330],
      [1.0016323328],
      [1.0004589558],
      [0.9996963739],
      [0.9989817142],
      [0.9998068213],
      [1.0011200905],
      [1.0006275177],
      [1.0000452995],
      [1.0012514591],
      [1.0002357960],
      [0.9993159175],
      [1.0002738237],
      [0.9994575381],
      [0.9986617565],
      [0.9982920289],
      [0.9998571873],
      [0.9996472597],
      [1.0012613535],
      [1.0015693903],
      [0.9999635220],
      [1.0006184578],
      [1.0010757446],
      [0.9988756776],
      [1.0004955530],
      [1.0011548996],
      [1.0007628202],
      [1.0006260872],
      [0.9989725947],
      [1.0013129711],
      [0.9994829297],
      [0.9998571873],
      [0.9994959831],
      [1.0007432699],
      [0.9995724559],
      [0.9999076724],
      [0.9992097020],
      [1.0011855364],
      [0.9987785220],
      [1.0010210276],
      [0.9998293519],
      [0.9996315837],
      [0.9999501705],
      [1.0001417398],
      [1.0005141497],
      [0.9993781447],
      [1.0003532171],
      [0.9999422431],
      [1.0014258623],
      [1.0012118816],
      [0.9994109273],
      [1.0019438267],
      [1.0012354851],
      [1.0009905100],
      [1.0001032352],
      [0.9999653101],
      [0.9991906881],
      [1.0004152060],
      [0.9998226762],
      [0.9999175668],
      [0.9994540215],
      [1.0000722408],
      [1.0019129515],
      [0.9997307658],
      [0.9996227026],
      [1.0011816025],
      [0.9993667006],
      [1.0010036230],
      [0.9993645549],
      [1.0004647970],
      [0.9995272160],
      [0.9989504814],
      [0.9981039166],
      [1.0006005764],
      [0.9998896718],
      [1.0004893541],
      [0.9991874099],
      [1.0005015135],
      [0.9995905161],
      [0.9990965128],
      [1.0012912750],
      [1.0004948378],
      [1.0002779961],
      [0.9988743067],
      [1.0019037724],
      [1.0006437302],
      [0.9999380112],
      [1.0001602173],
      [0.9997741580],
      [0.9988395572],
      [0.9999371171],
      [0.9989091754],
      [0.9987531900],
      [1.0003957748],
      [0.9997722507],
      [0.9988819361],
      [0.9998422265],
      [0.9986129999],
      [0.9989410639],
      [1.0016149282],
      [0.9997441173],
      [1.0002747774],
      [0.9990793467],
      [1.0006495714],
      [1.0004252195],
      [0.9997921586],
      [0.9987344146],
      [0.9998763800],
      [0.9988097548],
      [1.0007627010],
      [1.0004670620],
      [1.0007309914],
      [0.9987894297],
      [1.0000542402],
      [1.0004990101],
      [0.9999514818],
      [0.9998412132],
      [1.0000183582],
      [1.0003197193],
      [0.9991712570],
      [0.9992188215],
      [0.9986482859],
      [1.0010583401],
      [1.0011837482],
      [0.9993829727],
      [0.9995718002],
      [0.9997168183],
      [1.0017461777],
      [0.9998381138],
      [0.9990652204],
      [1.0001449585],
      [0.9998424053],
      [1.0011798143],
      [1.0013160706],
      [0.9995942712],
      [1.0001651049],
      [1.0001466274],
      [0.9982855320],
      [0.9992064238],
      [1.0009102821],
      [0.9982813597],
      [1.0000503063],
      [0.9982630014],
      [1.0017516613],
      [0.9995808005],
      [0.9989835620],
      [1.0003046989],
      [1.0019340515],
      [0.9996930957],
      [1.0000711679],
      [1.0011881590],
      [1.0009138584],
      [1.0013902187],
      [0.9994105101],
      [0.9986224174],
      [0.9995336533],
      [1.0006912947],
      [0.9995169044],
      [0.9998968840],
      [0.9989182949],
      [0.9999300838],
      [0.9991120696],
      [0.9996063709],
      [1.0008803606],
      [1.0019868612],
      [1.0004760027],
      [0.9996407032],
      [1.0011100769],
      [1.0026890039],
      [0.9996611476],
      [0.9991108775],
      [0.9982090592],
      [1.0000833273],
      [1.0015701056],
      [0.9994426966],
      [0.9999341369],
      [1.0002813339],
      [0.9998958707],
      [1.0011670589],
      [1.0009137392],
      [0.9994600415],
      [1.0010378361],
      [1.0008393526],
      [1.0013997555],
      [0.9994245768],
      [0.9995403886],
      [0.9997746348],
      [0.9997846484],
      [1.0012620687],
      [1.0009645224],
      [0.9995513558],
      [1.0008162260],
      [1.0008013248],
      [0.9990139604],
      [1.0004394054],
      [0.9991726875],
      [1.0009342432],
      [1.0008635521],
      [1.0007735491],
      [1.0013785362],
      [0.9997245073],
      [0.9989474416],
      [0.9996470809],
      [1.0008428097],
      [1.0017400980],
      [0.9994468689],
      [0.9999369979],
      [1.0007227659],
      [1.0012919903],
      [0.9981160164],
      [0.9999316335],
      [0.9997596741],
      [1.0008264780],
      [0.9994930029],
      [1.0001339912],
      [0.9998437166],
      [0.9999112487],
      [1.0001872778],
      [1.0006663799],
      [1.0007426739],
      [1.0016776323],
      [0.9996471405],
      [0.9981047511],
      [1.0007015467],
      [1.0006203651],
      [0.9987628460],
      [0.9981441498],
      [0.9981172085],
      [0.9999507666],
      [1.0002735853],
      [1.0006685257],
      [1.0001268387],
      [1.0000184774],
      [0.9998023510],
      [1.0006322861]], device='cuda:0')


      and



      data_y = tensor([[0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [1],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0],
      [0]], device='cuda:0')


      I read data_x and data_y from a file, so that's why I just pasted the values here. See the image below: 0 corresponds to blue and 1 to red.



      And this is the output:



      Loss at epoch 0 = tensor(0.6795, device='cuda:0', grad_fn=<NllLossBackward>)
      Loss at epoch 10 = tensor(0.4872, device='cuda:0', grad_fn=<NllLossBackward>)
      Loss at epoch 20 = tensor(0.4818, device='cuda:0', grad_fn=<NllLossBackward>)
      Loss at epoch 30 = tensor(0.4834, device='cuda:0', grad_fn=<NllLossBackward>)
      Loss at epoch 40 = tensor(0.4828, device='cuda:0', grad_fn=<NllLossBackward>)


      I tried reducing and increasing the learning rate, trying SGD and RMSprop increasing the number of epochs, but the loss always stops at 0.48. This is part of the output of model(data_x):



      tensor([[[-0.3617, -1.1924]],

      [[-0.3046, -1.3373]],

      [[-0.2696, -1.4424]],

      [[-0.2477, -1.5169]],

      [[-0.2345, -1.5654]],

      [[-0.2262, -1.5971]],


      And all the other values are similar to this. I expected at least that the LSTM will overfit my model, or at least predict 0 for everything (given that I have just few ones, the loss would still be pretty small). But instead it just predicts these number and I am not sure why it stops there. I tried any debugging method I know (which are not very many given my AI experience). Can someone help me please? Thank you!



      enter image description here







      lstm pytorch convergence





      share







      New contributor




      Bill is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.










      share







      New contributor




      Bill is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.








      share



      share






      New contributor




      Bill is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 1 min ago









      BillBill

      1




      1




      New contributor




      Bill is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Bill is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Bill is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




















          0






          active

          oldest

          votes












          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "557"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );






          Bill is a new contributor. Be nice, and check out our Code of Conduct.









          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f48569%2flstm-not-converging%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          Bill is a new contributor. Be nice, and check out our Code of Conduct.









          draft saved

          draft discarded


















          Bill is a new contributor. Be nice, and check out our Code of Conduct.












          Bill is a new contributor. Be nice, and check out our Code of Conduct.











          Bill is a new contributor. Be nice, and check out our Code of Conduct.














          Thanks for contributing an answer to Data Science Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f48569%2flstm-not-converging%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Францішак Багушэвіч Змест Сям'я | Біяграфія | Творчасць | Мова Багушэвіча | Ацэнкі дзейнасці | Цікавыя факты | Спадчына | Выбраная бібліяграфія | Ушанаванне памяці | У філатэліі | Зноскі | Літаратура | Спасылкі | НавігацыяЛяхоўскі У. Рупіўся дзеля Бога і людзей: Жыццёвы шлях Лявона Вітан-Дубейкаўскага // Вольскі і Памідораў з песняй пра немца Адвакат, паэт, народны заступнік Ашмянскі веснікВ Минске появится площадь Богушевича и улица Сырокомли, Белорусская деловая газета, 19 июля 2001 г.Айцец беларускай нацыянальнай ідэі паўстаў у бронзе Сяргей Аляксандравіч Адашкевіч (1918, Мінск). 80-я гады. Бюст «Францішак Багушэвіч».Яўген Мікалаевіч Ціхановіч. «Партрэт Францішка Багушэвіча»Мікола Мікалаевіч Купава. «Партрэт зачынальніка новай беларускай літаратуры Францішка Багушэвіча»Уладзімір Іванавіч Мелехаў. На помніку «Змагарам за родную мову» Барэльеф «Францішак Багушэвіч»Памяць пра Багушэвіча на Віленшчыне Страчаная сталіца. Беларускія шыльды на вуліцах Вільні«Krynica». Ideologia i przywódcy białoruskiego katolicyzmuФранцішак БагушэвічТворы на knihi.comТворы Францішка Багушэвіча на bellib.byСодаль Уладзімір. Францішак Багушэвіч на Лідчыне;Луцкевіч Антон. Жыцьцё і творчасьць Фр. Багушэвіча ў успамінах ягоных сучасьнікаў // Запісы Беларускага Навуковага таварыства. Вільня, 1938. Сшытак 1. С. 16-34.Большая российская1188761710000 0000 5537 633Xn9209310021619551927869394п

          Partai Komunis Tiongkok Daftar isi Kepemimpinan | Pranala luar | Referensi | Menu navigasidiperiksa1 perubahan tertundacpc.people.com.cnSitus resmiSurat kabar resmi"Why the Communist Party is alive, well and flourishing in China"0307-1235"Full text of Constitution of Communist Party of China"smengembangkannyas

          ValueError: Expected n_neighbors <= n_samples, but n_samples = 1, n_neighbors = 6 (SMOTE) The 2019 Stack Overflow Developer Survey Results Are InCan SMOTE be applied over sequence of words (sentences)?ValueError when doing validation with random forestsSMOTE and multi class oversamplingLogic behind SMOTE-NC?ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)SmoteBoost: Should SMOTE be ran individually for each iteration/tree in the boosting?solving multi-class imbalance classification using smote and OSSUsing SMOTE for Synthetic Data generation to improve performance on unbalanced dataproblem of entry format for a simple model in KerasSVM SMOTE fit_resample() function runs forever with no result