How to modify the Python programming - Support Vector Machine2019 Community Moderator Electionfeature weights in structured support vector machineSupport vector regression and paremetersSupport vector machine margin term, norm or norm squared?A math question about solving the Lagrangian of Support Vector MachineNon-linear Support Vector Regression issue - Sklearn Python 3.6Are there any good solutions for putting a radial basis kernel support vector machine into production?solution of quadratic optimization in support vector machinesStructured Support Vector Machine (Joint Feature Map)Support Vector Machine ErrorsHow to modify the IndentationError unexpected indent?

Am I breaking OOP practice with this architecture?

How to prevent "they're falling in love" trope

How can saying a song's name be a copyright violation?

Short story with a alien planet, government officials must wear exploding medallions

How do conventional missiles fly?

Is there an expression that means doing something right before you will need it rather than doing it in case you might need it?

Should I cover my bicycle overnight while bikepacking?

Why doesn't using multiple commands with a || or && conditional work?

What mechanic is there to disable a threat instead of killing it?

How to show a landlord what we have in savings?

Would Slavery Reparations be considered Bills of Attainder and hence Illegal?

Is "remove commented out code" correct English?

How to tell a function to use the default argument values?

Why is consensus so controversial in Britain?

How writing a dominant 7 sus4 chord in RNA ( Vsus7 chord in the 1st inversion)

A category-like structure without composition?

What killed these X2 caps?

Why are the 737's rear doors unusable in a water landing?

Alternative to sending password over mail?

Arrow those variables!

Can a virus destroy the BIOS of a modern computer?

Is it inappropriate for a student to attend their mentor's dissertation defense?

Reverse dictionary where values are lists

Avoiding direct proof while writing proof by induction



How to modify the Python programming - Support Vector Machine



2019 Community Moderator Electionfeature weights in structured support vector machineSupport vector regression and paremetersSupport vector machine margin term, norm or norm squared?A math question about solving the Lagrangian of Support Vector MachineNon-linear Support Vector Regression issue - Sklearn Python 3.6Are there any good solutions for putting a radial basis kernel support vector machine into production?solution of quadratic optimization in support vector machinesStructured Support Vector Machine (Joint Feature Map)Support Vector Machine ErrorsHow to modify the IndentationError unexpected indent?










0












$begingroup$


Using the SVC algorithm implemented by the Python Scikit-learn, classify the three types of flowers (Setosa, Versicolor, Virgin) in Iris dataset according to the Petal length and width



May I know how to modify my Python programming as refer to the attached file -



# To Get iris dataset
from sklearn import datasets
# To fit the svm classifier
from sklearn import svm
import numpy as np
import matplotlib.pyplot as plt

iris_dataset = datasets.load_iris()

def visuvalise_petal_data():
iris = datasets.load_iris()
# Only take the first two features
X = iris.data[:, 2:3]
y = iris.target

visuvalise_petal_data()
iris = datasets.load_iris()
# Only take the Sepal two features
X = iris.data[:, 2:3]
y = iris.target
# SVM regularization parameter

# SVC with rbf kernel
rbf_svc = svm.SVC(kernel='rbf', gamma=0.01, C=1).fit(X, y)
rbf_svc = svm.SVC(kernel='rbf', gamma=0.01, C=10).fit(X, y)
# step size in the mesh
h = 0.02
# create a mesh to plot in
def plotSVC(title):
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
h = (x_max / x_min)/100
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))
plt.subplot(1, 1, 1)
Z = svc.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)

C = [1, 10]
for c in cs:
svc = svm.SVC(kernel='rbf', C=1).fit(X, y)
svc = svm.SVC(kernel='rbf', C=10).fit(X, y)
plotSVC('C=' + str(c))

from sklearn.svm import SVC
from sklearn.preprocessing import StandardScaler
from sklearn.cross_validation import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 100, random_state = 0)

sc = StandardScaler()
sc.fit(X_train)
X_train_std = sc.transform(X_train)
X_test_std = sc.transform(X_test)

linear_svm1 = SVC(kernel = 'rbf', C = 1, random_state = 0)
linear_svm1.fit(X_train_std, y_train)
y_predict1 = linear_svm1.predict(X_test_std)
print('Gamma=0.01,C=1')

linear_svm2 = SVC(kernel = 'rbf', C = 10, random_state = 0)
linear_svm2.fit(X_train_std, y_train)
y_predict2 = linear_svm2.predict(X_test_std)
print('Gamma=0.01,C=10')

svm = SVC(kernel='linear', C=1.0, random_state=0)
svm.fit(X_train_std, y_train)
plot_decision_regions(X, y, classifier=svm, test_idx=range(105,150))
plt.xlabel('petal length [standardized]')
plt.ylabel('petal width [standardized]')
plt.legend(loc='upper left')
plt.show()


The error message is -



runfile('C:/Users/HSIPL/Desktop/Homework 6 Solution draft.py', wdir='C:/Users/HSIPL/Desktop')
Traceback (most recent call last):

File "<ipython-input-85-761bed922ac3>", line 1, in <module>
runfile('C:/Users/HSIPL/Desktop/Homework 6 Solution draft.py', wdir='C:/Users/HSIPL/Desktop')

File "C:UsersHSIPLAnaconda3libsite-packagesspyder_kernelscustomizespydercustomize.py", line 668, in runfile
execfile(filename, namespace)

File "C:UsersHSIPLAnaconda3libsite-packagesspyder_kernelscustomizespydercustomize.py", line 108, in execfile
exec(compile(f.read(), filename, 'exec'), namespace)

File "C:/Users/HSIPL/Desktop/Homework 6 Solution draft.py", line 44, in <module>
plotSVC('C=' + str(c))

File "C:/Users/HSIPL/Desktop/Homework 6 Solution draft.py", line 32, in plotSVC
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1

IndexError: index 1 is out of bounds for axis 1 with size 1


enter image description here



Please help so that I can improve my computing skills










share|improve this question







New contributor




master is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$
















    0












    $begingroup$


    Using the SVC algorithm implemented by the Python Scikit-learn, classify the three types of flowers (Setosa, Versicolor, Virgin) in Iris dataset according to the Petal length and width



    May I know how to modify my Python programming as refer to the attached file -



    # To Get iris dataset
    from sklearn import datasets
    # To fit the svm classifier
    from sklearn import svm
    import numpy as np
    import matplotlib.pyplot as plt

    iris_dataset = datasets.load_iris()

    def visuvalise_petal_data():
    iris = datasets.load_iris()
    # Only take the first two features
    X = iris.data[:, 2:3]
    y = iris.target

    visuvalise_petal_data()
    iris = datasets.load_iris()
    # Only take the Sepal two features
    X = iris.data[:, 2:3]
    y = iris.target
    # SVM regularization parameter

    # SVC with rbf kernel
    rbf_svc = svm.SVC(kernel='rbf', gamma=0.01, C=1).fit(X, y)
    rbf_svc = svm.SVC(kernel='rbf', gamma=0.01, C=10).fit(X, y)
    # step size in the mesh
    h = 0.02
    # create a mesh to plot in
    def plotSVC(title):
    x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    h = (x_max / x_min)/100
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
    np.arange(y_min, y_max, h))
    plt.subplot(1, 1, 1)
    Z = svc.predict(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)

    C = [1, 10]
    for c in cs:
    svc = svm.SVC(kernel='rbf', C=1).fit(X, y)
    svc = svm.SVC(kernel='rbf', C=10).fit(X, y)
    plotSVC('C=' + str(c))

    from sklearn.svm import SVC
    from sklearn.preprocessing import StandardScaler
    from sklearn.cross_validation import train_test_split

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 100, random_state = 0)

    sc = StandardScaler()
    sc.fit(X_train)
    X_train_std = sc.transform(X_train)
    X_test_std = sc.transform(X_test)

    linear_svm1 = SVC(kernel = 'rbf', C = 1, random_state = 0)
    linear_svm1.fit(X_train_std, y_train)
    y_predict1 = linear_svm1.predict(X_test_std)
    print('Gamma=0.01,C=1')

    linear_svm2 = SVC(kernel = 'rbf', C = 10, random_state = 0)
    linear_svm2.fit(X_train_std, y_train)
    y_predict2 = linear_svm2.predict(X_test_std)
    print('Gamma=0.01,C=10')

    svm = SVC(kernel='linear', C=1.0, random_state=0)
    svm.fit(X_train_std, y_train)
    plot_decision_regions(X, y, classifier=svm, test_idx=range(105,150))
    plt.xlabel('petal length [standardized]')
    plt.ylabel('petal width [standardized]')
    plt.legend(loc='upper left')
    plt.show()


    The error message is -



    runfile('C:/Users/HSIPL/Desktop/Homework 6 Solution draft.py', wdir='C:/Users/HSIPL/Desktop')
    Traceback (most recent call last):

    File "<ipython-input-85-761bed922ac3>", line 1, in <module>
    runfile('C:/Users/HSIPL/Desktop/Homework 6 Solution draft.py', wdir='C:/Users/HSIPL/Desktop')

    File "C:UsersHSIPLAnaconda3libsite-packagesspyder_kernelscustomizespydercustomize.py", line 668, in runfile
    execfile(filename, namespace)

    File "C:UsersHSIPLAnaconda3libsite-packagesspyder_kernelscustomizespydercustomize.py", line 108, in execfile
    exec(compile(f.read(), filename, 'exec'), namespace)

    File "C:/Users/HSIPL/Desktop/Homework 6 Solution draft.py", line 44, in <module>
    plotSVC('C=' + str(c))

    File "C:/Users/HSIPL/Desktop/Homework 6 Solution draft.py", line 32, in plotSVC
    y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1

    IndexError: index 1 is out of bounds for axis 1 with size 1


    enter image description here



    Please help so that I can improve my computing skills










    share|improve this question







    New contributor




    master is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$














      0












      0








      0





      $begingroup$


      Using the SVC algorithm implemented by the Python Scikit-learn, classify the three types of flowers (Setosa, Versicolor, Virgin) in Iris dataset according to the Petal length and width



      May I know how to modify my Python programming as refer to the attached file -



      # To Get iris dataset
      from sklearn import datasets
      # To fit the svm classifier
      from sklearn import svm
      import numpy as np
      import matplotlib.pyplot as plt

      iris_dataset = datasets.load_iris()

      def visuvalise_petal_data():
      iris = datasets.load_iris()
      # Only take the first two features
      X = iris.data[:, 2:3]
      y = iris.target

      visuvalise_petal_data()
      iris = datasets.load_iris()
      # Only take the Sepal two features
      X = iris.data[:, 2:3]
      y = iris.target
      # SVM regularization parameter

      # SVC with rbf kernel
      rbf_svc = svm.SVC(kernel='rbf', gamma=0.01, C=1).fit(X, y)
      rbf_svc = svm.SVC(kernel='rbf', gamma=0.01, C=10).fit(X, y)
      # step size in the mesh
      h = 0.02
      # create a mesh to plot in
      def plotSVC(title):
      x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
      y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
      h = (x_max / x_min)/100
      xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
      np.arange(y_min, y_max, h))
      plt.subplot(1, 1, 1)
      Z = svc.predict(np.c_[xx.ravel(), yy.ravel()])
      Z = Z.reshape(xx.shape)

      C = [1, 10]
      for c in cs:
      svc = svm.SVC(kernel='rbf', C=1).fit(X, y)
      svc = svm.SVC(kernel='rbf', C=10).fit(X, y)
      plotSVC('C=' + str(c))

      from sklearn.svm import SVC
      from sklearn.preprocessing import StandardScaler
      from sklearn.cross_validation import train_test_split

      X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 100, random_state = 0)

      sc = StandardScaler()
      sc.fit(X_train)
      X_train_std = sc.transform(X_train)
      X_test_std = sc.transform(X_test)

      linear_svm1 = SVC(kernel = 'rbf', C = 1, random_state = 0)
      linear_svm1.fit(X_train_std, y_train)
      y_predict1 = linear_svm1.predict(X_test_std)
      print('Gamma=0.01,C=1')

      linear_svm2 = SVC(kernel = 'rbf', C = 10, random_state = 0)
      linear_svm2.fit(X_train_std, y_train)
      y_predict2 = linear_svm2.predict(X_test_std)
      print('Gamma=0.01,C=10')

      svm = SVC(kernel='linear', C=1.0, random_state=0)
      svm.fit(X_train_std, y_train)
      plot_decision_regions(X, y, classifier=svm, test_idx=range(105,150))
      plt.xlabel('petal length [standardized]')
      plt.ylabel('petal width [standardized]')
      plt.legend(loc='upper left')
      plt.show()


      The error message is -



      runfile('C:/Users/HSIPL/Desktop/Homework 6 Solution draft.py', wdir='C:/Users/HSIPL/Desktop')
      Traceback (most recent call last):

      File "<ipython-input-85-761bed922ac3>", line 1, in <module>
      runfile('C:/Users/HSIPL/Desktop/Homework 6 Solution draft.py', wdir='C:/Users/HSIPL/Desktop')

      File "C:UsersHSIPLAnaconda3libsite-packagesspyder_kernelscustomizespydercustomize.py", line 668, in runfile
      execfile(filename, namespace)

      File "C:UsersHSIPLAnaconda3libsite-packagesspyder_kernelscustomizespydercustomize.py", line 108, in execfile
      exec(compile(f.read(), filename, 'exec'), namespace)

      File "C:/Users/HSIPL/Desktop/Homework 6 Solution draft.py", line 44, in <module>
      plotSVC('C=' + str(c))

      File "C:/Users/HSIPL/Desktop/Homework 6 Solution draft.py", line 32, in plotSVC
      y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1

      IndexError: index 1 is out of bounds for axis 1 with size 1


      enter image description here



      Please help so that I can improve my computing skills










      share|improve this question







      New contributor




      master is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      Using the SVC algorithm implemented by the Python Scikit-learn, classify the three types of flowers (Setosa, Versicolor, Virgin) in Iris dataset according to the Petal length and width



      May I know how to modify my Python programming as refer to the attached file -



      # To Get iris dataset
      from sklearn import datasets
      # To fit the svm classifier
      from sklearn import svm
      import numpy as np
      import matplotlib.pyplot as plt

      iris_dataset = datasets.load_iris()

      def visuvalise_petal_data():
      iris = datasets.load_iris()
      # Only take the first two features
      X = iris.data[:, 2:3]
      y = iris.target

      visuvalise_petal_data()
      iris = datasets.load_iris()
      # Only take the Sepal two features
      X = iris.data[:, 2:3]
      y = iris.target
      # SVM regularization parameter

      # SVC with rbf kernel
      rbf_svc = svm.SVC(kernel='rbf', gamma=0.01, C=1).fit(X, y)
      rbf_svc = svm.SVC(kernel='rbf', gamma=0.01, C=10).fit(X, y)
      # step size in the mesh
      h = 0.02
      # create a mesh to plot in
      def plotSVC(title):
      x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
      y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
      h = (x_max / x_min)/100
      xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
      np.arange(y_min, y_max, h))
      plt.subplot(1, 1, 1)
      Z = svc.predict(np.c_[xx.ravel(), yy.ravel()])
      Z = Z.reshape(xx.shape)

      C = [1, 10]
      for c in cs:
      svc = svm.SVC(kernel='rbf', C=1).fit(X, y)
      svc = svm.SVC(kernel='rbf', C=10).fit(X, y)
      plotSVC('C=' + str(c))

      from sklearn.svm import SVC
      from sklearn.preprocessing import StandardScaler
      from sklearn.cross_validation import train_test_split

      X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 100, random_state = 0)

      sc = StandardScaler()
      sc.fit(X_train)
      X_train_std = sc.transform(X_train)
      X_test_std = sc.transform(X_test)

      linear_svm1 = SVC(kernel = 'rbf', C = 1, random_state = 0)
      linear_svm1.fit(X_train_std, y_train)
      y_predict1 = linear_svm1.predict(X_test_std)
      print('Gamma=0.01,C=1')

      linear_svm2 = SVC(kernel = 'rbf', C = 10, random_state = 0)
      linear_svm2.fit(X_train_std, y_train)
      y_predict2 = linear_svm2.predict(X_test_std)
      print('Gamma=0.01,C=10')

      svm = SVC(kernel='linear', C=1.0, random_state=0)
      svm.fit(X_train_std, y_train)
      plot_decision_regions(X, y, classifier=svm, test_idx=range(105,150))
      plt.xlabel('petal length [standardized]')
      plt.ylabel('petal width [standardized]')
      plt.legend(loc='upper left')
      plt.show()


      The error message is -



      runfile('C:/Users/HSIPL/Desktop/Homework 6 Solution draft.py', wdir='C:/Users/HSIPL/Desktop')
      Traceback (most recent call last):

      File "<ipython-input-85-761bed922ac3>", line 1, in <module>
      runfile('C:/Users/HSIPL/Desktop/Homework 6 Solution draft.py', wdir='C:/Users/HSIPL/Desktop')

      File "C:UsersHSIPLAnaconda3libsite-packagesspyder_kernelscustomizespydercustomize.py", line 668, in runfile
      execfile(filename, namespace)

      File "C:UsersHSIPLAnaconda3libsite-packagesspyder_kernelscustomizespydercustomize.py", line 108, in execfile
      exec(compile(f.read(), filename, 'exec'), namespace)

      File "C:/Users/HSIPL/Desktop/Homework 6 Solution draft.py", line 44, in <module>
      plotSVC('C=' + str(c))

      File "C:/Users/HSIPL/Desktop/Homework 6 Solution draft.py", line 32, in plotSVC
      y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1

      IndexError: index 1 is out of bounds for axis 1 with size 1


      enter image description here



      Please help so that I can improve my computing skills







      python svm ai






      share|improve this question







      New contributor




      master is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|improve this question







      New contributor




      master is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|improve this question




      share|improve this question






      New contributor




      master is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 29 mins ago









      mastermaster

      1




      1




      New contributor




      master is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      master is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      master is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




















          0






          active

          oldest

          votes












          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "557"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );






          master is a new contributor. Be nice, and check out our Code of Conduct.









          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f48561%2fhow-to-modify-the-python-programming-support-vector-machine%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          master is a new contributor. Be nice, and check out our Code of Conduct.









          draft saved

          draft discarded


















          master is a new contributor. Be nice, and check out our Code of Conduct.












          master is a new contributor. Be nice, and check out our Code of Conduct.











          master is a new contributor. Be nice, and check out our Code of Conduct.














          Thanks for contributing an answer to Data Science Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f48561%2fhow-to-modify-the-python-programming-support-vector-machine%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Францішак Багушэвіч Змест Сям'я | Біяграфія | Творчасць | Мова Багушэвіча | Ацэнкі дзейнасці | Цікавыя факты | Спадчына | Выбраная бібліяграфія | Ушанаванне памяці | У філатэліі | Зноскі | Літаратура | Спасылкі | НавігацыяЛяхоўскі У. Рупіўся дзеля Бога і людзей: Жыццёвы шлях Лявона Вітан-Дубейкаўскага // Вольскі і Памідораў з песняй пра немца Адвакат, паэт, народны заступнік Ашмянскі веснікВ Минске появится площадь Богушевича и улица Сырокомли, Белорусская деловая газета, 19 июля 2001 г.Айцец беларускай нацыянальнай ідэі паўстаў у бронзе Сяргей Аляксандравіч Адашкевіч (1918, Мінск). 80-я гады. Бюст «Францішак Багушэвіч».Яўген Мікалаевіч Ціхановіч. «Партрэт Францішка Багушэвіча»Мікола Мікалаевіч Купава. «Партрэт зачынальніка новай беларускай літаратуры Францішка Багушэвіча»Уладзімір Іванавіч Мелехаў. На помніку «Змагарам за родную мову» Барэльеф «Францішак Багушэвіч»Памяць пра Багушэвіча на Віленшчыне Страчаная сталіца. Беларускія шыльды на вуліцах Вільні«Krynica». Ideologia i przywódcy białoruskiego katolicyzmuФранцішак БагушэвічТворы на knihi.comТворы Францішка Багушэвіча на bellib.byСодаль Уладзімір. Францішак Багушэвіч на Лідчыне;Луцкевіч Антон. Жыцьцё і творчасьць Фр. Багушэвіча ў успамінах ягоных сучасьнікаў // Запісы Беларускага Навуковага таварыства. Вільня, 1938. Сшытак 1. С. 16-34.Большая российская1188761710000 0000 5537 633Xn9209310021619551927869394п

          Partai Komunis Tiongkok Daftar isi Kepemimpinan | Pranala luar | Referensi | Menu navigasidiperiksa1 perubahan tertundacpc.people.com.cnSitus resmiSurat kabar resmi"Why the Communist Party is alive, well and flourishing in China"0307-1235"Full text of Constitution of Communist Party of China"smengembangkannyas

          ValueError: Expected n_neighbors <= n_samples, but n_samples = 1, n_neighbors = 6 (SMOTE) The 2019 Stack Overflow Developer Survey Results Are InCan SMOTE be applied over sequence of words (sentences)?ValueError when doing validation with random forestsSMOTE and multi class oversamplingLogic behind SMOTE-NC?ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)SmoteBoost: Should SMOTE be ran individually for each iteration/tree in the boosting?solving multi-class imbalance classification using smote and OSSUsing SMOTE for Synthetic Data generation to improve performance on unbalanced dataproblem of entry format for a simple model in KerasSVM SMOTE fit_resample() function runs forever with no result