How to modify the Python programming - Support Vector Machine2019 Community Moderator Electionfeature weights in structured support vector machineSupport vector regression and paremetersSupport vector machine margin term, norm or norm squared?A math question about solving the Lagrangian of Support Vector MachineNon-linear Support Vector Regression issue - Sklearn Python 3.6Are there any good solutions for putting a radial basis kernel support vector machine into production?solution of quadratic optimization in support vector machinesStructured Support Vector Machine (Joint Feature Map)Support Vector Machine ErrorsHow to modify the IndentationError unexpected indent?
Am I breaking OOP practice with this architecture?
How to prevent "they're falling in love" trope
How can saying a song's name be a copyright violation?
Short story with a alien planet, government officials must wear exploding medallions
How do conventional missiles fly?
Is there an expression that means doing something right before you will need it rather than doing it in case you might need it?
Should I cover my bicycle overnight while bikepacking?
Why doesn't using multiple commands with a || or && conditional work?
What mechanic is there to disable a threat instead of killing it?
How to show a landlord what we have in savings?
Would Slavery Reparations be considered Bills of Attainder and hence Illegal?
Is "remove commented out code" correct English?
How to tell a function to use the default argument values?
Why is consensus so controversial in Britain?
How writing a dominant 7 sus4 chord in RNA ( Vsus7 chord in the 1st inversion)
A category-like structure without composition?
What killed these X2 caps?
Why are the 737's rear doors unusable in a water landing?
Alternative to sending password over mail?
Arrow those variables!
Can a virus destroy the BIOS of a modern computer?
Is it inappropriate for a student to attend their mentor's dissertation defense?
Reverse dictionary where values are lists
Avoiding direct proof while writing proof by induction
How to modify the Python programming - Support Vector Machine
2019 Community Moderator Electionfeature weights in structured support vector machineSupport vector regression and paremetersSupport vector machine margin term, norm or norm squared?A math question about solving the Lagrangian of Support Vector MachineNon-linear Support Vector Regression issue - Sklearn Python 3.6Are there any good solutions for putting a radial basis kernel support vector machine into production?solution of quadratic optimization in support vector machinesStructured Support Vector Machine (Joint Feature Map)Support Vector Machine ErrorsHow to modify the IndentationError unexpected indent?
$begingroup$
Using the SVC algorithm implemented by the Python Scikit-learn, classify the three types of flowers (Setosa, Versicolor, Virgin) in Iris dataset according to the Petal length and width
May I know how to modify my Python programming as refer to the attached file -
# To Get iris dataset
from sklearn import datasets
# To fit the svm classifier
from sklearn import svm
import numpy as np
import matplotlib.pyplot as plt
iris_dataset = datasets.load_iris()
def visuvalise_petal_data():
iris = datasets.load_iris()
# Only take the first two features
X = iris.data[:, 2:3]
y = iris.target
visuvalise_petal_data()
iris = datasets.load_iris()
# Only take the Sepal two features
X = iris.data[:, 2:3]
y = iris.target
# SVM regularization parameter
# SVC with rbf kernel
rbf_svc = svm.SVC(kernel='rbf', gamma=0.01, C=1).fit(X, y)
rbf_svc = svm.SVC(kernel='rbf', gamma=0.01, C=10).fit(X, y)
# step size in the mesh
h = 0.02
# create a mesh to plot in
def plotSVC(title):
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
h = (x_max / x_min)/100
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))
plt.subplot(1, 1, 1)
Z = svc.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
C = [1, 10]
for c in cs:
svc = svm.SVC(kernel='rbf', C=1).fit(X, y)
svc = svm.SVC(kernel='rbf', C=10).fit(X, y)
plotSVC('C=' + str(c))
from sklearn.svm import SVC
from sklearn.preprocessing import StandardScaler
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 100, random_state = 0)
sc = StandardScaler()
sc.fit(X_train)
X_train_std = sc.transform(X_train)
X_test_std = sc.transform(X_test)
linear_svm1 = SVC(kernel = 'rbf', C = 1, random_state = 0)
linear_svm1.fit(X_train_std, y_train)
y_predict1 = linear_svm1.predict(X_test_std)
print('Gamma=0.01,C=1')
linear_svm2 = SVC(kernel = 'rbf', C = 10, random_state = 0)
linear_svm2.fit(X_train_std, y_train)
y_predict2 = linear_svm2.predict(X_test_std)
print('Gamma=0.01,C=10')
svm = SVC(kernel='linear', C=1.0, random_state=0)
svm.fit(X_train_std, y_train)
plot_decision_regions(X, y, classifier=svm, test_idx=range(105,150))
plt.xlabel('petal length [standardized]')
plt.ylabel('petal width [standardized]')
plt.legend(loc='upper left')
plt.show()
The error message is -
runfile('C:/Users/HSIPL/Desktop/Homework 6 Solution draft.py', wdir='C:/Users/HSIPL/Desktop')
Traceback (most recent call last):
File "<ipython-input-85-761bed922ac3>", line 1, in <module>
runfile('C:/Users/HSIPL/Desktop/Homework 6 Solution draft.py', wdir='C:/Users/HSIPL/Desktop')
File "C:UsersHSIPLAnaconda3libsite-packagesspyder_kernelscustomizespydercustomize.py", line 668, in runfile
execfile(filename, namespace)
File "C:UsersHSIPLAnaconda3libsite-packagesspyder_kernelscustomizespydercustomize.py", line 108, in execfile
exec(compile(f.read(), filename, 'exec'), namespace)
File "C:/Users/HSIPL/Desktop/Homework 6 Solution draft.py", line 44, in <module>
plotSVC('C=' + str(c))
File "C:/Users/HSIPL/Desktop/Homework 6 Solution draft.py", line 32, in plotSVC
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
IndexError: index 1 is out of bounds for axis 1 with size 1
Please help so that I can improve my computing skills
python svm ai
New contributor
$endgroup$
add a comment |
$begingroup$
Using the SVC algorithm implemented by the Python Scikit-learn, classify the three types of flowers (Setosa, Versicolor, Virgin) in Iris dataset according to the Petal length and width
May I know how to modify my Python programming as refer to the attached file -
# To Get iris dataset
from sklearn import datasets
# To fit the svm classifier
from sklearn import svm
import numpy as np
import matplotlib.pyplot as plt
iris_dataset = datasets.load_iris()
def visuvalise_petal_data():
iris = datasets.load_iris()
# Only take the first two features
X = iris.data[:, 2:3]
y = iris.target
visuvalise_petal_data()
iris = datasets.load_iris()
# Only take the Sepal two features
X = iris.data[:, 2:3]
y = iris.target
# SVM regularization parameter
# SVC with rbf kernel
rbf_svc = svm.SVC(kernel='rbf', gamma=0.01, C=1).fit(X, y)
rbf_svc = svm.SVC(kernel='rbf', gamma=0.01, C=10).fit(X, y)
# step size in the mesh
h = 0.02
# create a mesh to plot in
def plotSVC(title):
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
h = (x_max / x_min)/100
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))
plt.subplot(1, 1, 1)
Z = svc.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
C = [1, 10]
for c in cs:
svc = svm.SVC(kernel='rbf', C=1).fit(X, y)
svc = svm.SVC(kernel='rbf', C=10).fit(X, y)
plotSVC('C=' + str(c))
from sklearn.svm import SVC
from sklearn.preprocessing import StandardScaler
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 100, random_state = 0)
sc = StandardScaler()
sc.fit(X_train)
X_train_std = sc.transform(X_train)
X_test_std = sc.transform(X_test)
linear_svm1 = SVC(kernel = 'rbf', C = 1, random_state = 0)
linear_svm1.fit(X_train_std, y_train)
y_predict1 = linear_svm1.predict(X_test_std)
print('Gamma=0.01,C=1')
linear_svm2 = SVC(kernel = 'rbf', C = 10, random_state = 0)
linear_svm2.fit(X_train_std, y_train)
y_predict2 = linear_svm2.predict(X_test_std)
print('Gamma=0.01,C=10')
svm = SVC(kernel='linear', C=1.0, random_state=0)
svm.fit(X_train_std, y_train)
plot_decision_regions(X, y, classifier=svm, test_idx=range(105,150))
plt.xlabel('petal length [standardized]')
plt.ylabel('petal width [standardized]')
plt.legend(loc='upper left')
plt.show()
The error message is -
runfile('C:/Users/HSIPL/Desktop/Homework 6 Solution draft.py', wdir='C:/Users/HSIPL/Desktop')
Traceback (most recent call last):
File "<ipython-input-85-761bed922ac3>", line 1, in <module>
runfile('C:/Users/HSIPL/Desktop/Homework 6 Solution draft.py', wdir='C:/Users/HSIPL/Desktop')
File "C:UsersHSIPLAnaconda3libsite-packagesspyder_kernelscustomizespydercustomize.py", line 668, in runfile
execfile(filename, namespace)
File "C:UsersHSIPLAnaconda3libsite-packagesspyder_kernelscustomizespydercustomize.py", line 108, in execfile
exec(compile(f.read(), filename, 'exec'), namespace)
File "C:/Users/HSIPL/Desktop/Homework 6 Solution draft.py", line 44, in <module>
plotSVC('C=' + str(c))
File "C:/Users/HSIPL/Desktop/Homework 6 Solution draft.py", line 32, in plotSVC
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
IndexError: index 1 is out of bounds for axis 1 with size 1
Please help so that I can improve my computing skills
python svm ai
New contributor
$endgroup$
add a comment |
$begingroup$
Using the SVC algorithm implemented by the Python Scikit-learn, classify the three types of flowers (Setosa, Versicolor, Virgin) in Iris dataset according to the Petal length and width
May I know how to modify my Python programming as refer to the attached file -
# To Get iris dataset
from sklearn import datasets
# To fit the svm classifier
from sklearn import svm
import numpy as np
import matplotlib.pyplot as plt
iris_dataset = datasets.load_iris()
def visuvalise_petal_data():
iris = datasets.load_iris()
# Only take the first two features
X = iris.data[:, 2:3]
y = iris.target
visuvalise_petal_data()
iris = datasets.load_iris()
# Only take the Sepal two features
X = iris.data[:, 2:3]
y = iris.target
# SVM regularization parameter
# SVC with rbf kernel
rbf_svc = svm.SVC(kernel='rbf', gamma=0.01, C=1).fit(X, y)
rbf_svc = svm.SVC(kernel='rbf', gamma=0.01, C=10).fit(X, y)
# step size in the mesh
h = 0.02
# create a mesh to plot in
def plotSVC(title):
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
h = (x_max / x_min)/100
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))
plt.subplot(1, 1, 1)
Z = svc.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
C = [1, 10]
for c in cs:
svc = svm.SVC(kernel='rbf', C=1).fit(X, y)
svc = svm.SVC(kernel='rbf', C=10).fit(X, y)
plotSVC('C=' + str(c))
from sklearn.svm import SVC
from sklearn.preprocessing import StandardScaler
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 100, random_state = 0)
sc = StandardScaler()
sc.fit(X_train)
X_train_std = sc.transform(X_train)
X_test_std = sc.transform(X_test)
linear_svm1 = SVC(kernel = 'rbf', C = 1, random_state = 0)
linear_svm1.fit(X_train_std, y_train)
y_predict1 = linear_svm1.predict(X_test_std)
print('Gamma=0.01,C=1')
linear_svm2 = SVC(kernel = 'rbf', C = 10, random_state = 0)
linear_svm2.fit(X_train_std, y_train)
y_predict2 = linear_svm2.predict(X_test_std)
print('Gamma=0.01,C=10')
svm = SVC(kernel='linear', C=1.0, random_state=0)
svm.fit(X_train_std, y_train)
plot_decision_regions(X, y, classifier=svm, test_idx=range(105,150))
plt.xlabel('petal length [standardized]')
plt.ylabel('petal width [standardized]')
plt.legend(loc='upper left')
plt.show()
The error message is -
runfile('C:/Users/HSIPL/Desktop/Homework 6 Solution draft.py', wdir='C:/Users/HSIPL/Desktop')
Traceback (most recent call last):
File "<ipython-input-85-761bed922ac3>", line 1, in <module>
runfile('C:/Users/HSIPL/Desktop/Homework 6 Solution draft.py', wdir='C:/Users/HSIPL/Desktop')
File "C:UsersHSIPLAnaconda3libsite-packagesspyder_kernelscustomizespydercustomize.py", line 668, in runfile
execfile(filename, namespace)
File "C:UsersHSIPLAnaconda3libsite-packagesspyder_kernelscustomizespydercustomize.py", line 108, in execfile
exec(compile(f.read(), filename, 'exec'), namespace)
File "C:/Users/HSIPL/Desktop/Homework 6 Solution draft.py", line 44, in <module>
plotSVC('C=' + str(c))
File "C:/Users/HSIPL/Desktop/Homework 6 Solution draft.py", line 32, in plotSVC
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
IndexError: index 1 is out of bounds for axis 1 with size 1
Please help so that I can improve my computing skills
python svm ai
New contributor
$endgroup$
Using the SVC algorithm implemented by the Python Scikit-learn, classify the three types of flowers (Setosa, Versicolor, Virgin) in Iris dataset according to the Petal length and width
May I know how to modify my Python programming as refer to the attached file -
# To Get iris dataset
from sklearn import datasets
# To fit the svm classifier
from sklearn import svm
import numpy as np
import matplotlib.pyplot as plt
iris_dataset = datasets.load_iris()
def visuvalise_petal_data():
iris = datasets.load_iris()
# Only take the first two features
X = iris.data[:, 2:3]
y = iris.target
visuvalise_petal_data()
iris = datasets.load_iris()
# Only take the Sepal two features
X = iris.data[:, 2:3]
y = iris.target
# SVM regularization parameter
# SVC with rbf kernel
rbf_svc = svm.SVC(kernel='rbf', gamma=0.01, C=1).fit(X, y)
rbf_svc = svm.SVC(kernel='rbf', gamma=0.01, C=10).fit(X, y)
# step size in the mesh
h = 0.02
# create a mesh to plot in
def plotSVC(title):
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
h = (x_max / x_min)/100
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))
plt.subplot(1, 1, 1)
Z = svc.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
C = [1, 10]
for c in cs:
svc = svm.SVC(kernel='rbf', C=1).fit(X, y)
svc = svm.SVC(kernel='rbf', C=10).fit(X, y)
plotSVC('C=' + str(c))
from sklearn.svm import SVC
from sklearn.preprocessing import StandardScaler
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 100, random_state = 0)
sc = StandardScaler()
sc.fit(X_train)
X_train_std = sc.transform(X_train)
X_test_std = sc.transform(X_test)
linear_svm1 = SVC(kernel = 'rbf', C = 1, random_state = 0)
linear_svm1.fit(X_train_std, y_train)
y_predict1 = linear_svm1.predict(X_test_std)
print('Gamma=0.01,C=1')
linear_svm2 = SVC(kernel = 'rbf', C = 10, random_state = 0)
linear_svm2.fit(X_train_std, y_train)
y_predict2 = linear_svm2.predict(X_test_std)
print('Gamma=0.01,C=10')
svm = SVC(kernel='linear', C=1.0, random_state=0)
svm.fit(X_train_std, y_train)
plot_decision_regions(X, y, classifier=svm, test_idx=range(105,150))
plt.xlabel('petal length [standardized]')
plt.ylabel('petal width [standardized]')
plt.legend(loc='upper left')
plt.show()
The error message is -
runfile('C:/Users/HSIPL/Desktop/Homework 6 Solution draft.py', wdir='C:/Users/HSIPL/Desktop')
Traceback (most recent call last):
File "<ipython-input-85-761bed922ac3>", line 1, in <module>
runfile('C:/Users/HSIPL/Desktop/Homework 6 Solution draft.py', wdir='C:/Users/HSIPL/Desktop')
File "C:UsersHSIPLAnaconda3libsite-packagesspyder_kernelscustomizespydercustomize.py", line 668, in runfile
execfile(filename, namespace)
File "C:UsersHSIPLAnaconda3libsite-packagesspyder_kernelscustomizespydercustomize.py", line 108, in execfile
exec(compile(f.read(), filename, 'exec'), namespace)
File "C:/Users/HSIPL/Desktop/Homework 6 Solution draft.py", line 44, in <module>
plotSVC('C=' + str(c))
File "C:/Users/HSIPL/Desktop/Homework 6 Solution draft.py", line 32, in plotSVC
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
IndexError: index 1 is out of bounds for axis 1 with size 1
Please help so that I can improve my computing skills
python svm ai
python svm ai
New contributor
New contributor
New contributor
asked 29 mins ago
mastermaster
1
1
New contributor
New contributor
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "557"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
master is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f48561%2fhow-to-modify-the-python-programming-support-vector-machine%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
master is a new contributor. Be nice, and check out our Code of Conduct.
master is a new contributor. Be nice, and check out our Code of Conduct.
master is a new contributor. Be nice, and check out our Code of Conduct.
master is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Data Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f48561%2fhow-to-modify-the-python-programming-support-vector-machine%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown