Why not use the yoke to control yaw, as well as pitch and roll? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Did any aircraft ever use stick twist for rudder control?Why Pitch Trim Up/Down & Roll Left/Right switches on yoke or control stick?How to control yaw in stick aircraft?How is a sideslip maintained (aerodynamically)?Do aerodynamic forces and moments change aircraft pitch and yaw in the same way?In the early days of flight, were there any cockpit control schemes other than the modern one?Flight physics for a rollDo fly-by-wire fighter aircraft automatically reverse the direction of control surface deflections during a tailslide?Why does the A320 use the rudder for lateral control in mechanical law?Why can't the 737 MAX's horizontal stabilizer autotrim be cut out by control yoke inputs?Would throttle steering of a forward-swept-winged aircraft be possible?

Fit odd number of triplets in a measure?

Can an iPhone 7 be made to function as a NFC Tag?

How do advaitins defend argument against scriptural eternity?

Nose gear failure in single prop aircraft: belly landing or nose landing?

Did any compiler fully use 80-bit floating point?

My mentor says to set image to Fine instead of RAW — how is this different from JPG?

Found this skink in my tomato plant bucket. Is he trapped? Or could he leave if he wanted?

Does the gravitational field of the Earth really satisfy the inverse square law, if closer parts of the Earth contribute much more?

Trying to understand entropy as a novice in thermodynamics

What does Turing mean by this statement?

How to ask rejected full-time candidates to apply to teach individual courses?

What is the proper term for etching or digging of wall to hide conduit of cables

Can you force honesty by using the Speak with Dead and Zone of Truth spells together?

Why weren't discrete x86 CPUs ever used in game hardware?

How to write diff() mathematically?

Can we declare structure object at file scope before the structure definition?

Where and when has Thucydides been studied?

Is there a spell that can create a permanent fire?

How to evaluate this function?

What is this plant growing along wires below the ceiling?

systemd and copy (/bin/cp): no such file or directory

How does the body cool itself in a stillsuit?

3D Masyu - A Die

As a dual citizen, my US passport will expire one day after traveling to the US. Will this work?



Why not use the yoke to control yaw, as well as pitch and roll?



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Did any aircraft ever use stick twist for rudder control?Why Pitch Trim Up/Down & Roll Left/Right switches on yoke or control stick?How to control yaw in stick aircraft?How is a sideslip maintained (aerodynamically)?Do aerodynamic forces and moments change aircraft pitch and yaw in the same way?In the early days of flight, were there any cockpit control schemes other than the modern one?Flight physics for a rollDo fly-by-wire fighter aircraft automatically reverse the direction of control surface deflections during a tailslide?Why does the A320 use the rudder for lateral control in mechanical law?Why can't the 737 MAX's horizontal stabilizer autotrim be cut out by control yoke inputs?Would throttle steering of a forward-swept-winged aircraft be possible?










4












$begingroup$


(Inspired by this question about rudder hand control on joystick-equipped aircraft.)



Most civilian fixed-wing aircraft (post-1987 Airbus airliners being the primary exceptions) use a yoke (essentially a steering wheel mounted on a vertical column that can swing back and forward) to control pitch (pushing the yoke forward pitches the nose down; pulling the yoke back pitches the nose up) and roll (rotating the yoke clockwise rolls the aircraft to the right; rotating the yoke counterclockwise rolls the aircraft to the left), but control yaw via a separate set of rudder pedals (pushing on the left-foot pedal yaws the nose to the left; pushing on the right-foot pedal yaws the nose to the right).



If the yoke were used to control yaw as well as pitch and roll, this would allow the pilot to make coordinated turns using just their hands, rather than having to remember to push with one of their feet at the same time, and would eliminate the risk of accidentally applying the brakes when steering on the ground.



A couple of possible ways for yoke-based rudder control suggest themselves; one would be to tilt the column from side to side (tilting the column left would yaw the nose to the left; tilting the column right would yaw the nose to the right), while another would be to push one of the yoke's horns forward while pulling the other back, rotating the yoke about its vertical axis (pushing the left horn forward and pulling the right horn back would yaw the nose to the right; pulling the left horn back and pushing the right horn forward would yaw the nose to the left).



Here's an illustration of what I've in mind:



Method of operation of three-axis yoke



Why don't any aircraft use the yoke to control all three axes, rather than just pitch and roll?










share|improve this question









$endgroup$







  • 4




    $begingroup$
    User interface is the last thing you want to change on any product. It's like why are we still using the QWERT keyboard and why we cars still use steering wheels.
    $endgroup$
    – user3528438
    16 hours ago















4












$begingroup$


(Inspired by this question about rudder hand control on joystick-equipped aircraft.)



Most civilian fixed-wing aircraft (post-1987 Airbus airliners being the primary exceptions) use a yoke (essentially a steering wheel mounted on a vertical column that can swing back and forward) to control pitch (pushing the yoke forward pitches the nose down; pulling the yoke back pitches the nose up) and roll (rotating the yoke clockwise rolls the aircraft to the right; rotating the yoke counterclockwise rolls the aircraft to the left), but control yaw via a separate set of rudder pedals (pushing on the left-foot pedal yaws the nose to the left; pushing on the right-foot pedal yaws the nose to the right).



If the yoke were used to control yaw as well as pitch and roll, this would allow the pilot to make coordinated turns using just their hands, rather than having to remember to push with one of their feet at the same time, and would eliminate the risk of accidentally applying the brakes when steering on the ground.



A couple of possible ways for yoke-based rudder control suggest themselves; one would be to tilt the column from side to side (tilting the column left would yaw the nose to the left; tilting the column right would yaw the nose to the right), while another would be to push one of the yoke's horns forward while pulling the other back, rotating the yoke about its vertical axis (pushing the left horn forward and pulling the right horn back would yaw the nose to the right; pulling the left horn back and pushing the right horn forward would yaw the nose to the left).



Here's an illustration of what I've in mind:



Method of operation of three-axis yoke



Why don't any aircraft use the yoke to control all three axes, rather than just pitch and roll?










share|improve this question









$endgroup$







  • 4




    $begingroup$
    User interface is the last thing you want to change on any product. It's like why are we still using the QWERT keyboard and why we cars still use steering wheels.
    $endgroup$
    – user3528438
    16 hours ago













4












4








4





$begingroup$


(Inspired by this question about rudder hand control on joystick-equipped aircraft.)



Most civilian fixed-wing aircraft (post-1987 Airbus airliners being the primary exceptions) use a yoke (essentially a steering wheel mounted on a vertical column that can swing back and forward) to control pitch (pushing the yoke forward pitches the nose down; pulling the yoke back pitches the nose up) and roll (rotating the yoke clockwise rolls the aircraft to the right; rotating the yoke counterclockwise rolls the aircraft to the left), but control yaw via a separate set of rudder pedals (pushing on the left-foot pedal yaws the nose to the left; pushing on the right-foot pedal yaws the nose to the right).



If the yoke were used to control yaw as well as pitch and roll, this would allow the pilot to make coordinated turns using just their hands, rather than having to remember to push with one of their feet at the same time, and would eliminate the risk of accidentally applying the brakes when steering on the ground.



A couple of possible ways for yoke-based rudder control suggest themselves; one would be to tilt the column from side to side (tilting the column left would yaw the nose to the left; tilting the column right would yaw the nose to the right), while another would be to push one of the yoke's horns forward while pulling the other back, rotating the yoke about its vertical axis (pushing the left horn forward and pulling the right horn back would yaw the nose to the right; pulling the left horn back and pushing the right horn forward would yaw the nose to the left).



Here's an illustration of what I've in mind:



Method of operation of three-axis yoke



Why don't any aircraft use the yoke to control all three axes, rather than just pitch and roll?










share|improve this question









$endgroup$




(Inspired by this question about rudder hand control on joystick-equipped aircraft.)



Most civilian fixed-wing aircraft (post-1987 Airbus airliners being the primary exceptions) use a yoke (essentially a steering wheel mounted on a vertical column that can swing back and forward) to control pitch (pushing the yoke forward pitches the nose down; pulling the yoke back pitches the nose up) and roll (rotating the yoke clockwise rolls the aircraft to the right; rotating the yoke counterclockwise rolls the aircraft to the left), but control yaw via a separate set of rudder pedals (pushing on the left-foot pedal yaws the nose to the left; pushing on the right-foot pedal yaws the nose to the right).



If the yoke were used to control yaw as well as pitch and roll, this would allow the pilot to make coordinated turns using just their hands, rather than having to remember to push with one of their feet at the same time, and would eliminate the risk of accidentally applying the brakes when steering on the ground.



A couple of possible ways for yoke-based rudder control suggest themselves; one would be to tilt the column from side to side (tilting the column left would yaw the nose to the left; tilting the column right would yaw the nose to the right), while another would be to push one of the yoke's horns forward while pulling the other back, rotating the yoke about its vertical axis (pushing the left horn forward and pulling the right horn back would yaw the nose to the right; pulling the left horn back and pushing the right horn forward would yaw the nose to the left).



Here's an illustration of what I've in mind:



Method of operation of three-axis yoke



Why don't any aircraft use the yoke to control all three axes, rather than just pitch and roll?







flight-controls yaw






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked 17 hours ago









SeanSean

6,38732980




6,38732980







  • 4




    $begingroup$
    User interface is the last thing you want to change on any product. It's like why are we still using the QWERT keyboard and why we cars still use steering wheels.
    $endgroup$
    – user3528438
    16 hours ago












  • 4




    $begingroup$
    User interface is the last thing you want to change on any product. It's like why are we still using the QWERT keyboard and why we cars still use steering wheels.
    $endgroup$
    – user3528438
    16 hours ago







4




4




$begingroup$
User interface is the last thing you want to change on any product. It's like why are we still using the QWERT keyboard and why we cars still use steering wheels.
$endgroup$
– user3528438
16 hours ago




$begingroup$
User interface is the last thing you want to change on any product. It's like why are we still using the QWERT keyboard and why we cars still use steering wheels.
$endgroup$
– user3528438
16 hours ago










3 Answers
3






active

oldest

votes


















9












$begingroup$

The modern control yoke is directly derived from the "joystick" control that became standard on aircraft in the days when Glenn Curtiss personally ran the company that was the main competitor to the Wright brothers.



After inventing aileron control (the Wrights were still using wing warping at the time -- this was before 1910), Curtiss needed a way to control movement of the ailerons, and subsequently of the rudder. The original 1903 Wright Flyer had the wing warp controlled by sliding the pilot's platform (a flat surface, on which the pilot lay prone) right and left, and coupled the rudder, so that roll and yaw were inseparable. Curtiss decoupled them, and needed to add a third control -- and since he was also sitting upright, even in his first airplane, his feet were available.



Running the elevators and ailerons on the control stick was obvious, and it was equally simple to put one's feet on a bar that directly operated the rudder -- and this layout became the standard almost instantly. Even the Wrights adopted it before they demonstrated their Flier to the Army.



Over time, there have been a few examples of variations. Airplanes that brought back coupled rudder and aileron, like the Ercoupe, let the pilot fly with "feet flat on the floor" -- and it seems to me there was at least one design, from the biplane era, of a transport aircraft with rudder operated much the way you describe; a control wheel mounted on a joystick, with stick movement controlling roll, and wheel rotation controlling yaw.



The fact this has only appeared in a very small number of designs suggests that, as noted in a comment, it's a bad idea to change something that's been long standardized -- yet, we have a good number of aircraft, ranging from sailplane to jet fighter and large transport, that use "sidestick" -- in which, in the transport case, the pilot in command actually flies with his left hand, while the copilot flies with his right. Joysticks continue in wide use as well, especially in smaller or higher performance aircraft, or those with ejection systems.



The other, and I believe the main reason we don't see control schemes like what you describe is that it becomes impossible to maintain precise, separate control of roll and yaw. When the same pair of hands are doing both jobs, the brain will mix them together, or in trying not to, will reverse mix (leading to a forward slip or a skid, the latter widely considered very hazardous at low altitude and speed). If you have an aircraft in which it's difficult to avoid mixing either adverse or proverse rudder while applying aileron, it'll be difficult to land or take off in crosswinds, hard to maintain a precise final approach, and nearly impossible to fly high precision maneuvers (like air to air refueling or tight formations).






share|improve this answer









$endgroup$




















    6












    $begingroup$

    It's just a bad idea Sean. Believe me if you've done any flying you would NOT like a control column that you have to shove sideways, or a twisty yoke, for rudder as well as roll and pitch. Your feet are sitting there doing nothing anyway. And you need to be able to control it one handed so you can work the thrust levers or power levers or throttles with the other. How would you work such a column with one hand?



    Plus, in any transport airplane with a yaw damper system you never touch the rudder pedals once airborne unless an engine quits. And if that happens you'll be glad you have your upper thigh muscles to the do the work of holding in rudder input for an extended period, and not your forearms already busy with 2 other jobs.



    I'm imagining trying to hold a yoke pushed to the side following an engine failure on rotation, while also controlling pitch and roll with it, while my feet sit on the floor being useless... very unpleasant.



    Where it might be viable is with a side stick FBW controller where the stick rotates for yaw, like a computer joystick. But even there, I'd rather have my feet do it.






    share|improve this answer











    $endgroup$




















      5












      $begingroup$

      Such designs do not work well when the rudder is required other than during turns.



      A typical situation would be the use of rudder to counter the p-factor (asymmetric turning tendency) on propeller aircraft. After take-off, one might need to apply a significant amount of rudder during climb at high-power and high-AOA.



      It would be very inconvenient to have the yoke "tilted" or "twisted" during the climb, even when the aircraft is not turning at all.






      share|improve this answer








      New contributor




      peekay is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      $endgroup$













        Your Answer








        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "528"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: false,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: null,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );













        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2faviation.stackexchange.com%2fquestions%2f62555%2fwhy-not-use-the-yoke-to-control-yaw-as-well-as-pitch-and-roll%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        9












        $begingroup$

        The modern control yoke is directly derived from the "joystick" control that became standard on aircraft in the days when Glenn Curtiss personally ran the company that was the main competitor to the Wright brothers.



        After inventing aileron control (the Wrights were still using wing warping at the time -- this was before 1910), Curtiss needed a way to control movement of the ailerons, and subsequently of the rudder. The original 1903 Wright Flyer had the wing warp controlled by sliding the pilot's platform (a flat surface, on which the pilot lay prone) right and left, and coupled the rudder, so that roll and yaw were inseparable. Curtiss decoupled them, and needed to add a third control -- and since he was also sitting upright, even in his first airplane, his feet were available.



        Running the elevators and ailerons on the control stick was obvious, and it was equally simple to put one's feet on a bar that directly operated the rudder -- and this layout became the standard almost instantly. Even the Wrights adopted it before they demonstrated their Flier to the Army.



        Over time, there have been a few examples of variations. Airplanes that brought back coupled rudder and aileron, like the Ercoupe, let the pilot fly with "feet flat on the floor" -- and it seems to me there was at least one design, from the biplane era, of a transport aircraft with rudder operated much the way you describe; a control wheel mounted on a joystick, with stick movement controlling roll, and wheel rotation controlling yaw.



        The fact this has only appeared in a very small number of designs suggests that, as noted in a comment, it's a bad idea to change something that's been long standardized -- yet, we have a good number of aircraft, ranging from sailplane to jet fighter and large transport, that use "sidestick" -- in which, in the transport case, the pilot in command actually flies with his left hand, while the copilot flies with his right. Joysticks continue in wide use as well, especially in smaller or higher performance aircraft, or those with ejection systems.



        The other, and I believe the main reason we don't see control schemes like what you describe is that it becomes impossible to maintain precise, separate control of roll and yaw. When the same pair of hands are doing both jobs, the brain will mix them together, or in trying not to, will reverse mix (leading to a forward slip or a skid, the latter widely considered very hazardous at low altitude and speed). If you have an aircraft in which it's difficult to avoid mixing either adverse or proverse rudder while applying aileron, it'll be difficult to land or take off in crosswinds, hard to maintain a precise final approach, and nearly impossible to fly high precision maneuvers (like air to air refueling or tight formations).






        share|improve this answer









        $endgroup$

















          9












          $begingroup$

          The modern control yoke is directly derived from the "joystick" control that became standard on aircraft in the days when Glenn Curtiss personally ran the company that was the main competitor to the Wright brothers.



          After inventing aileron control (the Wrights were still using wing warping at the time -- this was before 1910), Curtiss needed a way to control movement of the ailerons, and subsequently of the rudder. The original 1903 Wright Flyer had the wing warp controlled by sliding the pilot's platform (a flat surface, on which the pilot lay prone) right and left, and coupled the rudder, so that roll and yaw were inseparable. Curtiss decoupled them, and needed to add a third control -- and since he was also sitting upright, even in his first airplane, his feet were available.



          Running the elevators and ailerons on the control stick was obvious, and it was equally simple to put one's feet on a bar that directly operated the rudder -- and this layout became the standard almost instantly. Even the Wrights adopted it before they demonstrated their Flier to the Army.



          Over time, there have been a few examples of variations. Airplanes that brought back coupled rudder and aileron, like the Ercoupe, let the pilot fly with "feet flat on the floor" -- and it seems to me there was at least one design, from the biplane era, of a transport aircraft with rudder operated much the way you describe; a control wheel mounted on a joystick, with stick movement controlling roll, and wheel rotation controlling yaw.



          The fact this has only appeared in a very small number of designs suggests that, as noted in a comment, it's a bad idea to change something that's been long standardized -- yet, we have a good number of aircraft, ranging from sailplane to jet fighter and large transport, that use "sidestick" -- in which, in the transport case, the pilot in command actually flies with his left hand, while the copilot flies with his right. Joysticks continue in wide use as well, especially in smaller or higher performance aircraft, or those with ejection systems.



          The other, and I believe the main reason we don't see control schemes like what you describe is that it becomes impossible to maintain precise, separate control of roll and yaw. When the same pair of hands are doing both jobs, the brain will mix them together, or in trying not to, will reverse mix (leading to a forward slip or a skid, the latter widely considered very hazardous at low altitude and speed). If you have an aircraft in which it's difficult to avoid mixing either adverse or proverse rudder while applying aileron, it'll be difficult to land or take off in crosswinds, hard to maintain a precise final approach, and nearly impossible to fly high precision maneuvers (like air to air refueling or tight formations).






          share|improve this answer









          $endgroup$















            9












            9








            9





            $begingroup$

            The modern control yoke is directly derived from the "joystick" control that became standard on aircraft in the days when Glenn Curtiss personally ran the company that was the main competitor to the Wright brothers.



            After inventing aileron control (the Wrights were still using wing warping at the time -- this was before 1910), Curtiss needed a way to control movement of the ailerons, and subsequently of the rudder. The original 1903 Wright Flyer had the wing warp controlled by sliding the pilot's platform (a flat surface, on which the pilot lay prone) right and left, and coupled the rudder, so that roll and yaw were inseparable. Curtiss decoupled them, and needed to add a third control -- and since he was also sitting upright, even in his first airplane, his feet were available.



            Running the elevators and ailerons on the control stick was obvious, and it was equally simple to put one's feet on a bar that directly operated the rudder -- and this layout became the standard almost instantly. Even the Wrights adopted it before they demonstrated their Flier to the Army.



            Over time, there have been a few examples of variations. Airplanes that brought back coupled rudder and aileron, like the Ercoupe, let the pilot fly with "feet flat on the floor" -- and it seems to me there was at least one design, from the biplane era, of a transport aircraft with rudder operated much the way you describe; a control wheel mounted on a joystick, with stick movement controlling roll, and wheel rotation controlling yaw.



            The fact this has only appeared in a very small number of designs suggests that, as noted in a comment, it's a bad idea to change something that's been long standardized -- yet, we have a good number of aircraft, ranging from sailplane to jet fighter and large transport, that use "sidestick" -- in which, in the transport case, the pilot in command actually flies with his left hand, while the copilot flies with his right. Joysticks continue in wide use as well, especially in smaller or higher performance aircraft, or those with ejection systems.



            The other, and I believe the main reason we don't see control schemes like what you describe is that it becomes impossible to maintain precise, separate control of roll and yaw. When the same pair of hands are doing both jobs, the brain will mix them together, or in trying not to, will reverse mix (leading to a forward slip or a skid, the latter widely considered very hazardous at low altitude and speed). If you have an aircraft in which it's difficult to avoid mixing either adverse or proverse rudder while applying aileron, it'll be difficult to land or take off in crosswinds, hard to maintain a precise final approach, and nearly impossible to fly high precision maneuvers (like air to air refueling or tight formations).






            share|improve this answer









            $endgroup$



            The modern control yoke is directly derived from the "joystick" control that became standard on aircraft in the days when Glenn Curtiss personally ran the company that was the main competitor to the Wright brothers.



            After inventing aileron control (the Wrights were still using wing warping at the time -- this was before 1910), Curtiss needed a way to control movement of the ailerons, and subsequently of the rudder. The original 1903 Wright Flyer had the wing warp controlled by sliding the pilot's platform (a flat surface, on which the pilot lay prone) right and left, and coupled the rudder, so that roll and yaw were inseparable. Curtiss decoupled them, and needed to add a third control -- and since he was also sitting upright, even in his first airplane, his feet were available.



            Running the elevators and ailerons on the control stick was obvious, and it was equally simple to put one's feet on a bar that directly operated the rudder -- and this layout became the standard almost instantly. Even the Wrights adopted it before they demonstrated their Flier to the Army.



            Over time, there have been a few examples of variations. Airplanes that brought back coupled rudder and aileron, like the Ercoupe, let the pilot fly with "feet flat on the floor" -- and it seems to me there was at least one design, from the biplane era, of a transport aircraft with rudder operated much the way you describe; a control wheel mounted on a joystick, with stick movement controlling roll, and wheel rotation controlling yaw.



            The fact this has only appeared in a very small number of designs suggests that, as noted in a comment, it's a bad idea to change something that's been long standardized -- yet, we have a good number of aircraft, ranging from sailplane to jet fighter and large transport, that use "sidestick" -- in which, in the transport case, the pilot in command actually flies with his left hand, while the copilot flies with his right. Joysticks continue in wide use as well, especially in smaller or higher performance aircraft, or those with ejection systems.



            The other, and I believe the main reason we don't see control schemes like what you describe is that it becomes impossible to maintain precise, separate control of roll and yaw. When the same pair of hands are doing both jobs, the brain will mix them together, or in trying not to, will reverse mix (leading to a forward slip or a skid, the latter widely considered very hazardous at low altitude and speed). If you have an aircraft in which it's difficult to avoid mixing either adverse or proverse rudder while applying aileron, it'll be difficult to land or take off in crosswinds, hard to maintain a precise final approach, and nearly impossible to fly high precision maneuvers (like air to air refueling or tight formations).







            share|improve this answer












            share|improve this answer



            share|improve this answer










            answered 15 hours ago









            Zeiss IkonZeiss Ikon

            3,627419




            3,627419





















                6












                $begingroup$

                It's just a bad idea Sean. Believe me if you've done any flying you would NOT like a control column that you have to shove sideways, or a twisty yoke, for rudder as well as roll and pitch. Your feet are sitting there doing nothing anyway. And you need to be able to control it one handed so you can work the thrust levers or power levers or throttles with the other. How would you work such a column with one hand?



                Plus, in any transport airplane with a yaw damper system you never touch the rudder pedals once airborne unless an engine quits. And if that happens you'll be glad you have your upper thigh muscles to the do the work of holding in rudder input for an extended period, and not your forearms already busy with 2 other jobs.



                I'm imagining trying to hold a yoke pushed to the side following an engine failure on rotation, while also controlling pitch and roll with it, while my feet sit on the floor being useless... very unpleasant.



                Where it might be viable is with a side stick FBW controller where the stick rotates for yaw, like a computer joystick. But even there, I'd rather have my feet do it.






                share|improve this answer











                $endgroup$

















                  6












                  $begingroup$

                  It's just a bad idea Sean. Believe me if you've done any flying you would NOT like a control column that you have to shove sideways, or a twisty yoke, for rudder as well as roll and pitch. Your feet are sitting there doing nothing anyway. And you need to be able to control it one handed so you can work the thrust levers or power levers or throttles with the other. How would you work such a column with one hand?



                  Plus, in any transport airplane with a yaw damper system you never touch the rudder pedals once airborne unless an engine quits. And if that happens you'll be glad you have your upper thigh muscles to the do the work of holding in rudder input for an extended period, and not your forearms already busy with 2 other jobs.



                  I'm imagining trying to hold a yoke pushed to the side following an engine failure on rotation, while also controlling pitch and roll with it, while my feet sit on the floor being useless... very unpleasant.



                  Where it might be viable is with a side stick FBW controller where the stick rotates for yaw, like a computer joystick. But even there, I'd rather have my feet do it.






                  share|improve this answer











                  $endgroup$















                    6












                    6








                    6





                    $begingroup$

                    It's just a bad idea Sean. Believe me if you've done any flying you would NOT like a control column that you have to shove sideways, or a twisty yoke, for rudder as well as roll and pitch. Your feet are sitting there doing nothing anyway. And you need to be able to control it one handed so you can work the thrust levers or power levers or throttles with the other. How would you work such a column with one hand?



                    Plus, in any transport airplane with a yaw damper system you never touch the rudder pedals once airborne unless an engine quits. And if that happens you'll be glad you have your upper thigh muscles to the do the work of holding in rudder input for an extended period, and not your forearms already busy with 2 other jobs.



                    I'm imagining trying to hold a yoke pushed to the side following an engine failure on rotation, while also controlling pitch and roll with it, while my feet sit on the floor being useless... very unpleasant.



                    Where it might be viable is with a side stick FBW controller where the stick rotates for yaw, like a computer joystick. But even there, I'd rather have my feet do it.






                    share|improve this answer











                    $endgroup$



                    It's just a bad idea Sean. Believe me if you've done any flying you would NOT like a control column that you have to shove sideways, or a twisty yoke, for rudder as well as roll and pitch. Your feet are sitting there doing nothing anyway. And you need to be able to control it one handed so you can work the thrust levers or power levers or throttles with the other. How would you work such a column with one hand?



                    Plus, in any transport airplane with a yaw damper system you never touch the rudder pedals once airborne unless an engine quits. And if that happens you'll be glad you have your upper thigh muscles to the do the work of holding in rudder input for an extended period, and not your forearms already busy with 2 other jobs.



                    I'm imagining trying to hold a yoke pushed to the side following an engine failure on rotation, while also controlling pitch and roll with it, while my feet sit on the floor being useless... very unpleasant.



                    Where it might be viable is with a side stick FBW controller where the stick rotates for yaw, like a computer joystick. But even there, I'd rather have my feet do it.







                    share|improve this answer














                    share|improve this answer



                    share|improve this answer








                    edited 13 hours ago

























                    answered 14 hours ago









                    John KJohn K

                    25.9k13879




                    25.9k13879





















                        5












                        $begingroup$

                        Such designs do not work well when the rudder is required other than during turns.



                        A typical situation would be the use of rudder to counter the p-factor (asymmetric turning tendency) on propeller aircraft. After take-off, one might need to apply a significant amount of rudder during climb at high-power and high-AOA.



                        It would be very inconvenient to have the yoke "tilted" or "twisted" during the climb, even when the aircraft is not turning at all.






                        share|improve this answer








                        New contributor




                        peekay is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                        Check out our Code of Conduct.






                        $endgroup$

















                          5












                          $begingroup$

                          Such designs do not work well when the rudder is required other than during turns.



                          A typical situation would be the use of rudder to counter the p-factor (asymmetric turning tendency) on propeller aircraft. After take-off, one might need to apply a significant amount of rudder during climb at high-power and high-AOA.



                          It would be very inconvenient to have the yoke "tilted" or "twisted" during the climb, even when the aircraft is not turning at all.






                          share|improve this answer








                          New contributor




                          peekay is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                          Check out our Code of Conduct.






                          $endgroup$















                            5












                            5








                            5





                            $begingroup$

                            Such designs do not work well when the rudder is required other than during turns.



                            A typical situation would be the use of rudder to counter the p-factor (asymmetric turning tendency) on propeller aircraft. After take-off, one might need to apply a significant amount of rudder during climb at high-power and high-AOA.



                            It would be very inconvenient to have the yoke "tilted" or "twisted" during the climb, even when the aircraft is not turning at all.






                            share|improve this answer








                            New contributor




                            peekay is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                            Check out our Code of Conduct.






                            $endgroup$



                            Such designs do not work well when the rudder is required other than during turns.



                            A typical situation would be the use of rudder to counter the p-factor (asymmetric turning tendency) on propeller aircraft. After take-off, one might need to apply a significant amount of rudder during climb at high-power and high-AOA.



                            It would be very inconvenient to have the yoke "tilted" or "twisted" during the climb, even when the aircraft is not turning at all.







                            share|improve this answer








                            New contributor




                            peekay is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                            Check out our Code of Conduct.









                            share|improve this answer



                            share|improve this answer






                            New contributor




                            peekay is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                            Check out our Code of Conduct.









                            answered 15 hours ago









                            peekaypeekay

                            3414




                            3414




                            New contributor




                            peekay is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                            Check out our Code of Conduct.





                            New contributor





                            peekay is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                            Check out our Code of Conduct.






                            peekay is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                            Check out our Code of Conduct.



























                                draft saved

                                draft discarded
















































                                Thanks for contributing an answer to Aviation Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2faviation.stackexchange.com%2fquestions%2f62555%2fwhy-not-use-the-yoke-to-control-yaw-as-well-as-pitch-and-roll%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Францішак Багушэвіч Змест Сям'я | Біяграфія | Творчасць | Мова Багушэвіча | Ацэнкі дзейнасці | Цікавыя факты | Спадчына | Выбраная бібліяграфія | Ушанаванне памяці | У філатэліі | Зноскі | Літаратура | Спасылкі | НавігацыяЛяхоўскі У. Рупіўся дзеля Бога і людзей: Жыццёвы шлях Лявона Вітан-Дубейкаўскага // Вольскі і Памідораў з песняй пра немца Адвакат, паэт, народны заступнік Ашмянскі веснікВ Минске появится площадь Богушевича и улица Сырокомли, Белорусская деловая газета, 19 июля 2001 г.Айцец беларускай нацыянальнай ідэі паўстаў у бронзе Сяргей Аляксандравіч Адашкевіч (1918, Мінск). 80-я гады. Бюст «Францішак Багушэвіч».Яўген Мікалаевіч Ціхановіч. «Партрэт Францішка Багушэвіча»Мікола Мікалаевіч Купава. «Партрэт зачынальніка новай беларускай літаратуры Францішка Багушэвіча»Уладзімір Іванавіч Мелехаў. На помніку «Змагарам за родную мову» Барэльеф «Францішак Багушэвіч»Памяць пра Багушэвіча на Віленшчыне Страчаная сталіца. Беларускія шыльды на вуліцах Вільні«Krynica». Ideologia i przywódcy białoruskiego katolicyzmuФранцішак БагушэвічТворы на knihi.comТворы Францішка Багушэвіча на bellib.byСодаль Уладзімір. Францішак Багушэвіч на Лідчыне;Луцкевіч Антон. Жыцьцё і творчасьць Фр. Багушэвіча ў успамінах ягоных сучасьнікаў // Запісы Беларускага Навуковага таварыства. Вільня, 1938. Сшытак 1. С. 16-34.Большая российская1188761710000 0000 5537 633Xn9209310021619551927869394п

                                Беларусь Змест Назва Гісторыя Геаграфія Сімволіка Дзяржаўны лад Палітычныя партыі Міжнароднае становішча і знешняя палітыка Адміністрацыйны падзел Насельніцтва Эканоміка Культура і грамадства Сацыяльная сфера Узброеныя сілы Заўвагі Літаратура Спасылкі НавігацыяHGЯOiТоп-2011 г. (па версіі ej.by)Топ-2013 г. (па версіі ej.by)Топ-2016 г. (па версіі ej.by)Топ-2017 г. (па версіі ej.by)Нацыянальны статыстычны камітэт Рэспублікі БеларусьШчыльнасць насельніцтва па краінахhttp://naviny.by/rubrics/society/2011/09/16/ic_articles_116_175144/А. Калечыц, У. Ксяндзоў. Спробы засялення краю неандэртальскім чалавекам.І ў Менску былі мамантыА. Калечыц, У. Ксяндзоў. Старажытны каменны век (палеаліт). Першапачатковае засяленне тэрыторыіГ. Штыхаў. Балты і славяне ў VI—VIII стст.М. Клімаў. Полацкае княства ў IX—XI стст.Г. Штыхаў, В. Ляўко. Палітычная гісторыя Полацкай зямліГ. Штыхаў. Дзяржаўны лад у землях-княствахГ. Штыхаў. Дзяржаўны лад у землях-княствахБеларускія землі ў складзе Вялікага Княства ЛітоўскагаЛюблінская унія 1569 г."The Early Stages of Independence"Zapomniane prawdy25 гадоў таму было аб'яўлена, што Язэп Пілсудскі — беларус (фота)Наша вадаДакументы ЧАЭС: Забруджванне тэрыторыі Беларусі « ЧАЭС Зона адчужэнняСведения о политических партиях, зарегистрированных в Республике Беларусь // Министерство юстиции Республики БеларусьСтатыстычны бюлетэнь „Полаўзроставая структура насельніцтва Рэспублікі Беларусь на 1 студзеня 2012 года і сярэднегадовая колькасць насельніцтва за 2011 год“Индекс человеческого развития Беларуси — не было бы нижеБеларусь занимает первое место в СНГ по индексу развития с учетом гендерного факцёраНацыянальны статыстычны камітэт Рэспублікі БеларусьКанстытуцыя РБ. Артыкул 17Трансфармацыйныя задачы БеларусіВыйсце з крызісу — далейшае рэфармаванне Беларускі рубель — сусветны лідар па дэвальвацыяхПра змену коштаў у кастрычніку 2011 г.Бядней за беларусаў у СНД толькі таджыкіСярэдні заробак у верасні дасягнуў 2,26 мільёна рублёўЭканомікаГаласуем за ТОП-100 беларускай прозыСучасныя беларускія мастакіАрхитектура Беларуси BELARUS.BYА. Каханоўскі. Культура Беларусі ўсярэдзіне XVII—XVIII ст.Анталогія беларускай народнай песні, гуказапісы спеваўБеларускія Музычныя IнструментыБеларускі рок, які мы страцілі. Топ-10 гуртоў«Мясцовы час» — нязгаслая легенда беларускай рок-музыкіСЯРГЕЙ БУДКІН. МЫ НЯ ЗНАЕМ СВАЁЙ МУЗЫКІМ. А. Каладзінскі. НАРОДНЫ ТЭАТРМагнацкія культурныя цэнтрыПублічная дыскусія «Беларуская новая пьеса: без беларускай мовы ці беларуская?»Беларускія драматургі па-ранейшаму лепш ставяцца за мяжой, чым на радзіме«Працэс незалежнага кіно пайшоў, і дзяржаву турбуе яго непадкантрольнасць»Беларускія філосафы ў пошуках прасторыВсе идём в библиотекуАрхіваванаАб Нацыянальнай праграме даследавання і выкарыстання касмічнай прасторы ў мірных мэтах на 2008—2012 гадыУ космас — разам.У суседнім з Барысаўскім раёне пабудуюць Камандна-вымяральны пунктСвяты і абрады беларусаў«Мірныя бульбашы з малой краіны» — 5 непраўдзівых стэрэатыпаў пра БеларусьМ. Раманюк. Беларускае народнае адзеннеУ Беларусі скарачаецца колькасць злачынстваўЛукашэнка незадаволены мінскімі ўладамі Крадзяжы складаюць у Мінску каля 70% злачынстваў Узровень злачыннасці ў Мінскай вобласці — адзін з самых высокіх у краіне Генпракуратура аналізуе стан са злачыннасцю ў Беларусі па каэфіцыенце злачыннасці У Беларусі стабілізавалася крымінагеннае становішча, лічыць генпракурорЗамежнікі сталі здзяйсняць у Беларусі больш злачынстваўМУС Беларусі турбуе рост рэцыдыўнай злачыннасціЯ з ЖЭСа. Дазволіце вас абкрасці! Рэйтынг усіх службаў і падраздзяленняў ГУУС Мінгарвыканкама вырасАб КДБ РБГісторыя Аператыўна-аналітычнага цэнтра РБГісторыя ДКФРТаможняagentura.ruБеларусьBelarus.by — Афіцыйны сайт Рэспублікі БеларусьСайт урада БеларусіRadzima.org — Збор архітэктурных помнікаў, гісторыя Беларусі«Глобус Беларуси»Гербы и флаги БеларусиАсаблівасці каменнага веку на БеларусіА. Калечыц, У. Ксяндзоў. Старажытны каменны век (палеаліт). Першапачатковае засяленне тэрыторыіУ. Ксяндзоў. Сярэдні каменны век (мезаліт). Засяленне краю плямёнамі паляўнічых, рыбакоў і збіральнікаўА. Калечыц, М. Чарняўскі. Плямёны на тэрыторыі Беларусі ў новым каменным веку (неаліце)А. Калечыц, У. Ксяндзоў, М. Чарняўскі. Гаспадарчыя заняткі ў каменным векуЭ. Зайкоўскі. Духоўная культура ў каменным векуАсаблівасці бронзавага веку на БеларусіФарміраванне супольнасцей ранняга перыяду бронзавага векуФотографии БеларусиРоля беларускіх зямель ва ўтварэнні і ўмацаванні ВКЛВ. Фадзеева. З гісторыі развіцця беларускай народнай вышыўкіDMOZGran catalanaБольшая российскаяBritannica (анлайн)Швейцарскі гістарычны15325917611952699xDA123282154079143-90000 0001 2171 2080n9112870100577502ge128882171858027501086026362074122714179пппппп

                                Partai Komunis Tiongkok Daftar isi Kepemimpinan | Pranala luar | Referensi | Menu navigasidiperiksa1 perubahan tertundacpc.people.com.cnSitus resmiSurat kabar resmi"Why the Communist Party is alive, well and flourishing in China"0307-1235"Full text of Constitution of Communist Party of China"smengembangkannyas