Adapting the Chinese Remainder Theorem (CRT) for integers to polynomials Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)mod Distributive Law, factoring $!!bmod!!:$ $ abbmod ac = a(bbmod c)$Remainder of polynomial by product of 2 polynomials$f$ dividing by $x + 1$ have remainder 4, when dividing with $x^2 + 1$ have remainder 2x+3. Find remainder dividing polynomial with($x+1$)($x^2+1$)chinese remainder theorem proofChinese Remainder Theorem InterpretationChinese Remainder Theorem clarificationI can't use Chinese Remainder Theorem.Chinese Remainder Theorem for $xequiv 0 pmody$Comparing two statements of Chinese Remainder Theorem (Sun-Ze Theorem)Chinese remainder theorem methodChinese Remainder Theorem problem 7Chinese Remainder Theorem with 0 mod nSolve a system of congruences using the Chinese Remainder Theorem

By what mechanism was the 2017 UK General Election called?

Is there a spell that can create a permanent fire?

Short story about astronauts fertilizing soil with their own bodies

Can gravitational waves pass through a black hole?

How to ask rejected full-time candidates to apply to teach individual courses?

Why are current probes so expensive?

Did any compiler fully use 80-bit floating point?

How could a hydrazine and N2O4 cloud (or it's reactants) show up in weather radar?

Calculation of line of sight system gain

Weaponising the Grasp-at-a-Distance spell

Inverse square law not accurate for non-point masses?

One-one communication

Keep at all times, the minus sign above aligned with minus sign below

Why not use the yoke to control yaw, as well as pitch and roll?

Plotting a Maclaurin series

How do I find my Spellcasting Ability for my D&D character?

How to name indistinguishable henchmen in a screenplay?

French equivalents of おしゃれは足元から (Every good outfit starts with the shoes)

Are there any irrational/transcendental numbers for which the distribution of decimal digits is not uniform?

What does 丫 mean? 丫是什么意思?

How to achieve cat-like agility?

Do i imagine the linear (straight line) homotopy in a correct way?

Should man-made satellites feature an intelligent inverted "cow catcher"?

Problem with display of presentation



Adapting the Chinese Remainder Theorem (CRT) for integers to polynomials



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)mod Distributive Law, factoring $!!bmod!!:$ $ abbmod ac = a(bbmod c)$Remainder of polynomial by product of 2 polynomials$f$ dividing by $x + 1$ have remainder 4, when dividing with $x^2 + 1$ have remainder 2x+3. Find remainder dividing polynomial with($x+1$)($x^2+1$)chinese remainder theorem proofChinese Remainder Theorem InterpretationChinese Remainder Theorem clarificationI can't use Chinese Remainder Theorem.Chinese Remainder Theorem for $xequiv 0 pmody$Comparing two statements of Chinese Remainder Theorem (Sun-Ze Theorem)Chinese remainder theorem methodChinese Remainder Theorem problem 7Chinese Remainder Theorem with 0 mod nSolve a system of congruences using the Chinese Remainder Theorem










2












$begingroup$


I did a few examples using the CRT to solve congruences where everything was in terms of integers. I'm trying to use the same technique for polynomials over $mathbbQ$, but I'm getting stuck.




Here's an example with integers:



$begincasesx equiv 1 , (mathrmmod , 5) \
x equiv 2 , (mathrmmod , 7) \
x equiv 3 , (mathrmmod , 9) \
x equiv 4 , (mathrmmod , 11).
endcases$



Since all the moduli are pairwise relatively prime, we can use the CRT. Here's some notation I'm using:



$bullet , M$ denotes the product of the moduli (in this case, $M = 5 cdot7 cdot 9 cdot 11$)



$bullet , m_i $ denotes the modulus in the $i^mathrmth$ congruence



$bullet , M_i$ denotes $dfracMm_i$



$bullet , y_i$ denotes the inverse of $M_i$ (mod $m_i$), i.e. $y_i$ satisfies $y_i M_i equiv 1$ (mod $m_i$).



Then $x = displaystyle sum_i = 1^n a_iM_iy_i$, and this solution is unique (mod $M$).




Now I want to apply the same technique to the following:



$begincases
f(x) equiv 1 , (mathrm mod , x^2 + 1) \
f(x) equiv x , (mathrmmod , x^4),
endcases$



where $f(x) in mathbbQ(x)$. Having checked that the moduli are relatively prime, we should be able to use the CRT. Using the notation above, I have the following:



$M = (x^4)(x^2 + 1)$



$M_1 = x^4$



$M_2 = x^2 + 1$



Here's where I run into a problem. I need to find $y_1, y_2$ such that



$begincases
y_1 (x^4) equiv 1 , (mathrmmod , x^2 + 1) \
y_2 (x^2+1) equiv 1 , (mathrmmod , x^4).
endcases$



But how does one find $y_1, y_2$?










share|cite|improve this question









$endgroup$







  • 1




    $begingroup$
    "Having checked that the moduli are relatively prime..." but that means precisely that there exist $p_1(x)$ and $p_2(x)$ such that $p_1(x)x^4 + p_2(x)(x^2+1)=1$.
    $endgroup$
    – kccu
    8 hours ago










  • $begingroup$
    Are you saying that I can find $p_1(x)$ and $p_2(x)$ in general by using the extended Euclidean algorithm, and that $p_1(x)$ and $p_2(x)$ are precisely my $y_1$ and $y_2$?
    $endgroup$
    – Junglemath
    7 hours ago















2












$begingroup$


I did a few examples using the CRT to solve congruences where everything was in terms of integers. I'm trying to use the same technique for polynomials over $mathbbQ$, but I'm getting stuck.




Here's an example with integers:



$begincasesx equiv 1 , (mathrmmod , 5) \
x equiv 2 , (mathrmmod , 7) \
x equiv 3 , (mathrmmod , 9) \
x equiv 4 , (mathrmmod , 11).
endcases$



Since all the moduli are pairwise relatively prime, we can use the CRT. Here's some notation I'm using:



$bullet , M$ denotes the product of the moduli (in this case, $M = 5 cdot7 cdot 9 cdot 11$)



$bullet , m_i $ denotes the modulus in the $i^mathrmth$ congruence



$bullet , M_i$ denotes $dfracMm_i$



$bullet , y_i$ denotes the inverse of $M_i$ (mod $m_i$), i.e. $y_i$ satisfies $y_i M_i equiv 1$ (mod $m_i$).



Then $x = displaystyle sum_i = 1^n a_iM_iy_i$, and this solution is unique (mod $M$).




Now I want to apply the same technique to the following:



$begincases
f(x) equiv 1 , (mathrm mod , x^2 + 1) \
f(x) equiv x , (mathrmmod , x^4),
endcases$



where $f(x) in mathbbQ(x)$. Having checked that the moduli are relatively prime, we should be able to use the CRT. Using the notation above, I have the following:



$M = (x^4)(x^2 + 1)$



$M_1 = x^4$



$M_2 = x^2 + 1$



Here's where I run into a problem. I need to find $y_1, y_2$ such that



$begincases
y_1 (x^4) equiv 1 , (mathrmmod , x^2 + 1) \
y_2 (x^2+1) equiv 1 , (mathrmmod , x^4).
endcases$



But how does one find $y_1, y_2$?










share|cite|improve this question









$endgroup$







  • 1




    $begingroup$
    "Having checked that the moduli are relatively prime..." but that means precisely that there exist $p_1(x)$ and $p_2(x)$ such that $p_1(x)x^4 + p_2(x)(x^2+1)=1$.
    $endgroup$
    – kccu
    8 hours ago










  • $begingroup$
    Are you saying that I can find $p_1(x)$ and $p_2(x)$ in general by using the extended Euclidean algorithm, and that $p_1(x)$ and $p_2(x)$ are precisely my $y_1$ and $y_2$?
    $endgroup$
    – Junglemath
    7 hours ago













2












2








2





$begingroup$


I did a few examples using the CRT to solve congruences where everything was in terms of integers. I'm trying to use the same technique for polynomials over $mathbbQ$, but I'm getting stuck.




Here's an example with integers:



$begincasesx equiv 1 , (mathrmmod , 5) \
x equiv 2 , (mathrmmod , 7) \
x equiv 3 , (mathrmmod , 9) \
x equiv 4 , (mathrmmod , 11).
endcases$



Since all the moduli are pairwise relatively prime, we can use the CRT. Here's some notation I'm using:



$bullet , M$ denotes the product of the moduli (in this case, $M = 5 cdot7 cdot 9 cdot 11$)



$bullet , m_i $ denotes the modulus in the $i^mathrmth$ congruence



$bullet , M_i$ denotes $dfracMm_i$



$bullet , y_i$ denotes the inverse of $M_i$ (mod $m_i$), i.e. $y_i$ satisfies $y_i M_i equiv 1$ (mod $m_i$).



Then $x = displaystyle sum_i = 1^n a_iM_iy_i$, and this solution is unique (mod $M$).




Now I want to apply the same technique to the following:



$begincases
f(x) equiv 1 , (mathrm mod , x^2 + 1) \
f(x) equiv x , (mathrmmod , x^4),
endcases$



where $f(x) in mathbbQ(x)$. Having checked that the moduli are relatively prime, we should be able to use the CRT. Using the notation above, I have the following:



$M = (x^4)(x^2 + 1)$



$M_1 = x^4$



$M_2 = x^2 + 1$



Here's where I run into a problem. I need to find $y_1, y_2$ such that



$begincases
y_1 (x^4) equiv 1 , (mathrmmod , x^2 + 1) \
y_2 (x^2+1) equiv 1 , (mathrmmod , x^4).
endcases$



But how does one find $y_1, y_2$?










share|cite|improve this question









$endgroup$




I did a few examples using the CRT to solve congruences where everything was in terms of integers. I'm trying to use the same technique for polynomials over $mathbbQ$, but I'm getting stuck.




Here's an example with integers:



$begincasesx equiv 1 , (mathrmmod , 5) \
x equiv 2 , (mathrmmod , 7) \
x equiv 3 , (mathrmmod , 9) \
x equiv 4 , (mathrmmod , 11).
endcases$



Since all the moduli are pairwise relatively prime, we can use the CRT. Here's some notation I'm using:



$bullet , M$ denotes the product of the moduli (in this case, $M = 5 cdot7 cdot 9 cdot 11$)



$bullet , m_i $ denotes the modulus in the $i^mathrmth$ congruence



$bullet , M_i$ denotes $dfracMm_i$



$bullet , y_i$ denotes the inverse of $M_i$ (mod $m_i$), i.e. $y_i$ satisfies $y_i M_i equiv 1$ (mod $m_i$).



Then $x = displaystyle sum_i = 1^n a_iM_iy_i$, and this solution is unique (mod $M$).




Now I want to apply the same technique to the following:



$begincases
f(x) equiv 1 , (mathrm mod , x^2 + 1) \
f(x) equiv x , (mathrmmod , x^4),
endcases$



where $f(x) in mathbbQ(x)$. Having checked that the moduli are relatively prime, we should be able to use the CRT. Using the notation above, I have the following:



$M = (x^4)(x^2 + 1)$



$M_1 = x^4$



$M_2 = x^2 + 1$



Here's where I run into a problem. I need to find $y_1, y_2$ such that



$begincases
y_1 (x^4) equiv 1 , (mathrmmod , x^2 + 1) \
y_2 (x^2+1) equiv 1 , (mathrmmod , x^4).
endcases$



But how does one find $y_1, y_2$?







abstract-algebra ring-theory chinese-remainder-theorem






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 8 hours ago









JunglemathJunglemath

6017




6017







  • 1




    $begingroup$
    "Having checked that the moduli are relatively prime..." but that means precisely that there exist $p_1(x)$ and $p_2(x)$ such that $p_1(x)x^4 + p_2(x)(x^2+1)=1$.
    $endgroup$
    – kccu
    8 hours ago










  • $begingroup$
    Are you saying that I can find $p_1(x)$ and $p_2(x)$ in general by using the extended Euclidean algorithm, and that $p_1(x)$ and $p_2(x)$ are precisely my $y_1$ and $y_2$?
    $endgroup$
    – Junglemath
    7 hours ago












  • 1




    $begingroup$
    "Having checked that the moduli are relatively prime..." but that means precisely that there exist $p_1(x)$ and $p_2(x)$ such that $p_1(x)x^4 + p_2(x)(x^2+1)=1$.
    $endgroup$
    – kccu
    8 hours ago










  • $begingroup$
    Are you saying that I can find $p_1(x)$ and $p_2(x)$ in general by using the extended Euclidean algorithm, and that $p_1(x)$ and $p_2(x)$ are precisely my $y_1$ and $y_2$?
    $endgroup$
    – Junglemath
    7 hours ago







1




1




$begingroup$
"Having checked that the moduli are relatively prime..." but that means precisely that there exist $p_1(x)$ and $p_2(x)$ such that $p_1(x)x^4 + p_2(x)(x^2+1)=1$.
$endgroup$
– kccu
8 hours ago




$begingroup$
"Having checked that the moduli are relatively prime..." but that means precisely that there exist $p_1(x)$ and $p_2(x)$ such that $p_1(x)x^4 + p_2(x)(x^2+1)=1$.
$endgroup$
– kccu
8 hours ago












$begingroup$
Are you saying that I can find $p_1(x)$ and $p_2(x)$ in general by using the extended Euclidean algorithm, and that $p_1(x)$ and $p_2(x)$ are precisely my $y_1$ and $y_2$?
$endgroup$
– Junglemath
7 hours ago




$begingroup$
Are you saying that I can find $p_1(x)$ and $p_2(x)$ in general by using the extended Euclidean algorithm, and that $p_1(x)$ and $p_2(x)$ are precisely my $y_1$ and $y_2$?
$endgroup$
– Junglemath
7 hours ago










2 Answers
2






active

oldest

votes


















3












$begingroup$

To find $y_1$ and $y_2$ consider solving the problem
$$y_1x^4+y_2(x^2+1)=1.$$
This is not always easy to solve, but in this case a solution comes to mind. Note that by difference of squares
$$(x^2-1)(x^2+1)=x^4-1,$$
hence
$$x^4+[(-1)(x^2-1)](x^2+1)=1.$$
This tells us that we can choose
$$y_1=1,$$
$$y_2=(1-x^2).$$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Is there an algorithmic way of solving these, rather than relying on intuition?
    $endgroup$
    – Junglemath
    7 hours ago










  • $begingroup$
    @Junglemath By Euclidean algorithm you can find two polynomials $p(x), q(x) in mathbbQ[x]$ such that $p(x) x^4 + q(x) (x^2 + 1) = 1$.
    $endgroup$
    – Paolo
    7 hours ago







  • 2




    $begingroup$
    @Junglemath The polynomials over a field form a Euclidean Domain, so yes, there is. If the gcd of $f_1,f_2inmathbbQ[x]$ is a unit, then you can perform the Euclidean Algorithm to find their gcd. Now, you can reverse the algorithm to write them as a linear combination of their gcd the same way you would for integers. I said not easy, because the process can be time consuming and very tedious.
    $endgroup$
    – Melody
    7 hours ago







  • 2




    $begingroup$
    @Junglemath I didn't really convert it. I knew in advanced the single equation had a solution. This is because $x^4$ and $x^2+1$ have no common roots, hence no common irreducible factors. This means they are relatively prime, in which case we can write $1$ as a linear combination. Knowing that, I knew solving the single equation would give rise to a solution to the congruence equations. This is completely analogous to how you can solve everything over the integers.
    $endgroup$
    – Melody
    7 hours ago







  • 2




    $begingroup$
    @Junglemath I describe here at length this method of scaling the Bezout equation into a CRT solution.
    $endgroup$
    – Bill Dubuque
    6 hours ago



















2












$begingroup$

Bu applying $ abbmod ac, =, a(bbmod c) $ [Mod Distributive Law] $ $ it is a bit simpler:



$ f-x,bmod, x^large 4(x^large 2!+!1), =, x^large 4underbraceleft[dfraccolor#c00f-xcolor#0a0x^large 4bmod x^large 2!+!1right]_large color#0a0x^Large 4 equiv 1 rm by x^Large 2 equiv -1 =, x^large 4[1-x], $ by $,color#c00fequiv 1pmod!x^large 2!+!1$



Remark $ $ Here are further examples done using MDL (an operational form of CRT).



You can find further details here on transforming the Bezout equation into a CRT solution (the method sketched in Melody's answer).






share|cite|improve this answer











$endgroup$













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3196235%2fadapting-the-chinese-remainder-theorem-crt-for-integers-to-polynomials%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    To find $y_1$ and $y_2$ consider solving the problem
    $$y_1x^4+y_2(x^2+1)=1.$$
    This is not always easy to solve, but in this case a solution comes to mind. Note that by difference of squares
    $$(x^2-1)(x^2+1)=x^4-1,$$
    hence
    $$x^4+[(-1)(x^2-1)](x^2+1)=1.$$
    This tells us that we can choose
    $$y_1=1,$$
    $$y_2=(1-x^2).$$






    share|cite|improve this answer











    $endgroup$












    • $begingroup$
      Is there an algorithmic way of solving these, rather than relying on intuition?
      $endgroup$
      – Junglemath
      7 hours ago










    • $begingroup$
      @Junglemath By Euclidean algorithm you can find two polynomials $p(x), q(x) in mathbbQ[x]$ such that $p(x) x^4 + q(x) (x^2 + 1) = 1$.
      $endgroup$
      – Paolo
      7 hours ago







    • 2




      $begingroup$
      @Junglemath The polynomials over a field form a Euclidean Domain, so yes, there is. If the gcd of $f_1,f_2inmathbbQ[x]$ is a unit, then you can perform the Euclidean Algorithm to find their gcd. Now, you can reverse the algorithm to write them as a linear combination of their gcd the same way you would for integers. I said not easy, because the process can be time consuming and very tedious.
      $endgroup$
      – Melody
      7 hours ago







    • 2




      $begingroup$
      @Junglemath I didn't really convert it. I knew in advanced the single equation had a solution. This is because $x^4$ and $x^2+1$ have no common roots, hence no common irreducible factors. This means they are relatively prime, in which case we can write $1$ as a linear combination. Knowing that, I knew solving the single equation would give rise to a solution to the congruence equations. This is completely analogous to how you can solve everything over the integers.
      $endgroup$
      – Melody
      7 hours ago







    • 2




      $begingroup$
      @Junglemath I describe here at length this method of scaling the Bezout equation into a CRT solution.
      $endgroup$
      – Bill Dubuque
      6 hours ago
















    3












    $begingroup$

    To find $y_1$ and $y_2$ consider solving the problem
    $$y_1x^4+y_2(x^2+1)=1.$$
    This is not always easy to solve, but in this case a solution comes to mind. Note that by difference of squares
    $$(x^2-1)(x^2+1)=x^4-1,$$
    hence
    $$x^4+[(-1)(x^2-1)](x^2+1)=1.$$
    This tells us that we can choose
    $$y_1=1,$$
    $$y_2=(1-x^2).$$






    share|cite|improve this answer











    $endgroup$












    • $begingroup$
      Is there an algorithmic way of solving these, rather than relying on intuition?
      $endgroup$
      – Junglemath
      7 hours ago










    • $begingroup$
      @Junglemath By Euclidean algorithm you can find two polynomials $p(x), q(x) in mathbbQ[x]$ such that $p(x) x^4 + q(x) (x^2 + 1) = 1$.
      $endgroup$
      – Paolo
      7 hours ago







    • 2




      $begingroup$
      @Junglemath The polynomials over a field form a Euclidean Domain, so yes, there is. If the gcd of $f_1,f_2inmathbbQ[x]$ is a unit, then you can perform the Euclidean Algorithm to find their gcd. Now, you can reverse the algorithm to write them as a linear combination of their gcd the same way you would for integers. I said not easy, because the process can be time consuming and very tedious.
      $endgroup$
      – Melody
      7 hours ago







    • 2




      $begingroup$
      @Junglemath I didn't really convert it. I knew in advanced the single equation had a solution. This is because $x^4$ and $x^2+1$ have no common roots, hence no common irreducible factors. This means they are relatively prime, in which case we can write $1$ as a linear combination. Knowing that, I knew solving the single equation would give rise to a solution to the congruence equations. This is completely analogous to how you can solve everything over the integers.
      $endgroup$
      – Melody
      7 hours ago







    • 2




      $begingroup$
      @Junglemath I describe here at length this method of scaling the Bezout equation into a CRT solution.
      $endgroup$
      – Bill Dubuque
      6 hours ago














    3












    3








    3





    $begingroup$

    To find $y_1$ and $y_2$ consider solving the problem
    $$y_1x^4+y_2(x^2+1)=1.$$
    This is not always easy to solve, but in this case a solution comes to mind. Note that by difference of squares
    $$(x^2-1)(x^2+1)=x^4-1,$$
    hence
    $$x^4+[(-1)(x^2-1)](x^2+1)=1.$$
    This tells us that we can choose
    $$y_1=1,$$
    $$y_2=(1-x^2).$$






    share|cite|improve this answer











    $endgroup$



    To find $y_1$ and $y_2$ consider solving the problem
    $$y_1x^4+y_2(x^2+1)=1.$$
    This is not always easy to solve, but in this case a solution comes to mind. Note that by difference of squares
    $$(x^2-1)(x^2+1)=x^4-1,$$
    hence
    $$x^4+[(-1)(x^2-1)](x^2+1)=1.$$
    This tells us that we can choose
    $$y_1=1,$$
    $$y_2=(1-x^2).$$







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited 7 hours ago

























    answered 8 hours ago









    MelodyMelody

    1,42212




    1,42212











    • $begingroup$
      Is there an algorithmic way of solving these, rather than relying on intuition?
      $endgroup$
      – Junglemath
      7 hours ago










    • $begingroup$
      @Junglemath By Euclidean algorithm you can find two polynomials $p(x), q(x) in mathbbQ[x]$ such that $p(x) x^4 + q(x) (x^2 + 1) = 1$.
      $endgroup$
      – Paolo
      7 hours ago







    • 2




      $begingroup$
      @Junglemath The polynomials over a field form a Euclidean Domain, so yes, there is. If the gcd of $f_1,f_2inmathbbQ[x]$ is a unit, then you can perform the Euclidean Algorithm to find their gcd. Now, you can reverse the algorithm to write them as a linear combination of their gcd the same way you would for integers. I said not easy, because the process can be time consuming and very tedious.
      $endgroup$
      – Melody
      7 hours ago







    • 2




      $begingroup$
      @Junglemath I didn't really convert it. I knew in advanced the single equation had a solution. This is because $x^4$ and $x^2+1$ have no common roots, hence no common irreducible factors. This means they are relatively prime, in which case we can write $1$ as a linear combination. Knowing that, I knew solving the single equation would give rise to a solution to the congruence equations. This is completely analogous to how you can solve everything over the integers.
      $endgroup$
      – Melody
      7 hours ago







    • 2




      $begingroup$
      @Junglemath I describe here at length this method of scaling the Bezout equation into a CRT solution.
      $endgroup$
      – Bill Dubuque
      6 hours ago

















    • $begingroup$
      Is there an algorithmic way of solving these, rather than relying on intuition?
      $endgroup$
      – Junglemath
      7 hours ago










    • $begingroup$
      @Junglemath By Euclidean algorithm you can find two polynomials $p(x), q(x) in mathbbQ[x]$ such that $p(x) x^4 + q(x) (x^2 + 1) = 1$.
      $endgroup$
      – Paolo
      7 hours ago







    • 2




      $begingroup$
      @Junglemath The polynomials over a field form a Euclidean Domain, so yes, there is. If the gcd of $f_1,f_2inmathbbQ[x]$ is a unit, then you can perform the Euclidean Algorithm to find their gcd. Now, you can reverse the algorithm to write them as a linear combination of their gcd the same way you would for integers. I said not easy, because the process can be time consuming and very tedious.
      $endgroup$
      – Melody
      7 hours ago







    • 2




      $begingroup$
      @Junglemath I didn't really convert it. I knew in advanced the single equation had a solution. This is because $x^4$ and $x^2+1$ have no common roots, hence no common irreducible factors. This means they are relatively prime, in which case we can write $1$ as a linear combination. Knowing that, I knew solving the single equation would give rise to a solution to the congruence equations. This is completely analogous to how you can solve everything over the integers.
      $endgroup$
      – Melody
      7 hours ago







    • 2




      $begingroup$
      @Junglemath I describe here at length this method of scaling the Bezout equation into a CRT solution.
      $endgroup$
      – Bill Dubuque
      6 hours ago
















    $begingroup$
    Is there an algorithmic way of solving these, rather than relying on intuition?
    $endgroup$
    – Junglemath
    7 hours ago




    $begingroup$
    Is there an algorithmic way of solving these, rather than relying on intuition?
    $endgroup$
    – Junglemath
    7 hours ago












    $begingroup$
    @Junglemath By Euclidean algorithm you can find two polynomials $p(x), q(x) in mathbbQ[x]$ such that $p(x) x^4 + q(x) (x^2 + 1) = 1$.
    $endgroup$
    – Paolo
    7 hours ago





    $begingroup$
    @Junglemath By Euclidean algorithm you can find two polynomials $p(x), q(x) in mathbbQ[x]$ such that $p(x) x^4 + q(x) (x^2 + 1) = 1$.
    $endgroup$
    – Paolo
    7 hours ago





    2




    2




    $begingroup$
    @Junglemath The polynomials over a field form a Euclidean Domain, so yes, there is. If the gcd of $f_1,f_2inmathbbQ[x]$ is a unit, then you can perform the Euclidean Algorithm to find their gcd. Now, you can reverse the algorithm to write them as a linear combination of their gcd the same way you would for integers. I said not easy, because the process can be time consuming and very tedious.
    $endgroup$
    – Melody
    7 hours ago





    $begingroup$
    @Junglemath The polynomials over a field form a Euclidean Domain, so yes, there is. If the gcd of $f_1,f_2inmathbbQ[x]$ is a unit, then you can perform the Euclidean Algorithm to find their gcd. Now, you can reverse the algorithm to write them as a linear combination of their gcd the same way you would for integers. I said not easy, because the process can be time consuming and very tedious.
    $endgroup$
    – Melody
    7 hours ago





    2




    2




    $begingroup$
    @Junglemath I didn't really convert it. I knew in advanced the single equation had a solution. This is because $x^4$ and $x^2+1$ have no common roots, hence no common irreducible factors. This means they are relatively prime, in which case we can write $1$ as a linear combination. Knowing that, I knew solving the single equation would give rise to a solution to the congruence equations. This is completely analogous to how you can solve everything over the integers.
    $endgroup$
    – Melody
    7 hours ago





    $begingroup$
    @Junglemath I didn't really convert it. I knew in advanced the single equation had a solution. This is because $x^4$ and $x^2+1$ have no common roots, hence no common irreducible factors. This means they are relatively prime, in which case we can write $1$ as a linear combination. Knowing that, I knew solving the single equation would give rise to a solution to the congruence equations. This is completely analogous to how you can solve everything over the integers.
    $endgroup$
    – Melody
    7 hours ago





    2




    2




    $begingroup$
    @Junglemath I describe here at length this method of scaling the Bezout equation into a CRT solution.
    $endgroup$
    – Bill Dubuque
    6 hours ago





    $begingroup$
    @Junglemath I describe here at length this method of scaling the Bezout equation into a CRT solution.
    $endgroup$
    – Bill Dubuque
    6 hours ago












    2












    $begingroup$

    Bu applying $ abbmod ac, =, a(bbmod c) $ [Mod Distributive Law] $ $ it is a bit simpler:



    $ f-x,bmod, x^large 4(x^large 2!+!1), =, x^large 4underbraceleft[dfraccolor#c00f-xcolor#0a0x^large 4bmod x^large 2!+!1right]_large color#0a0x^Large 4 equiv 1 rm by x^Large 2 equiv -1 =, x^large 4[1-x], $ by $,color#c00fequiv 1pmod!x^large 2!+!1$



    Remark $ $ Here are further examples done using MDL (an operational form of CRT).



    You can find further details here on transforming the Bezout equation into a CRT solution (the method sketched in Melody's answer).






    share|cite|improve this answer











    $endgroup$

















      2












      $begingroup$

      Bu applying $ abbmod ac, =, a(bbmod c) $ [Mod Distributive Law] $ $ it is a bit simpler:



      $ f-x,bmod, x^large 4(x^large 2!+!1), =, x^large 4underbraceleft[dfraccolor#c00f-xcolor#0a0x^large 4bmod x^large 2!+!1right]_large color#0a0x^Large 4 equiv 1 rm by x^Large 2 equiv -1 =, x^large 4[1-x], $ by $,color#c00fequiv 1pmod!x^large 2!+!1$



      Remark $ $ Here are further examples done using MDL (an operational form of CRT).



      You can find further details here on transforming the Bezout equation into a CRT solution (the method sketched in Melody's answer).






      share|cite|improve this answer











      $endgroup$















        2












        2








        2





        $begingroup$

        Bu applying $ abbmod ac, =, a(bbmod c) $ [Mod Distributive Law] $ $ it is a bit simpler:



        $ f-x,bmod, x^large 4(x^large 2!+!1), =, x^large 4underbraceleft[dfraccolor#c00f-xcolor#0a0x^large 4bmod x^large 2!+!1right]_large color#0a0x^Large 4 equiv 1 rm by x^Large 2 equiv -1 =, x^large 4[1-x], $ by $,color#c00fequiv 1pmod!x^large 2!+!1$



        Remark $ $ Here are further examples done using MDL (an operational form of CRT).



        You can find further details here on transforming the Bezout equation into a CRT solution (the method sketched in Melody's answer).






        share|cite|improve this answer











        $endgroup$



        Bu applying $ abbmod ac, =, a(bbmod c) $ [Mod Distributive Law] $ $ it is a bit simpler:



        $ f-x,bmod, x^large 4(x^large 2!+!1), =, x^large 4underbraceleft[dfraccolor#c00f-xcolor#0a0x^large 4bmod x^large 2!+!1right]_large color#0a0x^Large 4 equiv 1 rm by x^Large 2 equiv -1 =, x^large 4[1-x], $ by $,color#c00fequiv 1pmod!x^large 2!+!1$



        Remark $ $ Here are further examples done using MDL (an operational form of CRT).



        You can find further details here on transforming the Bezout equation into a CRT solution (the method sketched in Melody's answer).







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited 6 hours ago

























        answered 6 hours ago









        Bill DubuqueBill Dubuque

        214k29198660




        214k29198660



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3196235%2fadapting-the-chinese-remainder-theorem-crt-for-integers-to-polynomials%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Францішак Багушэвіч Змест Сям'я | Біяграфія | Творчасць | Мова Багушэвіча | Ацэнкі дзейнасці | Цікавыя факты | Спадчына | Выбраная бібліяграфія | Ушанаванне памяці | У філатэліі | Зноскі | Літаратура | Спасылкі | НавігацыяЛяхоўскі У. Рупіўся дзеля Бога і людзей: Жыццёвы шлях Лявона Вітан-Дубейкаўскага // Вольскі і Памідораў з песняй пра немца Адвакат, паэт, народны заступнік Ашмянскі веснікВ Минске появится площадь Богушевича и улица Сырокомли, Белорусская деловая газета, 19 июля 2001 г.Айцец беларускай нацыянальнай ідэі паўстаў у бронзе Сяргей Аляксандравіч Адашкевіч (1918, Мінск). 80-я гады. Бюст «Францішак Багушэвіч».Яўген Мікалаевіч Ціхановіч. «Партрэт Францішка Багушэвіча»Мікола Мікалаевіч Купава. «Партрэт зачынальніка новай беларускай літаратуры Францішка Багушэвіча»Уладзімір Іванавіч Мелехаў. На помніку «Змагарам за родную мову» Барэльеф «Францішак Багушэвіч»Памяць пра Багушэвіча на Віленшчыне Страчаная сталіца. Беларускія шыльды на вуліцах Вільні«Krynica». Ideologia i przywódcy białoruskiego katolicyzmuФранцішак БагушэвічТворы на knihi.comТворы Францішка Багушэвіча на bellib.byСодаль Уладзімір. Францішак Багушэвіч на Лідчыне;Луцкевіч Антон. Жыцьцё і творчасьць Фр. Багушэвіча ў успамінах ягоных сучасьнікаў // Запісы Беларускага Навуковага таварыства. Вільня, 1938. Сшытак 1. С. 16-34.Большая российская1188761710000 0000 5537 633Xn9209310021619551927869394п

            Беларусь Змест Назва Гісторыя Геаграфія Сімволіка Дзяржаўны лад Палітычныя партыі Міжнароднае становішча і знешняя палітыка Адміністрацыйны падзел Насельніцтва Эканоміка Культура і грамадства Сацыяльная сфера Узброеныя сілы Заўвагі Літаратура Спасылкі НавігацыяHGЯOiТоп-2011 г. (па версіі ej.by)Топ-2013 г. (па версіі ej.by)Топ-2016 г. (па версіі ej.by)Топ-2017 г. (па версіі ej.by)Нацыянальны статыстычны камітэт Рэспублікі БеларусьШчыльнасць насельніцтва па краінахhttp://naviny.by/rubrics/society/2011/09/16/ic_articles_116_175144/А. Калечыц, У. Ксяндзоў. Спробы засялення краю неандэртальскім чалавекам.І ў Менску былі мамантыА. Калечыц, У. Ксяндзоў. Старажытны каменны век (палеаліт). Першапачатковае засяленне тэрыторыіГ. Штыхаў. Балты і славяне ў VI—VIII стст.М. Клімаў. Полацкае княства ў IX—XI стст.Г. Штыхаў, В. Ляўко. Палітычная гісторыя Полацкай зямліГ. Штыхаў. Дзяржаўны лад у землях-княствахГ. Штыхаў. Дзяржаўны лад у землях-княствахБеларускія землі ў складзе Вялікага Княства ЛітоўскагаЛюблінская унія 1569 г."The Early Stages of Independence"Zapomniane prawdy25 гадоў таму было аб'яўлена, што Язэп Пілсудскі — беларус (фота)Наша вадаДакументы ЧАЭС: Забруджванне тэрыторыі Беларусі « ЧАЭС Зона адчужэнняСведения о политических партиях, зарегистрированных в Республике Беларусь // Министерство юстиции Республики БеларусьСтатыстычны бюлетэнь „Полаўзроставая структура насельніцтва Рэспублікі Беларусь на 1 студзеня 2012 года і сярэднегадовая колькасць насельніцтва за 2011 год“Индекс человеческого развития Беларуси — не было бы нижеБеларусь занимает первое место в СНГ по индексу развития с учетом гендерного факцёраНацыянальны статыстычны камітэт Рэспублікі БеларусьКанстытуцыя РБ. Артыкул 17Трансфармацыйныя задачы БеларусіВыйсце з крызісу — далейшае рэфармаванне Беларускі рубель — сусветны лідар па дэвальвацыяхПра змену коштаў у кастрычніку 2011 г.Бядней за беларусаў у СНД толькі таджыкіСярэдні заробак у верасні дасягнуў 2,26 мільёна рублёўЭканомікаГаласуем за ТОП-100 беларускай прозыСучасныя беларускія мастакіАрхитектура Беларуси BELARUS.BYА. Каханоўскі. Культура Беларусі ўсярэдзіне XVII—XVIII ст.Анталогія беларускай народнай песні, гуказапісы спеваўБеларускія Музычныя IнструментыБеларускі рок, які мы страцілі. Топ-10 гуртоў«Мясцовы час» — нязгаслая легенда беларускай рок-музыкіСЯРГЕЙ БУДКІН. МЫ НЯ ЗНАЕМ СВАЁЙ МУЗЫКІМ. А. Каладзінскі. НАРОДНЫ ТЭАТРМагнацкія культурныя цэнтрыПублічная дыскусія «Беларуская новая пьеса: без беларускай мовы ці беларуская?»Беларускія драматургі па-ранейшаму лепш ставяцца за мяжой, чым на радзіме«Працэс незалежнага кіно пайшоў, і дзяржаву турбуе яго непадкантрольнасць»Беларускія філосафы ў пошуках прасторыВсе идём в библиотекуАрхіваванаАб Нацыянальнай праграме даследавання і выкарыстання касмічнай прасторы ў мірных мэтах на 2008—2012 гадыУ космас — разам.У суседнім з Барысаўскім раёне пабудуюць Камандна-вымяральны пунктСвяты і абрады беларусаў«Мірныя бульбашы з малой краіны» — 5 непраўдзівых стэрэатыпаў пра БеларусьМ. Раманюк. Беларускае народнае адзеннеУ Беларусі скарачаецца колькасць злачынстваўЛукашэнка незадаволены мінскімі ўладамі Крадзяжы складаюць у Мінску каля 70% злачынстваў Узровень злачыннасці ў Мінскай вобласці — адзін з самых высокіх у краіне Генпракуратура аналізуе стан са злачыннасцю ў Беларусі па каэфіцыенце злачыннасці У Беларусі стабілізавалася крымінагеннае становішча, лічыць генпракурорЗамежнікі сталі здзяйсняць у Беларусі больш злачынстваўМУС Беларусі турбуе рост рэцыдыўнай злачыннасціЯ з ЖЭСа. Дазволіце вас абкрасці! Рэйтынг усіх службаў і падраздзяленняў ГУУС Мінгарвыканкама вырасАб КДБ РБГісторыя Аператыўна-аналітычнага цэнтра РБГісторыя ДКФРТаможняagentura.ruБеларусьBelarus.by — Афіцыйны сайт Рэспублікі БеларусьСайт урада БеларусіRadzima.org — Збор архітэктурных помнікаў, гісторыя Беларусі«Глобус Беларуси»Гербы и флаги БеларусиАсаблівасці каменнага веку на БеларусіА. Калечыц, У. Ксяндзоў. Старажытны каменны век (палеаліт). Першапачатковае засяленне тэрыторыіУ. Ксяндзоў. Сярэдні каменны век (мезаліт). Засяленне краю плямёнамі паляўнічых, рыбакоў і збіральнікаўА. Калечыц, М. Чарняўскі. Плямёны на тэрыторыі Беларусі ў новым каменным веку (неаліце)А. Калечыц, У. Ксяндзоў, М. Чарняўскі. Гаспадарчыя заняткі ў каменным векуЭ. Зайкоўскі. Духоўная культура ў каменным векуАсаблівасці бронзавага веку на БеларусіФарміраванне супольнасцей ранняга перыяду бронзавага векуФотографии БеларусиРоля беларускіх зямель ва ўтварэнні і ўмацаванні ВКЛВ. Фадзеева. З гісторыі развіцця беларускай народнай вышыўкіDMOZGran catalanaБольшая российскаяBritannica (анлайн)Швейцарскі гістарычны15325917611952699xDA123282154079143-90000 0001 2171 2080n9112870100577502ge128882171858027501086026362074122714179пппппп

            Герб Смалявічаў Апісанне | Спасылкі | НавігацыяГерб города Смолевичип