How is the policy gradient calculated in REINFORCE? Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Implementing experience replay in reinforcement learningWhy does the discount rate in the REINFORCE algorithm appears twice?Questions about n-step tree backup algorithmImportance Sampling Ratio ProbabilityWhat is the meaning of Model(s, a) in the prioritized sweeping algorithm?Impact of Varying Length Trajectories on Policy Gradient OptimizationWhy is the state value function sufficient to determine the policy if a model is available?Is REINFORCE the same as 'vanilla policy gradient'?Difficulty understanding Monte Carlo policy evaluation (state-value) for gridworldPolicy gradient loss for neural network training

Table formatting with tabularx?

What is a more techy Technical Writer job title that isn't cutesy or confusing?

calculator's angle answer for trig ratios that can work in more than 1 quadrant on the unit circle

Do i imagine the linear (straight line) homotopy in a correct way?

Meaning of 境 in その日を境に

Does a random sequence of vectors span a Hilbert space?

Is a copyright notice with a non-existent name be invalid?

How could a hydrazine and N2O4 cloud (or it's reactants) show up in weather radar?

"Destructive power" carried by a B-52?

Did any compiler fully use 80-bit floating point?

Random body shuffle every night—can we still function?

How can I list files in reverse time order by a command and pass them as arguments to another command?

How many time has Arya actually used Needle?

Why complex landing gears are used instead of simple, reliable and light weight muscle wire or shape memory alloys?

Why did Bronn offer to be Tyrion Lannister's champion in trial by combat?

Is there a verb for listening stealthily?

How to make triangles with rounded sides and corners? (squircle with 3 sides)

Russian equivalents of おしゃれは足元から (Every good outfit starts with the shoes)

Pointing to problems without suggesting solutions

Keep at all times, the minus sign above aligned with minus sign below

Why not use the yoke to control yaw, as well as pitch and roll?

How to resize main filesystem

Understanding piped commands in GNU/Linux

How does the body cool itself in a stillsuit?



How is the policy gradient calculated in REINFORCE?



Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)
Announcing the arrival of Valued Associate #679: Cesar Manara
Unicorn Meta Zoo #1: Why another podcast?Implementing experience replay in reinforcement learningWhy does the discount rate in the REINFORCE algorithm appears twice?Questions about n-step tree backup algorithmImportance Sampling Ratio ProbabilityWhat is the meaning of Model(s, a) in the prioritized sweeping algorithm?Impact of Varying Length Trajectories on Policy Gradient OptimizationWhy is the state value function sufficient to determine the policy if a model is available?Is REINFORCE the same as 'vanilla policy gradient'?Difficulty understanding Monte Carlo policy evaluation (state-value) for gridworldPolicy gradient loss for neural network training



.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








4












$begingroup$


Reading Sutton and Barto, I see the following in describing policy gradients:



policy grad



How is the gradient calculated with respect to an action (taken at time t)? I've read implementations of the algorithm, but conceptually I'm not sure I understand how the gradient is computed, since we need some loss function to compute the gradient.



I've seen a good PyTorch article, but I still don't understand the meaning of this gradient conceptually, and I don't know what I'm looking to implement. Any intuition that you could provide would be helpful.










share|improve this question











$endgroup$











  • $begingroup$
    Are you asking if the gradient is with respect to an action? If yes, then, no, the gradient is not with respect to an action, but with respect to the parameters (of e.g. the neural network representing your policy), $theta_t$. Conceptually, you don't need any "loss" to compute the gradient. You just need a multivariable differentiable function. In this case, the multivariable function is your parametrised policy $pi(A_t mid S_t, theta_t)$.
    $endgroup$
    – nbro
    9 hours ago











  • $begingroup$
    @nbro Conceptually I understand that, but the action is the output of the policy. So what I don’t understand is how conceptually we are determining the gradient of the policy with respect to the action it output? Further if the action is making a choice, that wouldn’t be differentiable. I looked at the implementation that used an action probability instead. But I’m still unsure what is the gradient of the policy with respect to the output of the policy. It doesn’t make sense to me yet.
    $endgroup$
    – Hanzy
    9 hours ago










  • $begingroup$
    @nbro I guess I see that it’s technically the gradient of the probability of selecting an action At. But still not sure how to implement that. We want to know how the probability would change with respect to changing the parameters. Maybe I’m starting to get a little insight.
    $endgroup$
    – Hanzy
    9 hours ago






  • 1




    $begingroup$
    I think this is just a notation or terminology issue. To train your neural network representing $pi$, you will need a loss function (that assesses the quality of the output action), yes, but this is not explicit in Barto and Sutton's book (at least in those equations), which just states that the gradient is with respect to the parameters (variables) of the function. Barto and Sutton just present the general idea. Have a look at this reference implementation: github.com/pytorch/examples/blob/master/reinforcement_learning/….
    $endgroup$
    – nbro
    8 hours ago











  • $begingroup$
    @nbro thanks for the link; I actually think I’m almost there. In this implementation we take the (negative) log probability and multiply it by the return. We moved the return inside the gradient since it’s not dependent on $theta$. Then we sum over the list of returns and use the summing function as the function over which we compute the gradient. So the gradient is the SUM of all future rewards wrt to theta (which, in turn, effects the choice of action). Is this correct? (I’m going back to read it again now).
    $endgroup$
    – Hanzy
    4 hours ago

















4












$begingroup$


Reading Sutton and Barto, I see the following in describing policy gradients:



policy grad



How is the gradient calculated with respect to an action (taken at time t)? I've read implementations of the algorithm, but conceptually I'm not sure I understand how the gradient is computed, since we need some loss function to compute the gradient.



I've seen a good PyTorch article, but I still don't understand the meaning of this gradient conceptually, and I don't know what I'm looking to implement. Any intuition that you could provide would be helpful.










share|improve this question











$endgroup$











  • $begingroup$
    Are you asking if the gradient is with respect to an action? If yes, then, no, the gradient is not with respect to an action, but with respect to the parameters (of e.g. the neural network representing your policy), $theta_t$. Conceptually, you don't need any "loss" to compute the gradient. You just need a multivariable differentiable function. In this case, the multivariable function is your parametrised policy $pi(A_t mid S_t, theta_t)$.
    $endgroup$
    – nbro
    9 hours ago











  • $begingroup$
    @nbro Conceptually I understand that, but the action is the output of the policy. So what I don’t understand is how conceptually we are determining the gradient of the policy with respect to the action it output? Further if the action is making a choice, that wouldn’t be differentiable. I looked at the implementation that used an action probability instead. But I’m still unsure what is the gradient of the policy with respect to the output of the policy. It doesn’t make sense to me yet.
    $endgroup$
    – Hanzy
    9 hours ago










  • $begingroup$
    @nbro I guess I see that it’s technically the gradient of the probability of selecting an action At. But still not sure how to implement that. We want to know how the probability would change with respect to changing the parameters. Maybe I’m starting to get a little insight.
    $endgroup$
    – Hanzy
    9 hours ago






  • 1




    $begingroup$
    I think this is just a notation or terminology issue. To train your neural network representing $pi$, you will need a loss function (that assesses the quality of the output action), yes, but this is not explicit in Barto and Sutton's book (at least in those equations), which just states that the gradient is with respect to the parameters (variables) of the function. Barto and Sutton just present the general idea. Have a look at this reference implementation: github.com/pytorch/examples/blob/master/reinforcement_learning/….
    $endgroup$
    – nbro
    8 hours ago











  • $begingroup$
    @nbro thanks for the link; I actually think I’m almost there. In this implementation we take the (negative) log probability and multiply it by the return. We moved the return inside the gradient since it’s not dependent on $theta$. Then we sum over the list of returns and use the summing function as the function over which we compute the gradient. So the gradient is the SUM of all future rewards wrt to theta (which, in turn, effects the choice of action). Is this correct? (I’m going back to read it again now).
    $endgroup$
    – Hanzy
    4 hours ago













4












4








4


1



$begingroup$


Reading Sutton and Barto, I see the following in describing policy gradients:



policy grad



How is the gradient calculated with respect to an action (taken at time t)? I've read implementations of the algorithm, but conceptually I'm not sure I understand how the gradient is computed, since we need some loss function to compute the gradient.



I've seen a good PyTorch article, but I still don't understand the meaning of this gradient conceptually, and I don't know what I'm looking to implement. Any intuition that you could provide would be helpful.










share|improve this question











$endgroup$




Reading Sutton and Barto, I see the following in describing policy gradients:



policy grad



How is the gradient calculated with respect to an action (taken at time t)? I've read implementations of the algorithm, but conceptually I'm not sure I understand how the gradient is computed, since we need some loss function to compute the gradient.



I've seen a good PyTorch article, but I still don't understand the meaning of this gradient conceptually, and I don't know what I'm looking to implement. Any intuition that you could provide would be helpful.







reinforcement-learning policy-gradients rl-an-introduction notation reinforce






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 1 hour ago









Philip Raeisghasem

1,169121




1,169121










asked 10 hours ago









HanzyHanzy

1516




1516











  • $begingroup$
    Are you asking if the gradient is with respect to an action? If yes, then, no, the gradient is not with respect to an action, but with respect to the parameters (of e.g. the neural network representing your policy), $theta_t$. Conceptually, you don't need any "loss" to compute the gradient. You just need a multivariable differentiable function. In this case, the multivariable function is your parametrised policy $pi(A_t mid S_t, theta_t)$.
    $endgroup$
    – nbro
    9 hours ago











  • $begingroup$
    @nbro Conceptually I understand that, but the action is the output of the policy. So what I don’t understand is how conceptually we are determining the gradient of the policy with respect to the action it output? Further if the action is making a choice, that wouldn’t be differentiable. I looked at the implementation that used an action probability instead. But I’m still unsure what is the gradient of the policy with respect to the output of the policy. It doesn’t make sense to me yet.
    $endgroup$
    – Hanzy
    9 hours ago










  • $begingroup$
    @nbro I guess I see that it’s technically the gradient of the probability of selecting an action At. But still not sure how to implement that. We want to know how the probability would change with respect to changing the parameters. Maybe I’m starting to get a little insight.
    $endgroup$
    – Hanzy
    9 hours ago






  • 1




    $begingroup$
    I think this is just a notation or terminology issue. To train your neural network representing $pi$, you will need a loss function (that assesses the quality of the output action), yes, but this is not explicit in Barto and Sutton's book (at least in those equations), which just states that the gradient is with respect to the parameters (variables) of the function. Barto and Sutton just present the general idea. Have a look at this reference implementation: github.com/pytorch/examples/blob/master/reinforcement_learning/….
    $endgroup$
    – nbro
    8 hours ago











  • $begingroup$
    @nbro thanks for the link; I actually think I’m almost there. In this implementation we take the (negative) log probability and multiply it by the return. We moved the return inside the gradient since it’s not dependent on $theta$. Then we sum over the list of returns and use the summing function as the function over which we compute the gradient. So the gradient is the SUM of all future rewards wrt to theta (which, in turn, effects the choice of action). Is this correct? (I’m going back to read it again now).
    $endgroup$
    – Hanzy
    4 hours ago
















  • $begingroup$
    Are you asking if the gradient is with respect to an action? If yes, then, no, the gradient is not with respect to an action, but with respect to the parameters (of e.g. the neural network representing your policy), $theta_t$. Conceptually, you don't need any "loss" to compute the gradient. You just need a multivariable differentiable function. In this case, the multivariable function is your parametrised policy $pi(A_t mid S_t, theta_t)$.
    $endgroup$
    – nbro
    9 hours ago











  • $begingroup$
    @nbro Conceptually I understand that, but the action is the output of the policy. So what I don’t understand is how conceptually we are determining the gradient of the policy with respect to the action it output? Further if the action is making a choice, that wouldn’t be differentiable. I looked at the implementation that used an action probability instead. But I’m still unsure what is the gradient of the policy with respect to the output of the policy. It doesn’t make sense to me yet.
    $endgroup$
    – Hanzy
    9 hours ago










  • $begingroup$
    @nbro I guess I see that it’s technically the gradient of the probability of selecting an action At. But still not sure how to implement that. We want to know how the probability would change with respect to changing the parameters. Maybe I’m starting to get a little insight.
    $endgroup$
    – Hanzy
    9 hours ago






  • 1




    $begingroup$
    I think this is just a notation or terminology issue. To train your neural network representing $pi$, you will need a loss function (that assesses the quality of the output action), yes, but this is not explicit in Barto and Sutton's book (at least in those equations), which just states that the gradient is with respect to the parameters (variables) of the function. Barto and Sutton just present the general idea. Have a look at this reference implementation: github.com/pytorch/examples/blob/master/reinforcement_learning/….
    $endgroup$
    – nbro
    8 hours ago











  • $begingroup$
    @nbro thanks for the link; I actually think I’m almost there. In this implementation we take the (negative) log probability and multiply it by the return. We moved the return inside the gradient since it’s not dependent on $theta$. Then we sum over the list of returns and use the summing function as the function over which we compute the gradient. So the gradient is the SUM of all future rewards wrt to theta (which, in turn, effects the choice of action). Is this correct? (I’m going back to read it again now).
    $endgroup$
    – Hanzy
    4 hours ago















$begingroup$
Are you asking if the gradient is with respect to an action? If yes, then, no, the gradient is not with respect to an action, but with respect to the parameters (of e.g. the neural network representing your policy), $theta_t$. Conceptually, you don't need any "loss" to compute the gradient. You just need a multivariable differentiable function. In this case, the multivariable function is your parametrised policy $pi(A_t mid S_t, theta_t)$.
$endgroup$
– nbro
9 hours ago





$begingroup$
Are you asking if the gradient is with respect to an action? If yes, then, no, the gradient is not with respect to an action, but with respect to the parameters (of e.g. the neural network representing your policy), $theta_t$. Conceptually, you don't need any "loss" to compute the gradient. You just need a multivariable differentiable function. In this case, the multivariable function is your parametrised policy $pi(A_t mid S_t, theta_t)$.
$endgroup$
– nbro
9 hours ago













$begingroup$
@nbro Conceptually I understand that, but the action is the output of the policy. So what I don’t understand is how conceptually we are determining the gradient of the policy with respect to the action it output? Further if the action is making a choice, that wouldn’t be differentiable. I looked at the implementation that used an action probability instead. But I’m still unsure what is the gradient of the policy with respect to the output of the policy. It doesn’t make sense to me yet.
$endgroup$
– Hanzy
9 hours ago




$begingroup$
@nbro Conceptually I understand that, but the action is the output of the policy. So what I don’t understand is how conceptually we are determining the gradient of the policy with respect to the action it output? Further if the action is making a choice, that wouldn’t be differentiable. I looked at the implementation that used an action probability instead. But I’m still unsure what is the gradient of the policy with respect to the output of the policy. It doesn’t make sense to me yet.
$endgroup$
– Hanzy
9 hours ago












$begingroup$
@nbro I guess I see that it’s technically the gradient of the probability of selecting an action At. But still not sure how to implement that. We want to know how the probability would change with respect to changing the parameters. Maybe I’m starting to get a little insight.
$endgroup$
– Hanzy
9 hours ago




$begingroup$
@nbro I guess I see that it’s technically the gradient of the probability of selecting an action At. But still not sure how to implement that. We want to know how the probability would change with respect to changing the parameters. Maybe I’m starting to get a little insight.
$endgroup$
– Hanzy
9 hours ago




1




1




$begingroup$
I think this is just a notation or terminology issue. To train your neural network representing $pi$, you will need a loss function (that assesses the quality of the output action), yes, but this is not explicit in Barto and Sutton's book (at least in those equations), which just states that the gradient is with respect to the parameters (variables) of the function. Barto and Sutton just present the general idea. Have a look at this reference implementation: github.com/pytorch/examples/blob/master/reinforcement_learning/….
$endgroup$
– nbro
8 hours ago





$begingroup$
I think this is just a notation or terminology issue. To train your neural network representing $pi$, you will need a loss function (that assesses the quality of the output action), yes, but this is not explicit in Barto and Sutton's book (at least in those equations), which just states that the gradient is with respect to the parameters (variables) of the function. Barto and Sutton just present the general idea. Have a look at this reference implementation: github.com/pytorch/examples/blob/master/reinforcement_learning/….
$endgroup$
– nbro
8 hours ago













$begingroup$
@nbro thanks for the link; I actually think I’m almost there. In this implementation we take the (negative) log probability and multiply it by the return. We moved the return inside the gradient since it’s not dependent on $theta$. Then we sum over the list of returns and use the summing function as the function over which we compute the gradient. So the gradient is the SUM of all future rewards wrt to theta (which, in turn, effects the choice of action). Is this correct? (I’m going back to read it again now).
$endgroup$
– Hanzy
4 hours ago




$begingroup$
@nbro thanks for the link; I actually think I’m almost there. In this implementation we take the (negative) log probability and multiply it by the return. We moved the return inside the gradient since it’s not dependent on $theta$. Then we sum over the list of returns and use the summing function as the function over which we compute the gradient. So the gradient is the SUM of all future rewards wrt to theta (which, in turn, effects the choice of action). Is this correct? (I’m going back to read it again now).
$endgroup$
– Hanzy
4 hours ago










1 Answer
1






active

oldest

votes


















2












$begingroup$

The first part of this answer is a little background that might bolster your intuition for what's going on. The second part is the more practical and direct answer to your question.




The gradient is just the generalization of the derivative to multivariable functions. The gradient of a function at a certain point is a vector that points in the direction of the steepest increase of that function.



Usually, we take a derivative/gradient of some loss function $mathcalL$ because we want to minimize that loss. So we update our parameters in the direction opposite the direction of the gradient.



$$theta_t+1 = theta_t - alphanabla_theta_t mathcalL tag1$$



In policy gradient methods, we're not trying to minimize a loss function. Actually, we're trying to maximize some measure $J$ of the performance of our agent. So now we want to update parameters in the same direction as the gradient.



$$theta_t+1 = theta_t + alphanabla_theta_t J tag2$$



In the episodic case, $J$ is the value of the starting state. In the continuing case, $J$ is the average reward. It just so happens that a nice theorem called the Policy Gradient Theorem applies to both cases. This theorem states that



$$beginalign
nabla_theta_tJ(theta_t) &propto sum_s mu(s)sum_a q_pi (s,a) nabla_theta_t pi (a|s,theta_t)\
&=mathbbE_mu left[ sum_a q_pi (s,a) nabla_theta_t pi (a|s,theta_t)right].
endaligntag3
$$



The rest of the derivation is in your question, so let's skip to the end.



$$beginalign
theta_t+1 &= theta_t + alpha G_t fracS_t,theta_t)pi(A_t\
&= theta_t + alpha G_t nabla_theta_t ln pi(A_t|S_t,theta_t)
endaligntag4$$



Remember, $(4)$ says exactly the same thing as $(2)$, so REINFORCE just updates parameters in the direction that will most increase $J$. (Because we sample from an expectation in the derivation, the parameter step in REINFORCE is actually an unbiased estimate of the maximizing step.)




Alright, but how do we actually get this gradient? Well, you use the chain rule of derivatives (backpropagation). Practically, though, both Tensorflow and PyTorch can take all the derivatives for you.



Tensorflow, for example, has a minimize() method in its Optimizer class that takes a loss function as an input. Given a function of the parameters of the network, it will do the calculus for you to determine which way to update the parameters in order to minimize that function. But we don't want to minimize. We want to maximize! So just include a negative sign.



In our case, the function we want to minimize is
$$-G_tln pi(A_t|S_t,theta_t).$$



This corresponds to stochastic gradient descent ($G_t$ is not a function of $theta_t$).



You might want to do minibatch gradient descent on each episode of experience in order to get a better (lower variance) estimate of $nabla_theta_t J$. If so, you would instead minimize
$$-sum_t G_tln pi(A_t|S_t,theta_t),$$
where $theta_t$ would be constant for different values of $t$ within the same episode. Technically, minibatch gradient descent updates parameters in the average estimated maximizing direction, but the scaling factor $1/N$ can be absorbed into the learning rate.






share|improve this answer











$endgroup$












  • $begingroup$
    Thanks you answered one of my questions about an implementation summing over the products of the (negative) log probabilities and their associated returns (I hadn’t considered it as mini batch implementation). I really appreciate the detailed answer. I guess I was trying to figure out how to represent it in a framework but I got bogged down in the details and forgot that Sutton / Barto mentioned that $J$ is a representation of the value of the start state. With the two answers provided I’m starting to find my way.
    $endgroup$
    – Hanzy
    2 hours ago











Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "658"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fai.stackexchange.com%2fquestions%2f11929%2fhow-is-the-policy-gradient-calculated-in-reinforce%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

The first part of this answer is a little background that might bolster your intuition for what's going on. The second part is the more practical and direct answer to your question.




The gradient is just the generalization of the derivative to multivariable functions. The gradient of a function at a certain point is a vector that points in the direction of the steepest increase of that function.



Usually, we take a derivative/gradient of some loss function $mathcalL$ because we want to minimize that loss. So we update our parameters in the direction opposite the direction of the gradient.



$$theta_t+1 = theta_t - alphanabla_theta_t mathcalL tag1$$



In policy gradient methods, we're not trying to minimize a loss function. Actually, we're trying to maximize some measure $J$ of the performance of our agent. So now we want to update parameters in the same direction as the gradient.



$$theta_t+1 = theta_t + alphanabla_theta_t J tag2$$



In the episodic case, $J$ is the value of the starting state. In the continuing case, $J$ is the average reward. It just so happens that a nice theorem called the Policy Gradient Theorem applies to both cases. This theorem states that



$$beginalign
nabla_theta_tJ(theta_t) &propto sum_s mu(s)sum_a q_pi (s,a) nabla_theta_t pi (a|s,theta_t)\
&=mathbbE_mu left[ sum_a q_pi (s,a) nabla_theta_t pi (a|s,theta_t)right].
endaligntag3
$$



The rest of the derivation is in your question, so let's skip to the end.



$$beginalign
theta_t+1 &= theta_t + alpha G_t fracS_t,theta_t)pi(A_t\
&= theta_t + alpha G_t nabla_theta_t ln pi(A_t|S_t,theta_t)
endaligntag4$$



Remember, $(4)$ says exactly the same thing as $(2)$, so REINFORCE just updates parameters in the direction that will most increase $J$. (Because we sample from an expectation in the derivation, the parameter step in REINFORCE is actually an unbiased estimate of the maximizing step.)




Alright, but how do we actually get this gradient? Well, you use the chain rule of derivatives (backpropagation). Practically, though, both Tensorflow and PyTorch can take all the derivatives for you.



Tensorflow, for example, has a minimize() method in its Optimizer class that takes a loss function as an input. Given a function of the parameters of the network, it will do the calculus for you to determine which way to update the parameters in order to minimize that function. But we don't want to minimize. We want to maximize! So just include a negative sign.



In our case, the function we want to minimize is
$$-G_tln pi(A_t|S_t,theta_t).$$



This corresponds to stochastic gradient descent ($G_t$ is not a function of $theta_t$).



You might want to do minibatch gradient descent on each episode of experience in order to get a better (lower variance) estimate of $nabla_theta_t J$. If so, you would instead minimize
$$-sum_t G_tln pi(A_t|S_t,theta_t),$$
where $theta_t$ would be constant for different values of $t$ within the same episode. Technically, minibatch gradient descent updates parameters in the average estimated maximizing direction, but the scaling factor $1/N$ can be absorbed into the learning rate.






share|improve this answer











$endgroup$












  • $begingroup$
    Thanks you answered one of my questions about an implementation summing over the products of the (negative) log probabilities and their associated returns (I hadn’t considered it as mini batch implementation). I really appreciate the detailed answer. I guess I was trying to figure out how to represent it in a framework but I got bogged down in the details and forgot that Sutton / Barto mentioned that $J$ is a representation of the value of the start state. With the two answers provided I’m starting to find my way.
    $endgroup$
    – Hanzy
    2 hours ago















2












$begingroup$

The first part of this answer is a little background that might bolster your intuition for what's going on. The second part is the more practical and direct answer to your question.




The gradient is just the generalization of the derivative to multivariable functions. The gradient of a function at a certain point is a vector that points in the direction of the steepest increase of that function.



Usually, we take a derivative/gradient of some loss function $mathcalL$ because we want to minimize that loss. So we update our parameters in the direction opposite the direction of the gradient.



$$theta_t+1 = theta_t - alphanabla_theta_t mathcalL tag1$$



In policy gradient methods, we're not trying to minimize a loss function. Actually, we're trying to maximize some measure $J$ of the performance of our agent. So now we want to update parameters in the same direction as the gradient.



$$theta_t+1 = theta_t + alphanabla_theta_t J tag2$$



In the episodic case, $J$ is the value of the starting state. In the continuing case, $J$ is the average reward. It just so happens that a nice theorem called the Policy Gradient Theorem applies to both cases. This theorem states that



$$beginalign
nabla_theta_tJ(theta_t) &propto sum_s mu(s)sum_a q_pi (s,a) nabla_theta_t pi (a|s,theta_t)\
&=mathbbE_mu left[ sum_a q_pi (s,a) nabla_theta_t pi (a|s,theta_t)right].
endaligntag3
$$



The rest of the derivation is in your question, so let's skip to the end.



$$beginalign
theta_t+1 &= theta_t + alpha G_t fracS_t,theta_t)pi(A_t\
&= theta_t + alpha G_t nabla_theta_t ln pi(A_t|S_t,theta_t)
endaligntag4$$



Remember, $(4)$ says exactly the same thing as $(2)$, so REINFORCE just updates parameters in the direction that will most increase $J$. (Because we sample from an expectation in the derivation, the parameter step in REINFORCE is actually an unbiased estimate of the maximizing step.)




Alright, but how do we actually get this gradient? Well, you use the chain rule of derivatives (backpropagation). Practically, though, both Tensorflow and PyTorch can take all the derivatives for you.



Tensorflow, for example, has a minimize() method in its Optimizer class that takes a loss function as an input. Given a function of the parameters of the network, it will do the calculus for you to determine which way to update the parameters in order to minimize that function. But we don't want to minimize. We want to maximize! So just include a negative sign.



In our case, the function we want to minimize is
$$-G_tln pi(A_t|S_t,theta_t).$$



This corresponds to stochastic gradient descent ($G_t$ is not a function of $theta_t$).



You might want to do minibatch gradient descent on each episode of experience in order to get a better (lower variance) estimate of $nabla_theta_t J$. If so, you would instead minimize
$$-sum_t G_tln pi(A_t|S_t,theta_t),$$
where $theta_t$ would be constant for different values of $t$ within the same episode. Technically, minibatch gradient descent updates parameters in the average estimated maximizing direction, but the scaling factor $1/N$ can be absorbed into the learning rate.






share|improve this answer











$endgroup$












  • $begingroup$
    Thanks you answered one of my questions about an implementation summing over the products of the (negative) log probabilities and their associated returns (I hadn’t considered it as mini batch implementation). I really appreciate the detailed answer. I guess I was trying to figure out how to represent it in a framework but I got bogged down in the details and forgot that Sutton / Barto mentioned that $J$ is a representation of the value of the start state. With the two answers provided I’m starting to find my way.
    $endgroup$
    – Hanzy
    2 hours ago













2












2








2





$begingroup$

The first part of this answer is a little background that might bolster your intuition for what's going on. The second part is the more practical and direct answer to your question.




The gradient is just the generalization of the derivative to multivariable functions. The gradient of a function at a certain point is a vector that points in the direction of the steepest increase of that function.



Usually, we take a derivative/gradient of some loss function $mathcalL$ because we want to minimize that loss. So we update our parameters in the direction opposite the direction of the gradient.



$$theta_t+1 = theta_t - alphanabla_theta_t mathcalL tag1$$



In policy gradient methods, we're not trying to minimize a loss function. Actually, we're trying to maximize some measure $J$ of the performance of our agent. So now we want to update parameters in the same direction as the gradient.



$$theta_t+1 = theta_t + alphanabla_theta_t J tag2$$



In the episodic case, $J$ is the value of the starting state. In the continuing case, $J$ is the average reward. It just so happens that a nice theorem called the Policy Gradient Theorem applies to both cases. This theorem states that



$$beginalign
nabla_theta_tJ(theta_t) &propto sum_s mu(s)sum_a q_pi (s,a) nabla_theta_t pi (a|s,theta_t)\
&=mathbbE_mu left[ sum_a q_pi (s,a) nabla_theta_t pi (a|s,theta_t)right].
endaligntag3
$$



The rest of the derivation is in your question, so let's skip to the end.



$$beginalign
theta_t+1 &= theta_t + alpha G_t fracS_t,theta_t)pi(A_t\
&= theta_t + alpha G_t nabla_theta_t ln pi(A_t|S_t,theta_t)
endaligntag4$$



Remember, $(4)$ says exactly the same thing as $(2)$, so REINFORCE just updates parameters in the direction that will most increase $J$. (Because we sample from an expectation in the derivation, the parameter step in REINFORCE is actually an unbiased estimate of the maximizing step.)




Alright, but how do we actually get this gradient? Well, you use the chain rule of derivatives (backpropagation). Practically, though, both Tensorflow and PyTorch can take all the derivatives for you.



Tensorflow, for example, has a minimize() method in its Optimizer class that takes a loss function as an input. Given a function of the parameters of the network, it will do the calculus for you to determine which way to update the parameters in order to minimize that function. But we don't want to minimize. We want to maximize! So just include a negative sign.



In our case, the function we want to minimize is
$$-G_tln pi(A_t|S_t,theta_t).$$



This corresponds to stochastic gradient descent ($G_t$ is not a function of $theta_t$).



You might want to do minibatch gradient descent on each episode of experience in order to get a better (lower variance) estimate of $nabla_theta_t J$. If so, you would instead minimize
$$-sum_t G_tln pi(A_t|S_t,theta_t),$$
where $theta_t$ would be constant for different values of $t$ within the same episode. Technically, minibatch gradient descent updates parameters in the average estimated maximizing direction, but the scaling factor $1/N$ can be absorbed into the learning rate.






share|improve this answer











$endgroup$



The first part of this answer is a little background that might bolster your intuition for what's going on. The second part is the more practical and direct answer to your question.




The gradient is just the generalization of the derivative to multivariable functions. The gradient of a function at a certain point is a vector that points in the direction of the steepest increase of that function.



Usually, we take a derivative/gradient of some loss function $mathcalL$ because we want to minimize that loss. So we update our parameters in the direction opposite the direction of the gradient.



$$theta_t+1 = theta_t - alphanabla_theta_t mathcalL tag1$$



In policy gradient methods, we're not trying to minimize a loss function. Actually, we're trying to maximize some measure $J$ of the performance of our agent. So now we want to update parameters in the same direction as the gradient.



$$theta_t+1 = theta_t + alphanabla_theta_t J tag2$$



In the episodic case, $J$ is the value of the starting state. In the continuing case, $J$ is the average reward. It just so happens that a nice theorem called the Policy Gradient Theorem applies to both cases. This theorem states that



$$beginalign
nabla_theta_tJ(theta_t) &propto sum_s mu(s)sum_a q_pi (s,a) nabla_theta_t pi (a|s,theta_t)\
&=mathbbE_mu left[ sum_a q_pi (s,a) nabla_theta_t pi (a|s,theta_t)right].
endaligntag3
$$



The rest of the derivation is in your question, so let's skip to the end.



$$beginalign
theta_t+1 &= theta_t + alpha G_t fracS_t,theta_t)pi(A_t\
&= theta_t + alpha G_t nabla_theta_t ln pi(A_t|S_t,theta_t)
endaligntag4$$



Remember, $(4)$ says exactly the same thing as $(2)$, so REINFORCE just updates parameters in the direction that will most increase $J$. (Because we sample from an expectation in the derivation, the parameter step in REINFORCE is actually an unbiased estimate of the maximizing step.)




Alright, but how do we actually get this gradient? Well, you use the chain rule of derivatives (backpropagation). Practically, though, both Tensorflow and PyTorch can take all the derivatives for you.



Tensorflow, for example, has a minimize() method in its Optimizer class that takes a loss function as an input. Given a function of the parameters of the network, it will do the calculus for you to determine which way to update the parameters in order to minimize that function. But we don't want to minimize. We want to maximize! So just include a negative sign.



In our case, the function we want to minimize is
$$-G_tln pi(A_t|S_t,theta_t).$$



This corresponds to stochastic gradient descent ($G_t$ is not a function of $theta_t$).



You might want to do minibatch gradient descent on each episode of experience in order to get a better (lower variance) estimate of $nabla_theta_t J$. If so, you would instead minimize
$$-sum_t G_tln pi(A_t|S_t,theta_t),$$
where $theta_t$ would be constant for different values of $t$ within the same episode. Technically, minibatch gradient descent updates parameters in the average estimated maximizing direction, but the scaling factor $1/N$ can be absorbed into the learning rate.







share|improve this answer














share|improve this answer



share|improve this answer








edited 28 mins ago

























answered 2 hours ago









Philip RaeisghasemPhilip Raeisghasem

1,169121




1,169121











  • $begingroup$
    Thanks you answered one of my questions about an implementation summing over the products of the (negative) log probabilities and their associated returns (I hadn’t considered it as mini batch implementation). I really appreciate the detailed answer. I guess I was trying to figure out how to represent it in a framework but I got bogged down in the details and forgot that Sutton / Barto mentioned that $J$ is a representation of the value of the start state. With the two answers provided I’m starting to find my way.
    $endgroup$
    – Hanzy
    2 hours ago
















  • $begingroup$
    Thanks you answered one of my questions about an implementation summing over the products of the (negative) log probabilities and their associated returns (I hadn’t considered it as mini batch implementation). I really appreciate the detailed answer. I guess I was trying to figure out how to represent it in a framework but I got bogged down in the details and forgot that Sutton / Barto mentioned that $J$ is a representation of the value of the start state. With the two answers provided I’m starting to find my way.
    $endgroup$
    – Hanzy
    2 hours ago















$begingroup$
Thanks you answered one of my questions about an implementation summing over the products of the (negative) log probabilities and their associated returns (I hadn’t considered it as mini batch implementation). I really appreciate the detailed answer. I guess I was trying to figure out how to represent it in a framework but I got bogged down in the details and forgot that Sutton / Barto mentioned that $J$ is a representation of the value of the start state. With the two answers provided I’m starting to find my way.
$endgroup$
– Hanzy
2 hours ago




$begingroup$
Thanks you answered one of my questions about an implementation summing over the products of the (negative) log probabilities and their associated returns (I hadn’t considered it as mini batch implementation). I really appreciate the detailed answer. I guess I was trying to figure out how to represent it in a framework but I got bogged down in the details and forgot that Sutton / Barto mentioned that $J$ is a representation of the value of the start state. With the two answers provided I’m starting to find my way.
$endgroup$
– Hanzy
2 hours ago

















draft saved

draft discarded
















































Thanks for contributing an answer to Artificial Intelligence Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fai.stackexchange.com%2fquestions%2f11929%2fhow-is-the-policy-gradient-calculated-in-reinforce%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Францішак Багушэвіч Змест Сям'я | Біяграфія | Творчасць | Мова Багушэвіча | Ацэнкі дзейнасці | Цікавыя факты | Спадчына | Выбраная бібліяграфія | Ушанаванне памяці | У філатэліі | Зноскі | Літаратура | Спасылкі | НавігацыяЛяхоўскі У. Рупіўся дзеля Бога і людзей: Жыццёвы шлях Лявона Вітан-Дубейкаўскага // Вольскі і Памідораў з песняй пра немца Адвакат, паэт, народны заступнік Ашмянскі веснікВ Минске появится площадь Богушевича и улица Сырокомли, Белорусская деловая газета, 19 июля 2001 г.Айцец беларускай нацыянальнай ідэі паўстаў у бронзе Сяргей Аляксандравіч Адашкевіч (1918, Мінск). 80-я гады. Бюст «Францішак Багушэвіч».Яўген Мікалаевіч Ціхановіч. «Партрэт Францішка Багушэвіча»Мікола Мікалаевіч Купава. «Партрэт зачынальніка новай беларускай літаратуры Францішка Багушэвіча»Уладзімір Іванавіч Мелехаў. На помніку «Змагарам за родную мову» Барэльеф «Францішак Багушэвіч»Памяць пра Багушэвіча на Віленшчыне Страчаная сталіца. Беларускія шыльды на вуліцах Вільні«Krynica». Ideologia i przywódcy białoruskiego katolicyzmuФранцішак БагушэвічТворы на knihi.comТворы Францішка Багушэвіча на bellib.byСодаль Уладзімір. Францішак Багушэвіч на Лідчыне;Луцкевіч Антон. Жыцьцё і творчасьць Фр. Багушэвіча ў успамінах ягоных сучасьнікаў // Запісы Беларускага Навуковага таварыства. Вільня, 1938. Сшытак 1. С. 16-34.Большая российская1188761710000 0000 5537 633Xn9209310021619551927869394п

Беларусь Змест Назва Гісторыя Геаграфія Сімволіка Дзяржаўны лад Палітычныя партыі Міжнароднае становішча і знешняя палітыка Адміністрацыйны падзел Насельніцтва Эканоміка Культура і грамадства Сацыяльная сфера Узброеныя сілы Заўвагі Літаратура Спасылкі НавігацыяHGЯOiТоп-2011 г. (па версіі ej.by)Топ-2013 г. (па версіі ej.by)Топ-2016 г. (па версіі ej.by)Топ-2017 г. (па версіі ej.by)Нацыянальны статыстычны камітэт Рэспублікі БеларусьШчыльнасць насельніцтва па краінахhttp://naviny.by/rubrics/society/2011/09/16/ic_articles_116_175144/А. Калечыц, У. Ксяндзоў. Спробы засялення краю неандэртальскім чалавекам.І ў Менску былі мамантыА. Калечыц, У. Ксяндзоў. Старажытны каменны век (палеаліт). Першапачатковае засяленне тэрыторыіГ. Штыхаў. Балты і славяне ў VI—VIII стст.М. Клімаў. Полацкае княства ў IX—XI стст.Г. Штыхаў, В. Ляўко. Палітычная гісторыя Полацкай зямліГ. Штыхаў. Дзяржаўны лад у землях-княствахГ. Штыхаў. Дзяржаўны лад у землях-княствахБеларускія землі ў складзе Вялікага Княства ЛітоўскагаЛюблінская унія 1569 г."The Early Stages of Independence"Zapomniane prawdy25 гадоў таму было аб'яўлена, што Язэп Пілсудскі — беларус (фота)Наша вадаДакументы ЧАЭС: Забруджванне тэрыторыі Беларусі « ЧАЭС Зона адчужэнняСведения о политических партиях, зарегистрированных в Республике Беларусь // Министерство юстиции Республики БеларусьСтатыстычны бюлетэнь „Полаўзроставая структура насельніцтва Рэспублікі Беларусь на 1 студзеня 2012 года і сярэднегадовая колькасць насельніцтва за 2011 год“Индекс человеческого развития Беларуси — не было бы нижеБеларусь занимает первое место в СНГ по индексу развития с учетом гендерного факцёраНацыянальны статыстычны камітэт Рэспублікі БеларусьКанстытуцыя РБ. Артыкул 17Трансфармацыйныя задачы БеларусіВыйсце з крызісу — далейшае рэфармаванне Беларускі рубель — сусветны лідар па дэвальвацыяхПра змену коштаў у кастрычніку 2011 г.Бядней за беларусаў у СНД толькі таджыкіСярэдні заробак у верасні дасягнуў 2,26 мільёна рублёўЭканомікаГаласуем за ТОП-100 беларускай прозыСучасныя беларускія мастакіАрхитектура Беларуси BELARUS.BYА. Каханоўскі. Культура Беларусі ўсярэдзіне XVII—XVIII ст.Анталогія беларускай народнай песні, гуказапісы спеваўБеларускія Музычныя IнструментыБеларускі рок, які мы страцілі. Топ-10 гуртоў«Мясцовы час» — нязгаслая легенда беларускай рок-музыкіСЯРГЕЙ БУДКІН. МЫ НЯ ЗНАЕМ СВАЁЙ МУЗЫКІМ. А. Каладзінскі. НАРОДНЫ ТЭАТРМагнацкія культурныя цэнтрыПублічная дыскусія «Беларуская новая пьеса: без беларускай мовы ці беларуская?»Беларускія драматургі па-ранейшаму лепш ставяцца за мяжой, чым на радзіме«Працэс незалежнага кіно пайшоў, і дзяржаву турбуе яго непадкантрольнасць»Беларускія філосафы ў пошуках прасторыВсе идём в библиотекуАрхіваванаАб Нацыянальнай праграме даследавання і выкарыстання касмічнай прасторы ў мірных мэтах на 2008—2012 гадыУ космас — разам.У суседнім з Барысаўскім раёне пабудуюць Камандна-вымяральны пунктСвяты і абрады беларусаў«Мірныя бульбашы з малой краіны» — 5 непраўдзівых стэрэатыпаў пра БеларусьМ. Раманюк. Беларускае народнае адзеннеУ Беларусі скарачаецца колькасць злачынстваўЛукашэнка незадаволены мінскімі ўладамі Крадзяжы складаюць у Мінску каля 70% злачынстваў Узровень злачыннасці ў Мінскай вобласці — адзін з самых высокіх у краіне Генпракуратура аналізуе стан са злачыннасцю ў Беларусі па каэфіцыенце злачыннасці У Беларусі стабілізавалася крымінагеннае становішча, лічыць генпракурорЗамежнікі сталі здзяйсняць у Беларусі больш злачынстваўМУС Беларусі турбуе рост рэцыдыўнай злачыннасціЯ з ЖЭСа. Дазволіце вас абкрасці! Рэйтынг усіх службаў і падраздзяленняў ГУУС Мінгарвыканкама вырасАб КДБ РБГісторыя Аператыўна-аналітычнага цэнтра РБГісторыя ДКФРТаможняagentura.ruБеларусьBelarus.by — Афіцыйны сайт Рэспублікі БеларусьСайт урада БеларусіRadzima.org — Збор архітэктурных помнікаў, гісторыя Беларусі«Глобус Беларуси»Гербы и флаги БеларусиАсаблівасці каменнага веку на БеларусіА. Калечыц, У. Ксяндзоў. Старажытны каменны век (палеаліт). Першапачатковае засяленне тэрыторыіУ. Ксяндзоў. Сярэдні каменны век (мезаліт). Засяленне краю плямёнамі паляўнічых, рыбакоў і збіральнікаўА. Калечыц, М. Чарняўскі. Плямёны на тэрыторыі Беларусі ў новым каменным веку (неаліце)А. Калечыц, У. Ксяндзоў, М. Чарняўскі. Гаспадарчыя заняткі ў каменным векуЭ. Зайкоўскі. Духоўная культура ў каменным векуАсаблівасці бронзавага веку на БеларусіФарміраванне супольнасцей ранняга перыяду бронзавага векуФотографии БеларусиРоля беларускіх зямель ва ўтварэнні і ўмацаванні ВКЛВ. Фадзеева. З гісторыі развіцця беларускай народнай вышыўкіDMOZGran catalanaБольшая российскаяBritannica (анлайн)Швейцарскі гістарычны15325917611952699xDA123282154079143-90000 0001 2171 2080n9112870100577502ge128882171858027501086026362074122714179пппппп

Герб Смалявічаў Апісанне | Спасылкі | НавігацыяГерб города Смолевичип