ValueError: Tensor Tensor(“activation_5/Softmax:0”, shape=(?, 2), dtype=float32) is not an element of this graph The 2019 Stack Overflow Developer Survey Results Are InTensorflow regression predicting 1 for all inputsKeras LSTM: use weights from Keras model to replicate predictions using numpyVisualizing ConvNet filters using my own fine-tuned network resulting in a “NoneType” when running: K.gradients(loss, model.input)[0]Simple prediction with KerasValueError: Error when checking target: expected dense_2 to have shape (1,) but got array with shape (0,)How to set input for proper fit with lstm?Training Accuracy stuck in KerasValue error in Merging two different models in kerasCannot interpret feed_dict key as Tensor: Tensor Tensor(“Placeholder:0”, shape=(3, 3, 3, 32), dtype=float32) is not an element of this graphWhat is the meaning of ValueError in Keras? - 'Tensor conversion requested dtype complex64 for Tensor with dtype float32'
Realistic Alternatives to Dust: What Else Could Feed a Plankton Bloom?
Inversion Puzzle
Why could you hear an Amstrad CPC working?
Inflated grade on resume at previous job, might former employer tell new employer?
Geography at the pixel level
Why don't Unix/Linux systems traverse through directories until they find the required version of a linked library?
Is "plugging out" electronic devices an American expression?
Is there a name of the flying bionic bird?
Why did Howard Stark use all the Vibranium they had on a prototype shield?
Is it possible for the two major parties in the UK to form a coalition with each other instead of a much smaller party?
Where to refill my bottle in India?
How to manage monthly salary
How to answer pointed "are you quitting" questioning when I don't want them to suspect
On the insanity of kings as an argument against monarchy
What effect does the “loading” weapon property have in practical terms?
How are circuits which use complex ICs normally simulated?
Manuscript was "unsubmitted" because the manuscript was deposited in Arxiv Preprints
Deadlock Graph and Interpretation, solution to avoid
"What time...?" or "At what time...?" - what is more grammatically correct?
Patience, young "Padovan"
Why is it "Tumoren" and not "Tumore"?
Monty Hall variation
JSON.serialize: is it possible to suppress null values of a map?
What is the motivation for a law requiring 2 parties to consent for recording a conversation
ValueError: Tensor Tensor(“activation_5/Softmax:0”, shape=(?, 2), dtype=float32) is not an element of this graph
The 2019 Stack Overflow Developer Survey Results Are InTensorflow regression predicting 1 for all inputsKeras LSTM: use weights from Keras model to replicate predictions using numpyVisualizing ConvNet filters using my own fine-tuned network resulting in a “NoneType” when running: K.gradients(loss, model.input)[0]Simple prediction with KerasValueError: Error when checking target: expected dense_2 to have shape (1,) but got array with shape (0,)How to set input for proper fit with lstm?Training Accuracy stuck in KerasValue error in Merging two different models in kerasCannot interpret feed_dict key as Tensor: Tensor Tensor(“Placeholder:0”, shape=(3, 3, 3, 32), dtype=float32) is not an element of this graphWhat is the meaning of ValueError in Keras? - 'Tensor conversion requested dtype complex64 for Tensor with dtype float32'
$begingroup$
There seem to be an issue with predicting using my keras model. I had trained it using the following keras code:
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=(150, 150,3),padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))
model.add(Conv2D(32, (3, 3),padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))
model.add(Conv2D(64, (3, 3),padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))
model.add(Flatten()) # this converts our 3D feature maps to 1D feature vectors
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(2))
model.add(Activation('softmax'))
model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
However when i predict it on my local system after training with the shape (1,150,150,3) . It predicts accurately with an accuracy over 90%. however when i load my model on my raspberry pi and input the image of the same shape (1,150,150,3) it returns an error. Below is the code loaded on the raspberry pi to predict from the keras model.
data = numpy.fromstring(stream.getvalue() , dtype = numpy.uint8)
image5 = cv.imdecode(data , 1)
print(image5.shape)
#cv.imwrite('uhhu.png',image5)
img = cv.resize(image5,(150,150))
x = img_to_array(img)
x = x.reshape((1,) + x.shape)
x = x/255
x = numpy.float32(x)
print(x.shape)
score = loaded_model.predict(x)
print(score)
neural-network deep-learning keras
New contributor
$endgroup$
add a comment |
$begingroup$
There seem to be an issue with predicting using my keras model. I had trained it using the following keras code:
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=(150, 150,3),padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))
model.add(Conv2D(32, (3, 3),padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))
model.add(Conv2D(64, (3, 3),padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))
model.add(Flatten()) # this converts our 3D feature maps to 1D feature vectors
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(2))
model.add(Activation('softmax'))
model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
However when i predict it on my local system after training with the shape (1,150,150,3) . It predicts accurately with an accuracy over 90%. however when i load my model on my raspberry pi and input the image of the same shape (1,150,150,3) it returns an error. Below is the code loaded on the raspberry pi to predict from the keras model.
data = numpy.fromstring(stream.getvalue() , dtype = numpy.uint8)
image5 = cv.imdecode(data , 1)
print(image5.shape)
#cv.imwrite('uhhu.png',image5)
img = cv.resize(image5,(150,150))
x = img_to_array(img)
x = x.reshape((1,) + x.shape)
x = x/255
x = numpy.float32(x)
print(x.shape)
score = loaded_model.predict(x)
print(score)
neural-network deep-learning keras
New contributor
$endgroup$
add a comment |
$begingroup$
There seem to be an issue with predicting using my keras model. I had trained it using the following keras code:
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=(150, 150,3),padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))
model.add(Conv2D(32, (3, 3),padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))
model.add(Conv2D(64, (3, 3),padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))
model.add(Flatten()) # this converts our 3D feature maps to 1D feature vectors
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(2))
model.add(Activation('softmax'))
model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
However when i predict it on my local system after training with the shape (1,150,150,3) . It predicts accurately with an accuracy over 90%. however when i load my model on my raspberry pi and input the image of the same shape (1,150,150,3) it returns an error. Below is the code loaded on the raspberry pi to predict from the keras model.
data = numpy.fromstring(stream.getvalue() , dtype = numpy.uint8)
image5 = cv.imdecode(data , 1)
print(image5.shape)
#cv.imwrite('uhhu.png',image5)
img = cv.resize(image5,(150,150))
x = img_to_array(img)
x = x.reshape((1,) + x.shape)
x = x/255
x = numpy.float32(x)
print(x.shape)
score = loaded_model.predict(x)
print(score)
neural-network deep-learning keras
New contributor
$endgroup$
There seem to be an issue with predicting using my keras model. I had trained it using the following keras code:
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=(150, 150,3),padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))
model.add(Conv2D(32, (3, 3),padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))
model.add(Conv2D(64, (3, 3),padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))
model.add(Flatten()) # this converts our 3D feature maps to 1D feature vectors
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(2))
model.add(Activation('softmax'))
model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
However when i predict it on my local system after training with the shape (1,150,150,3) . It predicts accurately with an accuracy over 90%. however when i load my model on my raspberry pi and input the image of the same shape (1,150,150,3) it returns an error. Below is the code loaded on the raspberry pi to predict from the keras model.
data = numpy.fromstring(stream.getvalue() , dtype = numpy.uint8)
image5 = cv.imdecode(data , 1)
print(image5.shape)
#cv.imwrite('uhhu.png',image5)
img = cv.resize(image5,(150,150))
x = img_to_array(img)
x = x.reshape((1,) + x.shape)
x = x/255
x = numpy.float32(x)
print(x.shape)
score = loaded_model.predict(x)
print(score)
neural-network deep-learning keras
neural-network deep-learning keras
New contributor
New contributor
New contributor
asked 10 hours ago
Zahid AhmedZahid Ahmed
64
64
New contributor
New contributor
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "557"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Zahid Ahmed is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f48984%2fvalueerror-tensor-tensoractivation-5-softmax0-shape-2-dtype-float32%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Zahid Ahmed is a new contributor. Be nice, and check out our Code of Conduct.
Zahid Ahmed is a new contributor. Be nice, and check out our Code of Conduct.
Zahid Ahmed is a new contributor. Be nice, and check out our Code of Conduct.
Zahid Ahmed is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Data Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f48984%2fvalueerror-tensor-tensoractivation-5-softmax0-shape-2-dtype-float32%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown