Find suitable locations using Machine Learning The 2019 Stack Overflow Developer Survey Results Are InDetecting Spam using Machine LearningUsing Machine Learning to Predict Musical ScalesAbbreviation Classification using machine learningSchema matching using machine learningUsing machine learning technique to predict commodity pricesFind which type of log using machine learning?Data Matching Using Machine LearningFraud detection using machine learningSports prediction using machine learningFind best machine learning for predicting category of products

It's possible to achieve negative score?

Lethal sonic weapons

Manuscript was "unsubmitted" because the manuscript was deposited in Arxiv Preprints

Time travel alters history but people keep saying nothing's changed

What is the use of option -o in the useradd command?

Deadlock Graph and Interpretation, solution to avoid

Monty Hall variation

How to change the limits of integration

Inline version of a function returns different value then non-inline version

Is "plugging out" electronic devices an American expression?

Is bread bad for ducks?

How to manage monthly salary

Does light intensity oscillate really fast since it is a wave?

How are circuits which use complex ICs normally simulated?

What tool would a Roman-age civilization have to grind silver and other metals into dust?

I looked up a future colleague on LinkedIn before I started a job. I told my colleague about it and he seemed surprised. Should I apologize?

What does "sndry explns" mean in one of the Hitchhiker's guide books?

Pristine Bit Checking

What do hard-Brexiteers want with respect to the Irish border?

JSON.serialize: is it possible to suppress null values of a map?

What does Linus Torvalds mean when he says that Git "never ever" tracks a file?

What do the Banks children have against barley water?

Inversion Puzzle

What is the best strategy for white in this position?



Find suitable locations using Machine Learning



The 2019 Stack Overflow Developer Survey Results Are InDetecting Spam using Machine LearningUsing Machine Learning to Predict Musical ScalesAbbreviation Classification using machine learningSchema matching using machine learningUsing machine learning technique to predict commodity pricesFind which type of log using machine learning?Data Matching Using Machine LearningFraud detection using machine learningSports prediction using machine learningFind best machine learning for predicting category of products










0












$begingroup$


Just for fun, I am currently trying to find suitable locations to deploy new stores. So what I did so far is to take the actual sites of current stores and to assign surrounding variables to it. These features include for example: point of interest density, population density, region popularity etc. In total I have 9000, 100 dimensional points. 1000 of these points contain stores already, the remaining 8000 do not.



In the next step I want to perform dim reduction using PCA. However, I am not sure how to proceed afterwards. Should I try to cluster the points? Or how can I „predict“ which of the points are suitable candidates for new stores? Maybe using some kind of skip gram model?



Hoping to get some advise:)



Cheers,
Tom










share|improve this question









$endgroup$




bumped to the homepage by Community 9 hours ago


This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.



















    0












    $begingroup$


    Just for fun, I am currently trying to find suitable locations to deploy new stores. So what I did so far is to take the actual sites of current stores and to assign surrounding variables to it. These features include for example: point of interest density, population density, region popularity etc. In total I have 9000, 100 dimensional points. 1000 of these points contain stores already, the remaining 8000 do not.



    In the next step I want to perform dim reduction using PCA. However, I am not sure how to proceed afterwards. Should I try to cluster the points? Or how can I „predict“ which of the points are suitable candidates for new stores? Maybe using some kind of skip gram model?



    Hoping to get some advise:)



    Cheers,
    Tom










    share|improve this question









    $endgroup$




    bumped to the homepage by Community 9 hours ago


    This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.

















      0












      0








      0





      $begingroup$


      Just for fun, I am currently trying to find suitable locations to deploy new stores. So what I did so far is to take the actual sites of current stores and to assign surrounding variables to it. These features include for example: point of interest density, population density, region popularity etc. In total I have 9000, 100 dimensional points. 1000 of these points contain stores already, the remaining 8000 do not.



      In the next step I want to perform dim reduction using PCA. However, I am not sure how to proceed afterwards. Should I try to cluster the points? Or how can I „predict“ which of the points are suitable candidates for new stores? Maybe using some kind of skip gram model?



      Hoping to get some advise:)



      Cheers,
      Tom










      share|improve this question









      $endgroup$




      Just for fun, I am currently trying to find suitable locations to deploy new stores. So what I did so far is to take the actual sites of current stores and to assign surrounding variables to it. These features include for example: point of interest density, population density, region popularity etc. In total I have 9000, 100 dimensional points. 1000 of these points contain stores already, the remaining 8000 do not.



      In the next step I want to perform dim reduction using PCA. However, I am not sure how to proceed afterwards. Should I try to cluster the points? Or how can I „predict“ which of the points are suitable candidates for new stores? Maybe using some kind of skip gram model?



      Hoping to get some advise:)



      Cheers,
      Tom







      machine-learning classification prediction






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Mar 10 at 15:35









      LossaLossa

      11




      11





      bumped to the homepage by Community 9 hours ago


      This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.







      bumped to the homepage by Community 9 hours ago


      This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          Are you sure PCA is the correct way to go?
          It's an analytical problem and being able to interpret the results are very important.



          How about the correlation between the number of stores and nearby features? Find out what makes a good location. What are the most important features? Run forward or backward selection as an example, or use another model/feature selection technique.



          It's not a pure machine learning case you have here. It's a typical analytical data science problem.



          If you still want to do classification, just train a model. You have POI features and some others. You know if there is a store or not :) I might not fully understand the problem here. You train on a 50% a store exist location, and 50% a store does not exist in this location dataset. Train a classifier, and classify other areas.



          I'd still start to visualize and understand the data as I mentioned first. It's much underrated and the way to start solving most problems.



          Hope that gave you some hints,



          Cheers






          share|improve this answer









          $endgroup$












          • $begingroup$
            Hi Carl, I mean I can still interpret PCA using a correlation analysis between the principal components and the original variables right? This should help to get an idea of how the data looks like. Still it would be a nice idea to use the analytical solution to validate the classification result. Thx for your help!
            $endgroup$
            – Lossa
            Mar 10 at 17:18










          • $begingroup$
            You can look at how much each feature adds to the principal components. I would not call that correlation analysis, but maybe that is something you can do. Looking at how much each feature adds to the principal components is not always very interpretable.
            $endgroup$
            – Carl Rynegardh
            Mar 10 at 18:49












          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "557"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f47039%2ffind-suitable-locations-using-machine-learning%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          0












          $begingroup$

          Are you sure PCA is the correct way to go?
          It's an analytical problem and being able to interpret the results are very important.



          How about the correlation between the number of stores and nearby features? Find out what makes a good location. What are the most important features? Run forward or backward selection as an example, or use another model/feature selection technique.



          It's not a pure machine learning case you have here. It's a typical analytical data science problem.



          If you still want to do classification, just train a model. You have POI features and some others. You know if there is a store or not :) I might not fully understand the problem here. You train on a 50% a store exist location, and 50% a store does not exist in this location dataset. Train a classifier, and classify other areas.



          I'd still start to visualize and understand the data as I mentioned first. It's much underrated and the way to start solving most problems.



          Hope that gave you some hints,



          Cheers






          share|improve this answer









          $endgroup$












          • $begingroup$
            Hi Carl, I mean I can still interpret PCA using a correlation analysis between the principal components and the original variables right? This should help to get an idea of how the data looks like. Still it would be a nice idea to use the analytical solution to validate the classification result. Thx for your help!
            $endgroup$
            – Lossa
            Mar 10 at 17:18










          • $begingroup$
            You can look at how much each feature adds to the principal components. I would not call that correlation analysis, but maybe that is something you can do. Looking at how much each feature adds to the principal components is not always very interpretable.
            $endgroup$
            – Carl Rynegardh
            Mar 10 at 18:49
















          0












          $begingroup$

          Are you sure PCA is the correct way to go?
          It's an analytical problem and being able to interpret the results are very important.



          How about the correlation between the number of stores and nearby features? Find out what makes a good location. What are the most important features? Run forward or backward selection as an example, or use another model/feature selection technique.



          It's not a pure machine learning case you have here. It's a typical analytical data science problem.



          If you still want to do classification, just train a model. You have POI features and some others. You know if there is a store or not :) I might not fully understand the problem here. You train on a 50% a store exist location, and 50% a store does not exist in this location dataset. Train a classifier, and classify other areas.



          I'd still start to visualize and understand the data as I mentioned first. It's much underrated and the way to start solving most problems.



          Hope that gave you some hints,



          Cheers






          share|improve this answer









          $endgroup$












          • $begingroup$
            Hi Carl, I mean I can still interpret PCA using a correlation analysis between the principal components and the original variables right? This should help to get an idea of how the data looks like. Still it would be a nice idea to use the analytical solution to validate the classification result. Thx for your help!
            $endgroup$
            – Lossa
            Mar 10 at 17:18










          • $begingroup$
            You can look at how much each feature adds to the principal components. I would not call that correlation analysis, but maybe that is something you can do. Looking at how much each feature adds to the principal components is not always very interpretable.
            $endgroup$
            – Carl Rynegardh
            Mar 10 at 18:49














          0












          0








          0





          $begingroup$

          Are you sure PCA is the correct way to go?
          It's an analytical problem and being able to interpret the results are very important.



          How about the correlation between the number of stores and nearby features? Find out what makes a good location. What are the most important features? Run forward or backward selection as an example, or use another model/feature selection technique.



          It's not a pure machine learning case you have here. It's a typical analytical data science problem.



          If you still want to do classification, just train a model. You have POI features and some others. You know if there is a store or not :) I might not fully understand the problem here. You train on a 50% a store exist location, and 50% a store does not exist in this location dataset. Train a classifier, and classify other areas.



          I'd still start to visualize and understand the data as I mentioned first. It's much underrated and the way to start solving most problems.



          Hope that gave you some hints,



          Cheers






          share|improve this answer









          $endgroup$



          Are you sure PCA is the correct way to go?
          It's an analytical problem and being able to interpret the results are very important.



          How about the correlation between the number of stores and nearby features? Find out what makes a good location. What are the most important features? Run forward or backward selection as an example, or use another model/feature selection technique.



          It's not a pure machine learning case you have here. It's a typical analytical data science problem.



          If you still want to do classification, just train a model. You have POI features and some others. You know if there is a store or not :) I might not fully understand the problem here. You train on a 50% a store exist location, and 50% a store does not exist in this location dataset. Train a classifier, and classify other areas.



          I'd still start to visualize and understand the data as I mentioned first. It's much underrated and the way to start solving most problems.



          Hope that gave you some hints,



          Cheers







          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered Mar 10 at 16:43









          Carl RynegardhCarl Rynegardh

          321112




          321112











          • $begingroup$
            Hi Carl, I mean I can still interpret PCA using a correlation analysis between the principal components and the original variables right? This should help to get an idea of how the data looks like. Still it would be a nice idea to use the analytical solution to validate the classification result. Thx for your help!
            $endgroup$
            – Lossa
            Mar 10 at 17:18










          • $begingroup$
            You can look at how much each feature adds to the principal components. I would not call that correlation analysis, but maybe that is something you can do. Looking at how much each feature adds to the principal components is not always very interpretable.
            $endgroup$
            – Carl Rynegardh
            Mar 10 at 18:49

















          • $begingroup$
            Hi Carl, I mean I can still interpret PCA using a correlation analysis between the principal components and the original variables right? This should help to get an idea of how the data looks like. Still it would be a nice idea to use the analytical solution to validate the classification result. Thx for your help!
            $endgroup$
            – Lossa
            Mar 10 at 17:18










          • $begingroup$
            You can look at how much each feature adds to the principal components. I would not call that correlation analysis, but maybe that is something you can do. Looking at how much each feature adds to the principal components is not always very interpretable.
            $endgroup$
            – Carl Rynegardh
            Mar 10 at 18:49
















          $begingroup$
          Hi Carl, I mean I can still interpret PCA using a correlation analysis between the principal components and the original variables right? This should help to get an idea of how the data looks like. Still it would be a nice idea to use the analytical solution to validate the classification result. Thx for your help!
          $endgroup$
          – Lossa
          Mar 10 at 17:18




          $begingroup$
          Hi Carl, I mean I can still interpret PCA using a correlation analysis between the principal components and the original variables right? This should help to get an idea of how the data looks like. Still it would be a nice idea to use the analytical solution to validate the classification result. Thx for your help!
          $endgroup$
          – Lossa
          Mar 10 at 17:18












          $begingroup$
          You can look at how much each feature adds to the principal components. I would not call that correlation analysis, but maybe that is something you can do. Looking at how much each feature adds to the principal components is not always very interpretable.
          $endgroup$
          – Carl Rynegardh
          Mar 10 at 18:49





          $begingroup$
          You can look at how much each feature adds to the principal components. I would not call that correlation analysis, but maybe that is something you can do. Looking at how much each feature adds to the principal components is not always very interpretable.
          $endgroup$
          – Carl Rynegardh
          Mar 10 at 18:49


















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Data Science Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f47039%2ffind-suitable-locations-using-machine-learning%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Францішак Багушэвіч Змест Сям'я | Біяграфія | Творчасць | Мова Багушэвіча | Ацэнкі дзейнасці | Цікавыя факты | Спадчына | Выбраная бібліяграфія | Ушанаванне памяці | У філатэліі | Зноскі | Літаратура | Спасылкі | НавігацыяЛяхоўскі У. Рупіўся дзеля Бога і людзей: Жыццёвы шлях Лявона Вітан-Дубейкаўскага // Вольскі і Памідораў з песняй пра немца Адвакат, паэт, народны заступнік Ашмянскі веснікВ Минске появится площадь Богушевича и улица Сырокомли, Белорусская деловая газета, 19 июля 2001 г.Айцец беларускай нацыянальнай ідэі паўстаў у бронзе Сяргей Аляксандравіч Адашкевіч (1918, Мінск). 80-я гады. Бюст «Францішак Багушэвіч».Яўген Мікалаевіч Ціхановіч. «Партрэт Францішка Багушэвіча»Мікола Мікалаевіч Купава. «Партрэт зачынальніка новай беларускай літаратуры Францішка Багушэвіча»Уладзімір Іванавіч Мелехаў. На помніку «Змагарам за родную мову» Барэльеф «Францішак Багушэвіч»Памяць пра Багушэвіча на Віленшчыне Страчаная сталіца. Беларускія шыльды на вуліцах Вільні«Krynica». Ideologia i przywódcy białoruskiego katolicyzmuФранцішак БагушэвічТворы на knihi.comТворы Францішка Багушэвіча на bellib.byСодаль Уладзімір. Францішак Багушэвіч на Лідчыне;Луцкевіч Антон. Жыцьцё і творчасьць Фр. Багушэвіча ў успамінах ягоных сучасьнікаў // Запісы Беларускага Навуковага таварыства. Вільня, 1938. Сшытак 1. С. 16-34.Большая российская1188761710000 0000 5537 633Xn9209310021619551927869394п

          Беларусь Змест Назва Гісторыя Геаграфія Сімволіка Дзяржаўны лад Палітычныя партыі Міжнароднае становішча і знешняя палітыка Адміністрацыйны падзел Насельніцтва Эканоміка Культура і грамадства Сацыяльная сфера Узброеныя сілы Заўвагі Літаратура Спасылкі НавігацыяHGЯOiТоп-2011 г. (па версіі ej.by)Топ-2013 г. (па версіі ej.by)Топ-2016 г. (па версіі ej.by)Топ-2017 г. (па версіі ej.by)Нацыянальны статыстычны камітэт Рэспублікі БеларусьШчыльнасць насельніцтва па краінахhttp://naviny.by/rubrics/society/2011/09/16/ic_articles_116_175144/А. Калечыц, У. Ксяндзоў. Спробы засялення краю неандэртальскім чалавекам.І ў Менску былі мамантыА. Калечыц, У. Ксяндзоў. Старажытны каменны век (палеаліт). Першапачатковае засяленне тэрыторыіГ. Штыхаў. Балты і славяне ў VI—VIII стст.М. Клімаў. Полацкае княства ў IX—XI стст.Г. Штыхаў, В. Ляўко. Палітычная гісторыя Полацкай зямліГ. Штыхаў. Дзяржаўны лад у землях-княствахГ. Штыхаў. Дзяржаўны лад у землях-княствахБеларускія землі ў складзе Вялікага Княства ЛітоўскагаЛюблінская унія 1569 г."The Early Stages of Independence"Zapomniane prawdy25 гадоў таму было аб'яўлена, што Язэп Пілсудскі — беларус (фота)Наша вадаДакументы ЧАЭС: Забруджванне тэрыторыі Беларусі « ЧАЭС Зона адчужэнняСведения о политических партиях, зарегистрированных в Республике Беларусь // Министерство юстиции Республики БеларусьСтатыстычны бюлетэнь „Полаўзроставая структура насельніцтва Рэспублікі Беларусь на 1 студзеня 2012 года і сярэднегадовая колькасць насельніцтва за 2011 год“Индекс человеческого развития Беларуси — не было бы нижеБеларусь занимает первое место в СНГ по индексу развития с учетом гендерного факцёраНацыянальны статыстычны камітэт Рэспублікі БеларусьКанстытуцыя РБ. Артыкул 17Трансфармацыйныя задачы БеларусіВыйсце з крызісу — далейшае рэфармаванне Беларускі рубель — сусветны лідар па дэвальвацыяхПра змену коштаў у кастрычніку 2011 г.Бядней за беларусаў у СНД толькі таджыкіСярэдні заробак у верасні дасягнуў 2,26 мільёна рублёўЭканомікаГаласуем за ТОП-100 беларускай прозыСучасныя беларускія мастакіАрхитектура Беларуси BELARUS.BYА. Каханоўскі. Культура Беларусі ўсярэдзіне XVII—XVIII ст.Анталогія беларускай народнай песні, гуказапісы спеваўБеларускія Музычныя IнструментыБеларускі рок, які мы страцілі. Топ-10 гуртоў«Мясцовы час» — нязгаслая легенда беларускай рок-музыкіСЯРГЕЙ БУДКІН. МЫ НЯ ЗНАЕМ СВАЁЙ МУЗЫКІМ. А. Каладзінскі. НАРОДНЫ ТЭАТРМагнацкія культурныя цэнтрыПублічная дыскусія «Беларуская новая пьеса: без беларускай мовы ці беларуская?»Беларускія драматургі па-ранейшаму лепш ставяцца за мяжой, чым на радзіме«Працэс незалежнага кіно пайшоў, і дзяржаву турбуе яго непадкантрольнасць»Беларускія філосафы ў пошуках прасторыВсе идём в библиотекуАрхіваванаАб Нацыянальнай праграме даследавання і выкарыстання касмічнай прасторы ў мірных мэтах на 2008—2012 гадыУ космас — разам.У суседнім з Барысаўскім раёне пабудуюць Камандна-вымяральны пунктСвяты і абрады беларусаў«Мірныя бульбашы з малой краіны» — 5 непраўдзівых стэрэатыпаў пра БеларусьМ. Раманюк. Беларускае народнае адзеннеУ Беларусі скарачаецца колькасць злачынстваўЛукашэнка незадаволены мінскімі ўладамі Крадзяжы складаюць у Мінску каля 70% злачынстваў Узровень злачыннасці ў Мінскай вобласці — адзін з самых высокіх у краіне Генпракуратура аналізуе стан са злачыннасцю ў Беларусі па каэфіцыенце злачыннасці У Беларусі стабілізавалася крымінагеннае становішча, лічыць генпракурорЗамежнікі сталі здзяйсняць у Беларусі больш злачынстваўМУС Беларусі турбуе рост рэцыдыўнай злачыннасціЯ з ЖЭСа. Дазволіце вас абкрасці! Рэйтынг усіх службаў і падраздзяленняў ГУУС Мінгарвыканкама вырасАб КДБ РБГісторыя Аператыўна-аналітычнага цэнтра РБГісторыя ДКФРТаможняagentura.ruБеларусьBelarus.by — Афіцыйны сайт Рэспублікі БеларусьСайт урада БеларусіRadzima.org — Збор архітэктурных помнікаў, гісторыя Беларусі«Глобус Беларуси»Гербы и флаги БеларусиАсаблівасці каменнага веку на БеларусіА. Калечыц, У. Ксяндзоў. Старажытны каменны век (палеаліт). Першапачатковае засяленне тэрыторыіУ. Ксяндзоў. Сярэдні каменны век (мезаліт). Засяленне краю плямёнамі паляўнічых, рыбакоў і збіральнікаўА. Калечыц, М. Чарняўскі. Плямёны на тэрыторыі Беларусі ў новым каменным веку (неаліце)А. Калечыц, У. Ксяндзоў, М. Чарняўскі. Гаспадарчыя заняткі ў каменным векуЭ. Зайкоўскі. Духоўная культура ў каменным векуАсаблівасці бронзавага веку на БеларусіФарміраванне супольнасцей ранняга перыяду бронзавага векуФотографии БеларусиРоля беларускіх зямель ва ўтварэнні і ўмацаванні ВКЛВ. Фадзеева. З гісторыі развіцця беларускай народнай вышыўкіDMOZGran catalanaБольшая российскаяBritannica (анлайн)Швейцарскі гістарычны15325917611952699xDA123282154079143-90000 0001 2171 2080n9112870100577502ge128882171858027501086026362074122714179пппппп

          ValueError: Expected n_neighbors <= n_samples, but n_samples = 1, n_neighbors = 6 (SMOTE) The 2019 Stack Overflow Developer Survey Results Are InCan SMOTE be applied over sequence of words (sentences)?ValueError when doing validation with random forestsSMOTE and multi class oversamplingLogic behind SMOTE-NC?ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)SmoteBoost: Should SMOTE be ran individually for each iteration/tree in the boosting?solving multi-class imbalance classification using smote and OSSUsing SMOTE for Synthetic Data generation to improve performance on unbalanced dataproblem of entry format for a simple model in KerasSVM SMOTE fit_resample() function runs forever with no result