Evaluating number of iteration with a certain map with While The 2019 Stack Overflow Developer Survey Results Are InWhy should I avoid the For loop in Mathematica?Out of memory in a Do loopRepeating Calculations/Iterations without a specific functionWhile loop with changing variable , NDSolve and an IntegralUsing Map function with NDSolveHow do I repeat the number of times a nested for loop does an iteration?

Realistic Alternatives to Dust: What Else Could Feed a Plankton Bloom?

I looked up a future colleague on LinkedIn before I started a job. I told my colleague about it and he seemed surprised. Should I apologize?

Output the Arecibo Message

Falsification in Math vs Science

Can distinct morphisms between curves induce the same morphism on singular cohomology?

Why could you hear an Amstrad CPC working?

Should I use my personal or workplace e-mail when registering to external websites for work purpose?

Where does the "burst of radiance" from Holy Weapon originate?

On the insanity of kings as an argument against monarchy

Why can Shazam do this?

How come people say “Would of”?

How to manage monthly salary

How to deal with fear of taking dependencies

How to make payment on the internet without leaving a money trail?

Can't find the latex code for the ⍎ (down tack jot) symbol

Could JWST stay at L2 "forever"?

Confusion about non-derivable continuous functions

How can I create a character who can assume the widest possible range of creature sizes?

In microwave frequencies, do you use a circulator when you need a (near) perfect diode?

Deadlock Graph and Interpretation, solution to avoid

If a poisoned arrow's piercing damage is reduced to 0, do you still get poisoned?

How to answer pointed "are you quitting" questioning when I don't want them to suspect

I see my dog run

What does "rabbited" mean/imply in this sentence?



Evaluating number of iteration with a certain map with While



The 2019 Stack Overflow Developer Survey Results Are InWhy should I avoid the For loop in Mathematica?Out of memory in a Do loopRepeating Calculations/Iterations without a specific functionWhile loop with changing variable , NDSolve and an IntegralUsing Map function with NDSolveHow do I repeat the number of times a nested for loop does an iteration?










2












$begingroup$


Beeing used to programming in C-like languages I am struggling with iterations and loops with mathematica. I am trying not to use the For command, as already lots of people recommended.



I am trying to solve the following problem:



Given the map $z_i+1= z_i^2 +c$ with $z_i, c in mathbbC$ and $z_0 = 0$ evaluate the contours that represents given the parameter $c$ the number of iterations $i$ that I have to perform in order to have $|z_i|> 2$. Perform the computation with $-0.6 leq Re(z_i)leq -0.4 $ and $0.6 leq Im(z_i)leq 0.4$ and 100 points per axis.



Given the condition I though I could use a While Loop to perform the task



i=0; (*init counter*)
z[i]=0; (*init z[i]*)
g[c_]:= While[
Abs[z[i]]<= 2, (*condition*)
z[i+1]= z[i]^2 +c; (*process*)
i++; (*increment*)
]
Print[i]
g[0.2 + 0.2 I]


This computation with the input, say, $(-0.2 +0.2 i)$ (and with many others) takes all the memory of the machine I am using (Wolfram online). I don't understand whether I am just missing something or the amount of computation I can perform on the server just isn't enough (which seems really unlikely)



Furthermore I would like the function to return an integer (i - the number of iterations) but I really struggle with how to correctly use the synthax of Mathematica to do that.



Thanks in advance to everyone who is so keen to stop by and help :)










share|improve this question







New contributor




JacquesLeen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$
















    2












    $begingroup$


    Beeing used to programming in C-like languages I am struggling with iterations and loops with mathematica. I am trying not to use the For command, as already lots of people recommended.



    I am trying to solve the following problem:



    Given the map $z_i+1= z_i^2 +c$ with $z_i, c in mathbbC$ and $z_0 = 0$ evaluate the contours that represents given the parameter $c$ the number of iterations $i$ that I have to perform in order to have $|z_i|> 2$. Perform the computation with $-0.6 leq Re(z_i)leq -0.4 $ and $0.6 leq Im(z_i)leq 0.4$ and 100 points per axis.



    Given the condition I though I could use a While Loop to perform the task



    i=0; (*init counter*)
    z[i]=0; (*init z[i]*)
    g[c_]:= While[
    Abs[z[i]]<= 2, (*condition*)
    z[i+1]= z[i]^2 +c; (*process*)
    i++; (*increment*)
    ]
    Print[i]
    g[0.2 + 0.2 I]


    This computation with the input, say, $(-0.2 +0.2 i)$ (and with many others) takes all the memory of the machine I am using (Wolfram online). I don't understand whether I am just missing something or the amount of computation I can perform on the server just isn't enough (which seems really unlikely)



    Furthermore I would like the function to return an integer (i - the number of iterations) but I really struggle with how to correctly use the synthax of Mathematica to do that.



    Thanks in advance to everyone who is so keen to stop by and help :)










    share|improve this question







    New contributor




    JacquesLeen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$














      2












      2








      2





      $begingroup$


      Beeing used to programming in C-like languages I am struggling with iterations and loops with mathematica. I am trying not to use the For command, as already lots of people recommended.



      I am trying to solve the following problem:



      Given the map $z_i+1= z_i^2 +c$ with $z_i, c in mathbbC$ and $z_0 = 0$ evaluate the contours that represents given the parameter $c$ the number of iterations $i$ that I have to perform in order to have $|z_i|> 2$. Perform the computation with $-0.6 leq Re(z_i)leq -0.4 $ and $0.6 leq Im(z_i)leq 0.4$ and 100 points per axis.



      Given the condition I though I could use a While Loop to perform the task



      i=0; (*init counter*)
      z[i]=0; (*init z[i]*)
      g[c_]:= While[
      Abs[z[i]]<= 2, (*condition*)
      z[i+1]= z[i]^2 +c; (*process*)
      i++; (*increment*)
      ]
      Print[i]
      g[0.2 + 0.2 I]


      This computation with the input, say, $(-0.2 +0.2 i)$ (and with many others) takes all the memory of the machine I am using (Wolfram online). I don't understand whether I am just missing something or the amount of computation I can perform on the server just isn't enough (which seems really unlikely)



      Furthermore I would like the function to return an integer (i - the number of iterations) but I really struggle with how to correctly use the synthax of Mathematica to do that.



      Thanks in advance to everyone who is so keen to stop by and help :)










      share|improve this question







      New contributor




      JacquesLeen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      Beeing used to programming in C-like languages I am struggling with iterations and loops with mathematica. I am trying not to use the For command, as already lots of people recommended.



      I am trying to solve the following problem:



      Given the map $z_i+1= z_i^2 +c$ with $z_i, c in mathbbC$ and $z_0 = 0$ evaluate the contours that represents given the parameter $c$ the number of iterations $i$ that I have to perform in order to have $|z_i|> 2$. Perform the computation with $-0.6 leq Re(z_i)leq -0.4 $ and $0.6 leq Im(z_i)leq 0.4$ and 100 points per axis.



      Given the condition I though I could use a While Loop to perform the task



      i=0; (*init counter*)
      z[i]=0; (*init z[i]*)
      g[c_]:= While[
      Abs[z[i]]<= 2, (*condition*)
      z[i+1]= z[i]^2 +c; (*process*)
      i++; (*increment*)
      ]
      Print[i]
      g[0.2 + 0.2 I]


      This computation with the input, say, $(-0.2 +0.2 i)$ (and with many others) takes all the memory of the machine I am using (Wolfram online). I don't understand whether I am just missing something or the amount of computation I can perform on the server just isn't enough (which seems really unlikely)



      Furthermore I would like the function to return an integer (i - the number of iterations) but I really struggle with how to correctly use the synthax of Mathematica to do that.



      Thanks in advance to everyone who is so keen to stop by and help :)







      procedural-programming






      share|improve this question







      New contributor




      JacquesLeen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|improve this question







      New contributor




      JacquesLeen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|improve this question




      share|improve this question






      New contributor




      JacquesLeen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 11 hours ago









      JacquesLeenJacquesLeen

      303




      303




      New contributor




      JacquesLeen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      JacquesLeen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      JacquesLeen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




















          3 Answers
          3






          active

          oldest

          votes


















          7












          $begingroup$

          The problem with your code is that for some values of c, Abs[z] will never become larger than 2. You need to cap the number of iterations.




          For this type of iteration, the typical function to use is Nest and related functions.



          countIter[c_] := 
          Length@NestWhileList[
          #^2 + c &,
          0.0,
          Abs[#] <= 2 &,
          1,
          100 (* limit number of iterations to 100 *)
          ]

          result =
          Table[
          countIter[re + im I],
          re, -0.6, -0.4, 0.2/100,
          im, 0.4, 0.6, 0.2/100
          ];

          ArrayPlot[result, ColorFunction -> "Rainbow"]


          enter image description here




          However, this type of problem is quite amenable to compilation with Compile. When using Compile, the usual advice does not apply: a procedural style is still the best. (This does not mean that For is good, I'd still argue against that. But there are many other procedural constructs such as Do and While).



          countIterCompiled = Compile[c, _Complex,
          Block[z = 0.0 + 0.0 I, i = 0,
          While[i <= 100 && Abs[z] <= 2,
          z = z^2 + c;
          i++
          ];
          i
          ]
          ]


          Using countIterCompiled will be much faster than countIter.






          share|improve this answer











          $endgroup$












          • $begingroup$
            thank u very much for the suggestion... I previously had a similar idea using Module instead of Block, and the problem was that the exercise did not specify that for many values the map was converging so I had to cap the number of iterations.
            $endgroup$
            – JacquesLeen
            10 hours ago










          • $begingroup$
            @JacquesLeen Maybe that was part of the exercise: will you discover it on your own? Inside Compile, Module and Block are the same, I think. (Not outside of it.)
            $endgroup$
            – Szabolcs
            9 hours ago


















          3












          $begingroup$

          For iterated function systems like this, Nest and relatives are the preferred tools. Just exploring your (rather famous) map:



          f[z_, c_] := z^2 + c
          Abs[NestList[f[#, 0.2 + 0.2 I] &, 0, 30]]
          (* 0, 0.282843, 0.344093, 0.351367, 0.327239, 0.304778, 0.303605,
          0.311545, 0.316158, 0.315818, 0.313773, 0.312729, 0.31295, 0.313482,
          0.313697, 0.313611, 0.313477, 0.313435, 0.313464, 0.313497, 0.313504,
          0.313495, 0.313487, 0.313486, 0.313489, 0.313491, 0.313491, 0.31349,
          0.31349, 0.31349, 0.31349 *)


          As you can see, it converges to a value inside your radius. That's why your function doesn't terminate.






          share|improve this answer









          $endgroup$




















            1












            $begingroup$

            You could also use MandelbrotSetPlot to create Szabolcs' graphic:



            MandelbrotSetPlot[-0.6 + 0.4 I, -0.4 + 0.6 I, PlotLegends -> Automatic]


            enter image description here






            share|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "387"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: false,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: null,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );






              JacquesLeen is a new contributor. Be nice, and check out our Code of Conduct.









              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194872%2fevaluating-number-of-iteration-with-a-certain-map-with-while%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              3 Answers
              3






              active

              oldest

              votes








              3 Answers
              3






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              7












              $begingroup$

              The problem with your code is that for some values of c, Abs[z] will never become larger than 2. You need to cap the number of iterations.




              For this type of iteration, the typical function to use is Nest and related functions.



              countIter[c_] := 
              Length@NestWhileList[
              #^2 + c &,
              0.0,
              Abs[#] <= 2 &,
              1,
              100 (* limit number of iterations to 100 *)
              ]

              result =
              Table[
              countIter[re + im I],
              re, -0.6, -0.4, 0.2/100,
              im, 0.4, 0.6, 0.2/100
              ];

              ArrayPlot[result, ColorFunction -> "Rainbow"]


              enter image description here




              However, this type of problem is quite amenable to compilation with Compile. When using Compile, the usual advice does not apply: a procedural style is still the best. (This does not mean that For is good, I'd still argue against that. But there are many other procedural constructs such as Do and While).



              countIterCompiled = Compile[c, _Complex,
              Block[z = 0.0 + 0.0 I, i = 0,
              While[i <= 100 && Abs[z] <= 2,
              z = z^2 + c;
              i++
              ];
              i
              ]
              ]


              Using countIterCompiled will be much faster than countIter.






              share|improve this answer











              $endgroup$












              • $begingroup$
                thank u very much for the suggestion... I previously had a similar idea using Module instead of Block, and the problem was that the exercise did not specify that for many values the map was converging so I had to cap the number of iterations.
                $endgroup$
                – JacquesLeen
                10 hours ago










              • $begingroup$
                @JacquesLeen Maybe that was part of the exercise: will you discover it on your own? Inside Compile, Module and Block are the same, I think. (Not outside of it.)
                $endgroup$
                – Szabolcs
                9 hours ago















              7












              $begingroup$

              The problem with your code is that for some values of c, Abs[z] will never become larger than 2. You need to cap the number of iterations.




              For this type of iteration, the typical function to use is Nest and related functions.



              countIter[c_] := 
              Length@NestWhileList[
              #^2 + c &,
              0.0,
              Abs[#] <= 2 &,
              1,
              100 (* limit number of iterations to 100 *)
              ]

              result =
              Table[
              countIter[re + im I],
              re, -0.6, -0.4, 0.2/100,
              im, 0.4, 0.6, 0.2/100
              ];

              ArrayPlot[result, ColorFunction -> "Rainbow"]


              enter image description here




              However, this type of problem is quite amenable to compilation with Compile. When using Compile, the usual advice does not apply: a procedural style is still the best. (This does not mean that For is good, I'd still argue against that. But there are many other procedural constructs such as Do and While).



              countIterCompiled = Compile[c, _Complex,
              Block[z = 0.0 + 0.0 I, i = 0,
              While[i <= 100 && Abs[z] <= 2,
              z = z^2 + c;
              i++
              ];
              i
              ]
              ]


              Using countIterCompiled will be much faster than countIter.






              share|improve this answer











              $endgroup$












              • $begingroup$
                thank u very much for the suggestion... I previously had a similar idea using Module instead of Block, and the problem was that the exercise did not specify that for many values the map was converging so I had to cap the number of iterations.
                $endgroup$
                – JacquesLeen
                10 hours ago










              • $begingroup$
                @JacquesLeen Maybe that was part of the exercise: will you discover it on your own? Inside Compile, Module and Block are the same, I think. (Not outside of it.)
                $endgroup$
                – Szabolcs
                9 hours ago













              7












              7








              7





              $begingroup$

              The problem with your code is that for some values of c, Abs[z] will never become larger than 2. You need to cap the number of iterations.




              For this type of iteration, the typical function to use is Nest and related functions.



              countIter[c_] := 
              Length@NestWhileList[
              #^2 + c &,
              0.0,
              Abs[#] <= 2 &,
              1,
              100 (* limit number of iterations to 100 *)
              ]

              result =
              Table[
              countIter[re + im I],
              re, -0.6, -0.4, 0.2/100,
              im, 0.4, 0.6, 0.2/100
              ];

              ArrayPlot[result, ColorFunction -> "Rainbow"]


              enter image description here




              However, this type of problem is quite amenable to compilation with Compile. When using Compile, the usual advice does not apply: a procedural style is still the best. (This does not mean that For is good, I'd still argue against that. But there are many other procedural constructs such as Do and While).



              countIterCompiled = Compile[c, _Complex,
              Block[z = 0.0 + 0.0 I, i = 0,
              While[i <= 100 && Abs[z] <= 2,
              z = z^2 + c;
              i++
              ];
              i
              ]
              ]


              Using countIterCompiled will be much faster than countIter.






              share|improve this answer











              $endgroup$



              The problem with your code is that for some values of c, Abs[z] will never become larger than 2. You need to cap the number of iterations.




              For this type of iteration, the typical function to use is Nest and related functions.



              countIter[c_] := 
              Length@NestWhileList[
              #^2 + c &,
              0.0,
              Abs[#] <= 2 &,
              1,
              100 (* limit number of iterations to 100 *)
              ]

              result =
              Table[
              countIter[re + im I],
              re, -0.6, -0.4, 0.2/100,
              im, 0.4, 0.6, 0.2/100
              ];

              ArrayPlot[result, ColorFunction -> "Rainbow"]


              enter image description here




              However, this type of problem is quite amenable to compilation with Compile. When using Compile, the usual advice does not apply: a procedural style is still the best. (This does not mean that For is good, I'd still argue against that. But there are many other procedural constructs such as Do and While).



              countIterCompiled = Compile[c, _Complex,
              Block[z = 0.0 + 0.0 I, i = 0,
              While[i <= 100 && Abs[z] <= 2,
              z = z^2 + c;
              i++
              ];
              i
              ]
              ]


              Using countIterCompiled will be much faster than countIter.







              share|improve this answer














              share|improve this answer



              share|improve this answer








              edited 10 hours ago

























              answered 11 hours ago









              SzabolcsSzabolcs

              163k14448945




              163k14448945











              • $begingroup$
                thank u very much for the suggestion... I previously had a similar idea using Module instead of Block, and the problem was that the exercise did not specify that for many values the map was converging so I had to cap the number of iterations.
                $endgroup$
                – JacquesLeen
                10 hours ago










              • $begingroup$
                @JacquesLeen Maybe that was part of the exercise: will you discover it on your own? Inside Compile, Module and Block are the same, I think. (Not outside of it.)
                $endgroup$
                – Szabolcs
                9 hours ago
















              • $begingroup$
                thank u very much for the suggestion... I previously had a similar idea using Module instead of Block, and the problem was that the exercise did not specify that for many values the map was converging so I had to cap the number of iterations.
                $endgroup$
                – JacquesLeen
                10 hours ago










              • $begingroup$
                @JacquesLeen Maybe that was part of the exercise: will you discover it on your own? Inside Compile, Module and Block are the same, I think. (Not outside of it.)
                $endgroup$
                – Szabolcs
                9 hours ago















              $begingroup$
              thank u very much for the suggestion... I previously had a similar idea using Module instead of Block, and the problem was that the exercise did not specify that for many values the map was converging so I had to cap the number of iterations.
              $endgroup$
              – JacquesLeen
              10 hours ago




              $begingroup$
              thank u very much for the suggestion... I previously had a similar idea using Module instead of Block, and the problem was that the exercise did not specify that for many values the map was converging so I had to cap the number of iterations.
              $endgroup$
              – JacquesLeen
              10 hours ago












              $begingroup$
              @JacquesLeen Maybe that was part of the exercise: will you discover it on your own? Inside Compile, Module and Block are the same, I think. (Not outside of it.)
              $endgroup$
              – Szabolcs
              9 hours ago




              $begingroup$
              @JacquesLeen Maybe that was part of the exercise: will you discover it on your own? Inside Compile, Module and Block are the same, I think. (Not outside of it.)
              $endgroup$
              – Szabolcs
              9 hours ago











              3












              $begingroup$

              For iterated function systems like this, Nest and relatives are the preferred tools. Just exploring your (rather famous) map:



              f[z_, c_] := z^2 + c
              Abs[NestList[f[#, 0.2 + 0.2 I] &, 0, 30]]
              (* 0, 0.282843, 0.344093, 0.351367, 0.327239, 0.304778, 0.303605,
              0.311545, 0.316158, 0.315818, 0.313773, 0.312729, 0.31295, 0.313482,
              0.313697, 0.313611, 0.313477, 0.313435, 0.313464, 0.313497, 0.313504,
              0.313495, 0.313487, 0.313486, 0.313489, 0.313491, 0.313491, 0.31349,
              0.31349, 0.31349, 0.31349 *)


              As you can see, it converges to a value inside your radius. That's why your function doesn't terminate.






              share|improve this answer









              $endgroup$

















                3












                $begingroup$

                For iterated function systems like this, Nest and relatives are the preferred tools. Just exploring your (rather famous) map:



                f[z_, c_] := z^2 + c
                Abs[NestList[f[#, 0.2 + 0.2 I] &, 0, 30]]
                (* 0, 0.282843, 0.344093, 0.351367, 0.327239, 0.304778, 0.303605,
                0.311545, 0.316158, 0.315818, 0.313773, 0.312729, 0.31295, 0.313482,
                0.313697, 0.313611, 0.313477, 0.313435, 0.313464, 0.313497, 0.313504,
                0.313495, 0.313487, 0.313486, 0.313489, 0.313491, 0.313491, 0.31349,
                0.31349, 0.31349, 0.31349 *)


                As you can see, it converges to a value inside your radius. That's why your function doesn't terminate.






                share|improve this answer









                $endgroup$















                  3












                  3








                  3





                  $begingroup$

                  For iterated function systems like this, Nest and relatives are the preferred tools. Just exploring your (rather famous) map:



                  f[z_, c_] := z^2 + c
                  Abs[NestList[f[#, 0.2 + 0.2 I] &, 0, 30]]
                  (* 0, 0.282843, 0.344093, 0.351367, 0.327239, 0.304778, 0.303605,
                  0.311545, 0.316158, 0.315818, 0.313773, 0.312729, 0.31295, 0.313482,
                  0.313697, 0.313611, 0.313477, 0.313435, 0.313464, 0.313497, 0.313504,
                  0.313495, 0.313487, 0.313486, 0.313489, 0.313491, 0.313491, 0.31349,
                  0.31349, 0.31349, 0.31349 *)


                  As you can see, it converges to a value inside your radius. That's why your function doesn't terminate.






                  share|improve this answer









                  $endgroup$



                  For iterated function systems like this, Nest and relatives are the preferred tools. Just exploring your (rather famous) map:



                  f[z_, c_] := z^2 + c
                  Abs[NestList[f[#, 0.2 + 0.2 I] &, 0, 30]]
                  (* 0, 0.282843, 0.344093, 0.351367, 0.327239, 0.304778, 0.303605,
                  0.311545, 0.316158, 0.315818, 0.313773, 0.312729, 0.31295, 0.313482,
                  0.313697, 0.313611, 0.313477, 0.313435, 0.313464, 0.313497, 0.313504,
                  0.313495, 0.313487, 0.313486, 0.313489, 0.313491, 0.313491, 0.31349,
                  0.31349, 0.31349, 0.31349 *)


                  As you can see, it converges to a value inside your radius. That's why your function doesn't terminate.







                  share|improve this answer












                  share|improve this answer



                  share|improve this answer










                  answered 10 hours ago









                  John DotyJohn Doty

                  7,57811124




                  7,57811124





















                      1












                      $begingroup$

                      You could also use MandelbrotSetPlot to create Szabolcs' graphic:



                      MandelbrotSetPlot[-0.6 + 0.4 I, -0.4 + 0.6 I, PlotLegends -> Automatic]


                      enter image description here






                      share|improve this answer









                      $endgroup$

















                        1












                        $begingroup$

                        You could also use MandelbrotSetPlot to create Szabolcs' graphic:



                        MandelbrotSetPlot[-0.6 + 0.4 I, -0.4 + 0.6 I, PlotLegends -> Automatic]


                        enter image description here






                        share|improve this answer









                        $endgroup$















                          1












                          1








                          1





                          $begingroup$

                          You could also use MandelbrotSetPlot to create Szabolcs' graphic:



                          MandelbrotSetPlot[-0.6 + 0.4 I, -0.4 + 0.6 I, PlotLegends -> Automatic]


                          enter image description here






                          share|improve this answer









                          $endgroup$



                          You could also use MandelbrotSetPlot to create Szabolcs' graphic:



                          MandelbrotSetPlot[-0.6 + 0.4 I, -0.4 + 0.6 I, PlotLegends -> Automatic]


                          enter image description here







                          share|improve this answer












                          share|improve this answer



                          share|improve this answer










                          answered 9 hours ago









                          Carl WollCarl Woll

                          73.2k397191




                          73.2k397191




















                              JacquesLeen is a new contributor. Be nice, and check out our Code of Conduct.









                              draft saved

                              draft discarded


















                              JacquesLeen is a new contributor. Be nice, and check out our Code of Conduct.












                              JacquesLeen is a new contributor. Be nice, and check out our Code of Conduct.











                              JacquesLeen is a new contributor. Be nice, and check out our Code of Conduct.














                              Thanks for contributing an answer to Mathematica Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194872%2fevaluating-number-of-iteration-with-a-certain-map-with-while%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Францішак Багушэвіч Змест Сям'я | Біяграфія | Творчасць | Мова Багушэвіча | Ацэнкі дзейнасці | Цікавыя факты | Спадчына | Выбраная бібліяграфія | Ушанаванне памяці | У філатэліі | Зноскі | Літаратура | Спасылкі | НавігацыяЛяхоўскі У. Рупіўся дзеля Бога і людзей: Жыццёвы шлях Лявона Вітан-Дубейкаўскага // Вольскі і Памідораў з песняй пра немца Адвакат, паэт, народны заступнік Ашмянскі веснікВ Минске появится площадь Богушевича и улица Сырокомли, Белорусская деловая газета, 19 июля 2001 г.Айцец беларускай нацыянальнай ідэі паўстаў у бронзе Сяргей Аляксандравіч Адашкевіч (1918, Мінск). 80-я гады. Бюст «Францішак Багушэвіч».Яўген Мікалаевіч Ціхановіч. «Партрэт Францішка Багушэвіча»Мікола Мікалаевіч Купава. «Партрэт зачынальніка новай беларускай літаратуры Францішка Багушэвіча»Уладзімір Іванавіч Мелехаў. На помніку «Змагарам за родную мову» Барэльеф «Францішак Багушэвіч»Памяць пра Багушэвіча на Віленшчыне Страчаная сталіца. Беларускія шыльды на вуліцах Вільні«Krynica». Ideologia i przywódcy białoruskiego katolicyzmuФранцішак БагушэвічТворы на knihi.comТворы Францішка Багушэвіча на bellib.byСодаль Уладзімір. Францішак Багушэвіч на Лідчыне;Луцкевіч Антон. Жыцьцё і творчасьць Фр. Багушэвіча ў успамінах ягоных сучасьнікаў // Запісы Беларускага Навуковага таварыства. Вільня, 1938. Сшытак 1. С. 16-34.Большая российская1188761710000 0000 5537 633Xn9209310021619551927869394п

                              Беларусь Змест Назва Гісторыя Геаграфія Сімволіка Дзяржаўны лад Палітычныя партыі Міжнароднае становішча і знешняя палітыка Адміністрацыйны падзел Насельніцтва Эканоміка Культура і грамадства Сацыяльная сфера Узброеныя сілы Заўвагі Літаратура Спасылкі НавігацыяHGЯOiТоп-2011 г. (па версіі ej.by)Топ-2013 г. (па версіі ej.by)Топ-2016 г. (па версіі ej.by)Топ-2017 г. (па версіі ej.by)Нацыянальны статыстычны камітэт Рэспублікі БеларусьШчыльнасць насельніцтва па краінахhttp://naviny.by/rubrics/society/2011/09/16/ic_articles_116_175144/А. Калечыц, У. Ксяндзоў. Спробы засялення краю неандэртальскім чалавекам.І ў Менску былі мамантыА. Калечыц, У. Ксяндзоў. Старажытны каменны век (палеаліт). Першапачатковае засяленне тэрыторыіГ. Штыхаў. Балты і славяне ў VI—VIII стст.М. Клімаў. Полацкае княства ў IX—XI стст.Г. Штыхаў, В. Ляўко. Палітычная гісторыя Полацкай зямліГ. Штыхаў. Дзяржаўны лад у землях-княствахГ. Штыхаў. Дзяржаўны лад у землях-княствахБеларускія землі ў складзе Вялікага Княства ЛітоўскагаЛюблінская унія 1569 г."The Early Stages of Independence"Zapomniane prawdy25 гадоў таму было аб'яўлена, што Язэп Пілсудскі — беларус (фота)Наша вадаДакументы ЧАЭС: Забруджванне тэрыторыі Беларусі « ЧАЭС Зона адчужэнняСведения о политических партиях, зарегистрированных в Республике Беларусь // Министерство юстиции Республики БеларусьСтатыстычны бюлетэнь „Полаўзроставая структура насельніцтва Рэспублікі Беларусь на 1 студзеня 2012 года і сярэднегадовая колькасць насельніцтва за 2011 год“Индекс человеческого развития Беларуси — не было бы нижеБеларусь занимает первое место в СНГ по индексу развития с учетом гендерного факцёраНацыянальны статыстычны камітэт Рэспублікі БеларусьКанстытуцыя РБ. Артыкул 17Трансфармацыйныя задачы БеларусіВыйсце з крызісу — далейшае рэфармаванне Беларускі рубель — сусветны лідар па дэвальвацыяхПра змену коштаў у кастрычніку 2011 г.Бядней за беларусаў у СНД толькі таджыкіСярэдні заробак у верасні дасягнуў 2,26 мільёна рублёўЭканомікаГаласуем за ТОП-100 беларускай прозыСучасныя беларускія мастакіАрхитектура Беларуси BELARUS.BYА. Каханоўскі. Культура Беларусі ўсярэдзіне XVII—XVIII ст.Анталогія беларускай народнай песні, гуказапісы спеваўБеларускія Музычныя IнструментыБеларускі рок, які мы страцілі. Топ-10 гуртоў«Мясцовы час» — нязгаслая легенда беларускай рок-музыкіСЯРГЕЙ БУДКІН. МЫ НЯ ЗНАЕМ СВАЁЙ МУЗЫКІМ. А. Каладзінскі. НАРОДНЫ ТЭАТРМагнацкія культурныя цэнтрыПублічная дыскусія «Беларуская новая пьеса: без беларускай мовы ці беларуская?»Беларускія драматургі па-ранейшаму лепш ставяцца за мяжой, чым на радзіме«Працэс незалежнага кіно пайшоў, і дзяржаву турбуе яго непадкантрольнасць»Беларускія філосафы ў пошуках прасторыВсе идём в библиотекуАрхіваванаАб Нацыянальнай праграме даследавання і выкарыстання касмічнай прасторы ў мірных мэтах на 2008—2012 гадыУ космас — разам.У суседнім з Барысаўскім раёне пабудуюць Камандна-вымяральны пунктСвяты і абрады беларусаў«Мірныя бульбашы з малой краіны» — 5 непраўдзівых стэрэатыпаў пра БеларусьМ. Раманюк. Беларускае народнае адзеннеУ Беларусі скарачаецца колькасць злачынстваўЛукашэнка незадаволены мінскімі ўладамі Крадзяжы складаюць у Мінску каля 70% злачынстваў Узровень злачыннасці ў Мінскай вобласці — адзін з самых высокіх у краіне Генпракуратура аналізуе стан са злачыннасцю ў Беларусі па каэфіцыенце злачыннасці У Беларусі стабілізавалася крымінагеннае становішча, лічыць генпракурорЗамежнікі сталі здзяйсняць у Беларусі больш злачынстваўМУС Беларусі турбуе рост рэцыдыўнай злачыннасціЯ з ЖЭСа. Дазволіце вас абкрасці! Рэйтынг усіх службаў і падраздзяленняў ГУУС Мінгарвыканкама вырасАб КДБ РБГісторыя Аператыўна-аналітычнага цэнтра РБГісторыя ДКФРТаможняagentura.ruБеларусьBelarus.by — Афіцыйны сайт Рэспублікі БеларусьСайт урада БеларусіRadzima.org — Збор архітэктурных помнікаў, гісторыя Беларусі«Глобус Беларуси»Гербы и флаги БеларусиАсаблівасці каменнага веку на БеларусіА. Калечыц, У. Ксяндзоў. Старажытны каменны век (палеаліт). Першапачатковае засяленне тэрыторыіУ. Ксяндзоў. Сярэдні каменны век (мезаліт). Засяленне краю плямёнамі паляўнічых, рыбакоў і збіральнікаўА. Калечыц, М. Чарняўскі. Плямёны на тэрыторыі Беларусі ў новым каменным веку (неаліце)А. Калечыц, У. Ксяндзоў, М. Чарняўскі. Гаспадарчыя заняткі ў каменным векуЭ. Зайкоўскі. Духоўная культура ў каменным векуАсаблівасці бронзавага веку на БеларусіФарміраванне супольнасцей ранняга перыяду бронзавага векуФотографии БеларусиРоля беларускіх зямель ва ўтварэнні і ўмацаванні ВКЛВ. Фадзеева. З гісторыі развіцця беларускай народнай вышыўкіDMOZGran catalanaБольшая российскаяBritannica (анлайн)Швейцарскі гістарычны15325917611952699xDA123282154079143-90000 0001 2171 2080n9112870100577502ge128882171858027501086026362074122714179пппппп

                              ValueError: Expected n_neighbors <= n_samples, but n_samples = 1, n_neighbors = 6 (SMOTE) The 2019 Stack Overflow Developer Survey Results Are InCan SMOTE be applied over sequence of words (sentences)?ValueError when doing validation with random forestsSMOTE and multi class oversamplingLogic behind SMOTE-NC?ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)SmoteBoost: Should SMOTE be ran individually for each iteration/tree in the boosting?solving multi-class imbalance classification using smote and OSSUsing SMOTE for Synthetic Data generation to improve performance on unbalanced dataproblem of entry format for a simple model in KerasSVM SMOTE fit_resample() function runs forever with no result