Families of ordered set partitions with disjoint blocks The 2019 Stack Overflow Developer Survey Results Are InDeligne-Simpson problem in the symmetric groupProcreation with several gendersI am searching for the name of a partition (if it already exists)Existence problem for a generalisation of Latin squares (matrices with fixed row and column sets)Simple lower bounds for Bell numbers (number of set partitions)?Can a partition free family in $2^[n]$ always be enlarged to one of size $2^n-1$?Looking for N-dimensional spheres in the configuration space of the colorful Tverberg problemBalanced partitions of vector setsCan we cover a set by a particular family of sets?genus zero permutation and noncrossing partition

Families of ordered set partitions with disjoint blocks



The 2019 Stack Overflow Developer Survey Results Are InDeligne-Simpson problem in the symmetric groupProcreation with several gendersI am searching for the name of a partition (if it already exists)Existence problem for a generalisation of Latin squares (matrices with fixed row and column sets)Simple lower bounds for Bell numbers (number of set partitions)?Can a partition free family in $2^[n]$ always be enlarged to one of size $2^n-1$?Looking for N-dimensional spheres in the configuration space of the colorful Tverberg problemBalanced partitions of vector setsCan we cover a set by a particular family of sets?genus zero permutation and noncrossing partition










2












$begingroup$


Let $C_1,dots, C_m$ be a family of ordered set partitions of $[n]$ with exactly $k$ blocks.



Write $C_i = B_i1, dots, B_ik$ for $i=1,dots, m$ where $B_ij$ are the blocks of the ordered set partition $C_i$.



Suppose this family also has the property that for each $j=1,dots, k$



$$B_1j cup cdots cup B_mj$$



is also a partition of $[n]$



Can one determine the maximal number of members in such a family $m$, or at least a decent upper bound on $m$?



Edit:



It might also be worth noting that if we take $k=n$, then $m=n$ since this would be equivalent to the existence of a latin square. I am in particular interested in the case $k=2$.










share|cite|improve this question











$endgroup$
















    2












    $begingroup$


    Let $C_1,dots, C_m$ be a family of ordered set partitions of $[n]$ with exactly $k$ blocks.



    Write $C_i = B_i1, dots, B_ik$ for $i=1,dots, m$ where $B_ij$ are the blocks of the ordered set partition $C_i$.



    Suppose this family also has the property that for each $j=1,dots, k$



    $$B_1j cup cdots cup B_mj$$



    is also a partition of $[n]$



    Can one determine the maximal number of members in such a family $m$, or at least a decent upper bound on $m$?



    Edit:



    It might also be worth noting that if we take $k=n$, then $m=n$ since this would be equivalent to the existence of a latin square. I am in particular interested in the case $k=2$.










    share|cite|improve this question











    $endgroup$














      2












      2








      2





      $begingroup$


      Let $C_1,dots, C_m$ be a family of ordered set partitions of $[n]$ with exactly $k$ blocks.



      Write $C_i = B_i1, dots, B_ik$ for $i=1,dots, m$ where $B_ij$ are the blocks of the ordered set partition $C_i$.



      Suppose this family also has the property that for each $j=1,dots, k$



      $$B_1j cup cdots cup B_mj$$



      is also a partition of $[n]$



      Can one determine the maximal number of members in such a family $m$, or at least a decent upper bound on $m$?



      Edit:



      It might also be worth noting that if we take $k=n$, then $m=n$ since this would be equivalent to the existence of a latin square. I am in particular interested in the case $k=2$.










      share|cite|improve this question











      $endgroup$




      Let $C_1,dots, C_m$ be a family of ordered set partitions of $[n]$ with exactly $k$ blocks.



      Write $C_i = B_i1, dots, B_ik$ for $i=1,dots, m$ where $B_ij$ are the blocks of the ordered set partition $C_i$.



      Suppose this family also has the property that for each $j=1,dots, k$



      $$B_1j cup cdots cup B_mj$$



      is also a partition of $[n]$



      Can one determine the maximal number of members in such a family $m$, or at least a decent upper bound on $m$?



      Edit:



      It might also be worth noting that if we take $k=n$, then $m=n$ since this would be equivalent to the existence of a latin square. I am in particular interested in the case $k=2$.







      co.combinatorics partitions






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 8 hours ago









      darij grinberg

      18.4k373188




      18.4k373188










      asked 10 hours ago









      user94267user94267

      1006




      1006




















          2 Answers
          2






          active

          oldest

          votes


















          3












          $begingroup$

          We have $$mn=sum_isum_j |B_ij|=sum_jsum_i |B_ij|=kn,$$
          thus $m=k$.






          share|cite|improve this answer









          $endgroup$




















            3












            $begingroup$

            Answer: $m=k$.



            Put indeed your blocks $B_ij$ in a $mtimes k$ array and then "read" this array:



            -- row-wise: any element of $[n]$ appears then $m$ times.



            -- column-wise: any element of $[n]$ appears then $k$ times.






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              26 seconds slower than Fedor, but my answer is better, does not use multiplication :)
              $endgroup$
              – Teo Banica
              10 hours ago










            • $begingroup$
              you actually multiply 1 by $m$ and by $k$ :)
              $endgroup$
              – Fedor Petrov
              10 hours ago











            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "504"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f327585%2ffamilies-of-ordered-set-partitions-with-disjoint-blocks%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3












            $begingroup$

            We have $$mn=sum_isum_j |B_ij|=sum_jsum_i |B_ij|=kn,$$
            thus $m=k$.






            share|cite|improve this answer









            $endgroup$

















              3












              $begingroup$

              We have $$mn=sum_isum_j |B_ij|=sum_jsum_i |B_ij|=kn,$$
              thus $m=k$.






              share|cite|improve this answer









              $endgroup$















                3












                3








                3





                $begingroup$

                We have $$mn=sum_isum_j |B_ij|=sum_jsum_i |B_ij|=kn,$$
                thus $m=k$.






                share|cite|improve this answer









                $endgroup$



                We have $$mn=sum_isum_j |B_ij|=sum_jsum_i |B_ij|=kn,$$
                thus $m=k$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 10 hours ago









                Fedor PetrovFedor Petrov

                52.1k6122239




                52.1k6122239





















                    3












                    $begingroup$

                    Answer: $m=k$.



                    Put indeed your blocks $B_ij$ in a $mtimes k$ array and then "read" this array:



                    -- row-wise: any element of $[n]$ appears then $m$ times.



                    -- column-wise: any element of $[n]$ appears then $k$ times.






                    share|cite|improve this answer









                    $endgroup$












                    • $begingroup$
                      26 seconds slower than Fedor, but my answer is better, does not use multiplication :)
                      $endgroup$
                      – Teo Banica
                      10 hours ago










                    • $begingroup$
                      you actually multiply 1 by $m$ and by $k$ :)
                      $endgroup$
                      – Fedor Petrov
                      10 hours ago















                    3












                    $begingroup$

                    Answer: $m=k$.



                    Put indeed your blocks $B_ij$ in a $mtimes k$ array and then "read" this array:



                    -- row-wise: any element of $[n]$ appears then $m$ times.



                    -- column-wise: any element of $[n]$ appears then $k$ times.






                    share|cite|improve this answer









                    $endgroup$












                    • $begingroup$
                      26 seconds slower than Fedor, but my answer is better, does not use multiplication :)
                      $endgroup$
                      – Teo Banica
                      10 hours ago










                    • $begingroup$
                      you actually multiply 1 by $m$ and by $k$ :)
                      $endgroup$
                      – Fedor Petrov
                      10 hours ago













                    3












                    3








                    3





                    $begingroup$

                    Answer: $m=k$.



                    Put indeed your blocks $B_ij$ in a $mtimes k$ array and then "read" this array:



                    -- row-wise: any element of $[n]$ appears then $m$ times.



                    -- column-wise: any element of $[n]$ appears then $k$ times.






                    share|cite|improve this answer









                    $endgroup$



                    Answer: $m=k$.



                    Put indeed your blocks $B_ij$ in a $mtimes k$ array and then "read" this array:



                    -- row-wise: any element of $[n]$ appears then $m$ times.



                    -- column-wise: any element of $[n]$ appears then $k$ times.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 10 hours ago









                    Teo BanicaTeo Banica

                    568528




                    568528











                    • $begingroup$
                      26 seconds slower than Fedor, but my answer is better, does not use multiplication :)
                      $endgroup$
                      – Teo Banica
                      10 hours ago










                    • $begingroup$
                      you actually multiply 1 by $m$ and by $k$ :)
                      $endgroup$
                      – Fedor Petrov
                      10 hours ago
















                    • $begingroup$
                      26 seconds slower than Fedor, but my answer is better, does not use multiplication :)
                      $endgroup$
                      – Teo Banica
                      10 hours ago










                    • $begingroup$
                      you actually multiply 1 by $m$ and by $k$ :)
                      $endgroup$
                      – Fedor Petrov
                      10 hours ago















                    $begingroup$
                    26 seconds slower than Fedor, but my answer is better, does not use multiplication :)
                    $endgroup$
                    – Teo Banica
                    10 hours ago




                    $begingroup$
                    26 seconds slower than Fedor, but my answer is better, does not use multiplication :)
                    $endgroup$
                    – Teo Banica
                    10 hours ago












                    $begingroup$
                    you actually multiply 1 by $m$ and by $k$ :)
                    $endgroup$
                    – Fedor Petrov
                    10 hours ago




                    $begingroup$
                    you actually multiply 1 by $m$ and by $k$ :)
                    $endgroup$
                    – Fedor Petrov
                    10 hours ago

















                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to MathOverflow!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f327585%2ffamilies-of-ordered-set-partitions-with-disjoint-blocks%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    ValueError: Error when checking input: expected conv2d_13_input to have shape (3, 150, 150) but got array with shape (150, 150, 3)2019 Community Moderator ElectionError when checking : expected dense_1_input to have shape (None, 5) but got array with shape (200, 1)Error 'Expected 2D array, got 1D array instead:'ValueError: Error when checking input: expected lstm_41_input to have 3 dimensions, but got array with shape (40000,100)ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)ValueError: Error when checking target: expected dense_2 to have shape (1,) but got array with shape (0,)Keras exception: ValueError: Error when checking input: expected conv2d_1_input to have shape (150, 150, 3) but got array with shape (256, 256, 3)Steps taking too long to completewhen checking input: expected dense_1_input to have shape (13328,) but got array with shape (317,)ValueError: Error when checking target: expected dense_3 to have shape (None, 1) but got array with shape (7715, 40000)Keras exception: Error when checking input: expected dense_input to have shape (2,) but got array with shape (1,)

                    Ружовы пелікан Змест Знешні выгляд | Пашырэнне | Асаблівасці біялогіі | Літаратура | НавігацыяДагледжаная версіяправерана1 зменаДагледжаная версіяправерана1 змена/ 22697590 Сістэматыкана ВіківідахВыявына Вікісховішчы174693363011049382

                    Illegal assignment from SObject to ContactFetching String, Id from Map - Illegal Assignment Id to Field / ObjectError: Compile Error: Illegal assignment from String to BooleanError: List has no rows for assignment to SObjectError on Test Class - System.QueryException: List has no rows for assignment to SObjectRemote action problemDML requires SObject or SObject list type error“Illegal assignment from List to List”Test Class Fail: Batch Class: System.QueryException: List has no rows for assignment to SObjectMapping to a user'List has no rows for assignment to SObject' Mystery