Families of ordered set partitions with disjoint blocks The 2019 Stack Overflow Developer Survey Results Are InDeligne-Simpson problem in the symmetric groupProcreation with several gendersI am searching for the name of a partition (if it already exists)Existence problem for a generalisation of Latin squares (matrices with fixed row and column sets)Simple lower bounds for Bell numbers (number of set partitions)?Can a partition free family in $2^[n]$ always be enlarged to one of size $2^n-1$?Looking for N-dimensional spheres in the configuration space of the colorful Tverberg problemBalanced partitions of vector setsCan we cover a set by a particular family of sets?genus zero permutation and noncrossing partition

Families of ordered set partitions with disjoint blocks



The 2019 Stack Overflow Developer Survey Results Are InDeligne-Simpson problem in the symmetric groupProcreation with several gendersI am searching for the name of a partition (if it already exists)Existence problem for a generalisation of Latin squares (matrices with fixed row and column sets)Simple lower bounds for Bell numbers (number of set partitions)?Can a partition free family in $2^[n]$ always be enlarged to one of size $2^n-1$?Looking for N-dimensional spheres in the configuration space of the colorful Tverberg problemBalanced partitions of vector setsCan we cover a set by a particular family of sets?genus zero permutation and noncrossing partition










2












$begingroup$


Let $C_1,dots, C_m$ be a family of ordered set partitions of $[n]$ with exactly $k$ blocks.



Write $C_i = B_i1, dots, B_ik$ for $i=1,dots, m$ where $B_ij$ are the blocks of the ordered set partition $C_i$.



Suppose this family also has the property that for each $j=1,dots, k$



$$B_1j cup cdots cup B_mj$$



is also a partition of $[n]$



Can one determine the maximal number of members in such a family $m$, or at least a decent upper bound on $m$?



Edit:



It might also be worth noting that if we take $k=n$, then $m=n$ since this would be equivalent to the existence of a latin square. I am in particular interested in the case $k=2$.










share|cite|improve this question











$endgroup$
















    2












    $begingroup$


    Let $C_1,dots, C_m$ be a family of ordered set partitions of $[n]$ with exactly $k$ blocks.



    Write $C_i = B_i1, dots, B_ik$ for $i=1,dots, m$ where $B_ij$ are the blocks of the ordered set partition $C_i$.



    Suppose this family also has the property that for each $j=1,dots, k$



    $$B_1j cup cdots cup B_mj$$



    is also a partition of $[n]$



    Can one determine the maximal number of members in such a family $m$, or at least a decent upper bound on $m$?



    Edit:



    It might also be worth noting that if we take $k=n$, then $m=n$ since this would be equivalent to the existence of a latin square. I am in particular interested in the case $k=2$.










    share|cite|improve this question











    $endgroup$














      2












      2








      2





      $begingroup$


      Let $C_1,dots, C_m$ be a family of ordered set partitions of $[n]$ with exactly $k$ blocks.



      Write $C_i = B_i1, dots, B_ik$ for $i=1,dots, m$ where $B_ij$ are the blocks of the ordered set partition $C_i$.



      Suppose this family also has the property that for each $j=1,dots, k$



      $$B_1j cup cdots cup B_mj$$



      is also a partition of $[n]$



      Can one determine the maximal number of members in such a family $m$, or at least a decent upper bound on $m$?



      Edit:



      It might also be worth noting that if we take $k=n$, then $m=n$ since this would be equivalent to the existence of a latin square. I am in particular interested in the case $k=2$.










      share|cite|improve this question











      $endgroup$




      Let $C_1,dots, C_m$ be a family of ordered set partitions of $[n]$ with exactly $k$ blocks.



      Write $C_i = B_i1, dots, B_ik$ for $i=1,dots, m$ where $B_ij$ are the blocks of the ordered set partition $C_i$.



      Suppose this family also has the property that for each $j=1,dots, k$



      $$B_1j cup cdots cup B_mj$$



      is also a partition of $[n]$



      Can one determine the maximal number of members in such a family $m$, or at least a decent upper bound on $m$?



      Edit:



      It might also be worth noting that if we take $k=n$, then $m=n$ since this would be equivalent to the existence of a latin square. I am in particular interested in the case $k=2$.







      co.combinatorics partitions






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 8 hours ago









      darij grinberg

      18.4k373188




      18.4k373188










      asked 10 hours ago









      user94267user94267

      1006




      1006




















          2 Answers
          2






          active

          oldest

          votes


















          3












          $begingroup$

          We have $$mn=sum_isum_j |B_ij|=sum_jsum_i |B_ij|=kn,$$
          thus $m=k$.






          share|cite|improve this answer









          $endgroup$




















            3












            $begingroup$

            Answer: $m=k$.



            Put indeed your blocks $B_ij$ in a $mtimes k$ array and then "read" this array:



            -- row-wise: any element of $[n]$ appears then $m$ times.



            -- column-wise: any element of $[n]$ appears then $k$ times.






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              26 seconds slower than Fedor, but my answer is better, does not use multiplication :)
              $endgroup$
              – Teo Banica
              10 hours ago










            • $begingroup$
              you actually multiply 1 by $m$ and by $k$ :)
              $endgroup$
              – Fedor Petrov
              10 hours ago











            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "504"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f327585%2ffamilies-of-ordered-set-partitions-with-disjoint-blocks%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3












            $begingroup$

            We have $$mn=sum_isum_j |B_ij|=sum_jsum_i |B_ij|=kn,$$
            thus $m=k$.






            share|cite|improve this answer









            $endgroup$

















              3












              $begingroup$

              We have $$mn=sum_isum_j |B_ij|=sum_jsum_i |B_ij|=kn,$$
              thus $m=k$.






              share|cite|improve this answer









              $endgroup$















                3












                3








                3





                $begingroup$

                We have $$mn=sum_isum_j |B_ij|=sum_jsum_i |B_ij|=kn,$$
                thus $m=k$.






                share|cite|improve this answer









                $endgroup$



                We have $$mn=sum_isum_j |B_ij|=sum_jsum_i |B_ij|=kn,$$
                thus $m=k$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 10 hours ago









                Fedor PetrovFedor Petrov

                52.1k6122239




                52.1k6122239





















                    3












                    $begingroup$

                    Answer: $m=k$.



                    Put indeed your blocks $B_ij$ in a $mtimes k$ array and then "read" this array:



                    -- row-wise: any element of $[n]$ appears then $m$ times.



                    -- column-wise: any element of $[n]$ appears then $k$ times.






                    share|cite|improve this answer









                    $endgroup$












                    • $begingroup$
                      26 seconds slower than Fedor, but my answer is better, does not use multiplication :)
                      $endgroup$
                      – Teo Banica
                      10 hours ago










                    • $begingroup$
                      you actually multiply 1 by $m$ and by $k$ :)
                      $endgroup$
                      – Fedor Petrov
                      10 hours ago















                    3












                    $begingroup$

                    Answer: $m=k$.



                    Put indeed your blocks $B_ij$ in a $mtimes k$ array and then "read" this array:



                    -- row-wise: any element of $[n]$ appears then $m$ times.



                    -- column-wise: any element of $[n]$ appears then $k$ times.






                    share|cite|improve this answer









                    $endgroup$












                    • $begingroup$
                      26 seconds slower than Fedor, but my answer is better, does not use multiplication :)
                      $endgroup$
                      – Teo Banica
                      10 hours ago










                    • $begingroup$
                      you actually multiply 1 by $m$ and by $k$ :)
                      $endgroup$
                      – Fedor Petrov
                      10 hours ago













                    3












                    3








                    3





                    $begingroup$

                    Answer: $m=k$.



                    Put indeed your blocks $B_ij$ in a $mtimes k$ array and then "read" this array:



                    -- row-wise: any element of $[n]$ appears then $m$ times.



                    -- column-wise: any element of $[n]$ appears then $k$ times.






                    share|cite|improve this answer









                    $endgroup$



                    Answer: $m=k$.



                    Put indeed your blocks $B_ij$ in a $mtimes k$ array and then "read" this array:



                    -- row-wise: any element of $[n]$ appears then $m$ times.



                    -- column-wise: any element of $[n]$ appears then $k$ times.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 10 hours ago









                    Teo BanicaTeo Banica

                    568528




                    568528











                    • $begingroup$
                      26 seconds slower than Fedor, but my answer is better, does not use multiplication :)
                      $endgroup$
                      – Teo Banica
                      10 hours ago










                    • $begingroup$
                      you actually multiply 1 by $m$ and by $k$ :)
                      $endgroup$
                      – Fedor Petrov
                      10 hours ago
















                    • $begingroup$
                      26 seconds slower than Fedor, but my answer is better, does not use multiplication :)
                      $endgroup$
                      – Teo Banica
                      10 hours ago










                    • $begingroup$
                      you actually multiply 1 by $m$ and by $k$ :)
                      $endgroup$
                      – Fedor Petrov
                      10 hours ago















                    $begingroup$
                    26 seconds slower than Fedor, but my answer is better, does not use multiplication :)
                    $endgroup$
                    – Teo Banica
                    10 hours ago




                    $begingroup$
                    26 seconds slower than Fedor, but my answer is better, does not use multiplication :)
                    $endgroup$
                    – Teo Banica
                    10 hours ago












                    $begingroup$
                    you actually multiply 1 by $m$ and by $k$ :)
                    $endgroup$
                    – Fedor Petrov
                    10 hours ago




                    $begingroup$
                    you actually multiply 1 by $m$ and by $k$ :)
                    $endgroup$
                    – Fedor Petrov
                    10 hours ago

















                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to MathOverflow!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f327585%2ffamilies-of-ordered-set-partitions-with-disjoint-blocks%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Францішак Багушэвіч Змест Сям'я | Біяграфія | Творчасць | Мова Багушэвіча | Ацэнкі дзейнасці | Цікавыя факты | Спадчына | Выбраная бібліяграфія | Ушанаванне памяці | У філатэліі | Зноскі | Літаратура | Спасылкі | НавігацыяЛяхоўскі У. Рупіўся дзеля Бога і людзей: Жыццёвы шлях Лявона Вітан-Дубейкаўскага // Вольскі і Памідораў з песняй пра немца Адвакат, паэт, народны заступнік Ашмянскі веснікВ Минске появится площадь Богушевича и улица Сырокомли, Белорусская деловая газета, 19 июля 2001 г.Айцец беларускай нацыянальнай ідэі паўстаў у бронзе Сяргей Аляксандравіч Адашкевіч (1918, Мінск). 80-я гады. Бюст «Францішак Багушэвіч».Яўген Мікалаевіч Ціхановіч. «Партрэт Францішка Багушэвіча»Мікола Мікалаевіч Купава. «Партрэт зачынальніка новай беларускай літаратуры Францішка Багушэвіча»Уладзімір Іванавіч Мелехаў. На помніку «Змагарам за родную мову» Барэльеф «Францішак Багушэвіч»Памяць пра Багушэвіча на Віленшчыне Страчаная сталіца. Беларускія шыльды на вуліцах Вільні«Krynica». Ideologia i przywódcy białoruskiego katolicyzmuФранцішак БагушэвічТворы на knihi.comТворы Францішка Багушэвіча на bellib.byСодаль Уладзімір. Францішак Багушэвіч на Лідчыне;Луцкевіч Антон. Жыцьцё і творчасьць Фр. Багушэвіча ў успамінах ягоных сучасьнікаў // Запісы Беларускага Навуковага таварыства. Вільня, 1938. Сшытак 1. С. 16-34.Большая российская1188761710000 0000 5537 633Xn9209310021619551927869394п

                    Partai Komunis Tiongkok Daftar isi Kepemimpinan | Pranala luar | Referensi | Menu navigasidiperiksa1 perubahan tertundacpc.people.com.cnSitus resmiSurat kabar resmi"Why the Communist Party is alive, well and flourishing in China"0307-1235"Full text of Constitution of Communist Party of China"smengembangkannyas

                    ValueError: Expected n_neighbors <= n_samples, but n_samples = 1, n_neighbors = 6 (SMOTE) The 2019 Stack Overflow Developer Survey Results Are InCan SMOTE be applied over sequence of words (sentences)?ValueError when doing validation with random forestsSMOTE and multi class oversamplingLogic behind SMOTE-NC?ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)SmoteBoost: Should SMOTE be ran individually for each iteration/tree in the boosting?solving multi-class imbalance classification using smote and OSSUsing SMOTE for Synthetic Data generation to improve performance on unbalanced dataproblem of entry format for a simple model in KerasSVM SMOTE fit_resample() function runs forever with no result