Is the gradient of the self-intersections of a curve zero? The 2019 Stack Overflow Developer Survey Results Are InMonotonic curvature and self intersections.Parallel translation along a self intersecting curveSelf adjoint total covariant derivativeStokes Theorem for Manifolds with Self-IntersectionsIntersections of two curves in $mathbbR^n$Self intersections of a smooth closed curve being deformedProving that strictly monotonic curvature implies no self intersections (more specifically, using the following inequalities)Does an immersed curve in general position has finite self-intersections?Can we describe Injective and non-Injective functions through intersections?Problem understanding the gradient of a field.

Manuscript was "unsubmitted" because the manuscript was deposited in Arxiv Preprints

Is domain driven design an anti-SQL pattern?

Dual Citizen. Exited the US on Italian passport recently

Time travel alters history but people keep saying nothing's changed

CiviEvent: Public link for events of a specific type

Where does the "burst of radiance" from Holy Weapon originate?

"To split hairs" vs "To be pedantic"

Inversion Puzzle

Monty Hall variation

Are there any other methods to apply to solving simultaneous equations?

Extreme, unacceptable situation and I can't attend work tomorrow morning

Realistic Alternatives to Dust: What Else Could Feed a Plankton Bloom?

Pristine Bit Checking

Should I use my personal or workplace e-mail when registering to external websites for work purpose?

What does Linus Torvalds mean when he says that Git "never ever" tracks a file?

The difference between dialogue marks

Carnot-Caratheodory metric

Idiomatic way to prevent slicing?

Access elements in std::string where positon of string is greater than its size

Is "plugging out" electronic devices an American expression?

Inflated grade on resume at previous job, might former employer tell new employer?

Is bread bad for ducks?

Why can Shazam do this?

"Riffle" two strings



Is the gradient of the self-intersections of a curve zero?



The 2019 Stack Overflow Developer Survey Results Are InMonotonic curvature and self intersections.Parallel translation along a self intersecting curveSelf adjoint total covariant derivativeStokes Theorem for Manifolds with Self-IntersectionsIntersections of two curves in $mathbbR^n$Self intersections of a smooth closed curve being deformedProving that strictly monotonic curvature implies no self intersections (more specifically, using the following inequalities)Does an immersed curve in general position has finite self-intersections?Can we describe Injective and non-Injective functions through intersections?Problem understanding the gradient of a field.










2












$begingroup$


Suppose a curve with self-intersections can be described by $phi(x,y)=0$. Suppose the intersections are $T_i$, $i=1,2,...$ and the gradient $nabla phi$ at those intersections are well defined. Then is it true that $nablaphi(T_i)=0$ for all $i$? In other words, are the gradients at those intersections all zero?










share|cite|improve this question











$endgroup$
















    2












    $begingroup$


    Suppose a curve with self-intersections can be described by $phi(x,y)=0$. Suppose the intersections are $T_i$, $i=1,2,...$ and the gradient $nabla phi$ at those intersections are well defined. Then is it true that $nablaphi(T_i)=0$ for all $i$? In other words, are the gradients at those intersections all zero?










    share|cite|improve this question











    $endgroup$














      2












      2








      2





      $begingroup$


      Suppose a curve with self-intersections can be described by $phi(x,y)=0$. Suppose the intersections are $T_i$, $i=1,2,...$ and the gradient $nabla phi$ at those intersections are well defined. Then is it true that $nablaphi(T_i)=0$ for all $i$? In other words, are the gradients at those intersections all zero?










      share|cite|improve this question











      $endgroup$




      Suppose a curve with self-intersections can be described by $phi(x,y)=0$. Suppose the intersections are $T_i$, $i=1,2,...$ and the gradient $nabla phi$ at those intersections are well defined. Then is it true that $nablaphi(T_i)=0$ for all $i$? In other words, are the gradients at those intersections all zero?







      real-analysis calculus geometry differential-geometry






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 10 hours ago









      Ernie060

      2,940719




      2,940719










      asked 11 hours ago









      winstonwinston

      537418




      537418




















          2 Answers
          2






          active

          oldest

          votes


















          5












          $begingroup$

          Assuming $phi(x,y)$ is continuously differentiable in a neighbourhood of $T_i$, yes, because otherwise you could use the Implicit Function Theorem to get a unique curve in a neighourhood of $T_i$ satisfying $phi(x,y) = 0$.






          share|cite|improve this answer









          $endgroup$




















            2












            $begingroup$

            If we agree that $phi$ is continuously differentiable (so $nabla phi(x,y)$ is a continuous function of $x$ and $y$), then yes, this must be true.



            The reason is that, if $nabla phi(x_0, y_0) neq 0$ for some $(x_0, y_0)$, then the implicit function theorem guarantees that (locally) we can write $y$ as a function of $x$ or $x$ as a function of $y$. However, at a self-intersection $T_i$, our curve fails the horizontal and vertical line tests, so we cannot express $x$ as a function of $y$ or $y$ as a function of $x$.






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3181199%2fis-the-gradient-of-the-self-intersections-of-a-curve-zero%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              5












              $begingroup$

              Assuming $phi(x,y)$ is continuously differentiable in a neighbourhood of $T_i$, yes, because otherwise you could use the Implicit Function Theorem to get a unique curve in a neighourhood of $T_i$ satisfying $phi(x,y) = 0$.






              share|cite|improve this answer









              $endgroup$

















                5












                $begingroup$

                Assuming $phi(x,y)$ is continuously differentiable in a neighbourhood of $T_i$, yes, because otherwise you could use the Implicit Function Theorem to get a unique curve in a neighourhood of $T_i$ satisfying $phi(x,y) = 0$.






                share|cite|improve this answer









                $endgroup$















                  5












                  5








                  5





                  $begingroup$

                  Assuming $phi(x,y)$ is continuously differentiable in a neighbourhood of $T_i$, yes, because otherwise you could use the Implicit Function Theorem to get a unique curve in a neighourhood of $T_i$ satisfying $phi(x,y) = 0$.






                  share|cite|improve this answer









                  $endgroup$



                  Assuming $phi(x,y)$ is continuously differentiable in a neighbourhood of $T_i$, yes, because otherwise you could use the Implicit Function Theorem to get a unique curve in a neighourhood of $T_i$ satisfying $phi(x,y) = 0$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 11 hours ago









                  Robert IsraelRobert Israel

                  331k23220475




                  331k23220475





















                      2












                      $begingroup$

                      If we agree that $phi$ is continuously differentiable (so $nabla phi(x,y)$ is a continuous function of $x$ and $y$), then yes, this must be true.



                      The reason is that, if $nabla phi(x_0, y_0) neq 0$ for some $(x_0, y_0)$, then the implicit function theorem guarantees that (locally) we can write $y$ as a function of $x$ or $x$ as a function of $y$. However, at a self-intersection $T_i$, our curve fails the horizontal and vertical line tests, so we cannot express $x$ as a function of $y$ or $y$ as a function of $x$.






                      share|cite|improve this answer









                      $endgroup$

















                        2












                        $begingroup$

                        If we agree that $phi$ is continuously differentiable (so $nabla phi(x,y)$ is a continuous function of $x$ and $y$), then yes, this must be true.



                        The reason is that, if $nabla phi(x_0, y_0) neq 0$ for some $(x_0, y_0)$, then the implicit function theorem guarantees that (locally) we can write $y$ as a function of $x$ or $x$ as a function of $y$. However, at a self-intersection $T_i$, our curve fails the horizontal and vertical line tests, so we cannot express $x$ as a function of $y$ or $y$ as a function of $x$.






                        share|cite|improve this answer









                        $endgroup$















                          2












                          2








                          2





                          $begingroup$

                          If we agree that $phi$ is continuously differentiable (so $nabla phi(x,y)$ is a continuous function of $x$ and $y$), then yes, this must be true.



                          The reason is that, if $nabla phi(x_0, y_0) neq 0$ for some $(x_0, y_0)$, then the implicit function theorem guarantees that (locally) we can write $y$ as a function of $x$ or $x$ as a function of $y$. However, at a self-intersection $T_i$, our curve fails the horizontal and vertical line tests, so we cannot express $x$ as a function of $y$ or $y$ as a function of $x$.






                          share|cite|improve this answer









                          $endgroup$



                          If we agree that $phi$ is continuously differentiable (so $nabla phi(x,y)$ is a continuous function of $x$ and $y$), then yes, this must be true.



                          The reason is that, if $nabla phi(x_0, y_0) neq 0$ for some $(x_0, y_0)$, then the implicit function theorem guarantees that (locally) we can write $y$ as a function of $x$ or $x$ as a function of $y$. However, at a self-intersection $T_i$, our curve fails the horizontal and vertical line tests, so we cannot express $x$ as a function of $y$ or $y$ as a function of $x$.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered 11 hours ago









                          StrantsStrants

                          5,84921736




                          5,84921736



























                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3181199%2fis-the-gradient-of-the-self-intersections-of-a-curve-zero%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Францішак Багушэвіч Змест Сям'я | Біяграфія | Творчасць | Мова Багушэвіча | Ацэнкі дзейнасці | Цікавыя факты | Спадчына | Выбраная бібліяграфія | Ушанаванне памяці | У філатэліі | Зноскі | Літаратура | Спасылкі | НавігацыяЛяхоўскі У. Рупіўся дзеля Бога і людзей: Жыццёвы шлях Лявона Вітан-Дубейкаўскага // Вольскі і Памідораў з песняй пра немца Адвакат, паэт, народны заступнік Ашмянскі веснікВ Минске появится площадь Богушевича и улица Сырокомли, Белорусская деловая газета, 19 июля 2001 г.Айцец беларускай нацыянальнай ідэі паўстаў у бронзе Сяргей Аляксандравіч Адашкевіч (1918, Мінск). 80-я гады. Бюст «Францішак Багушэвіч».Яўген Мікалаевіч Ціхановіч. «Партрэт Францішка Багушэвіча»Мікола Мікалаевіч Купава. «Партрэт зачынальніка новай беларускай літаратуры Францішка Багушэвіча»Уладзімір Іванавіч Мелехаў. На помніку «Змагарам за родную мову» Барэльеф «Францішак Багушэвіч»Памяць пра Багушэвіча на Віленшчыне Страчаная сталіца. Беларускія шыльды на вуліцах Вільні«Krynica». Ideologia i przywódcy białoruskiego katolicyzmuФранцішак БагушэвічТворы на knihi.comТворы Францішка Багушэвіча на bellib.byСодаль Уладзімір. Францішак Багушэвіч на Лідчыне;Луцкевіч Антон. Жыцьцё і творчасьць Фр. Багушэвіча ў успамінах ягоных сучасьнікаў // Запісы Беларускага Навуковага таварыства. Вільня, 1938. Сшытак 1. С. 16-34.Большая российская1188761710000 0000 5537 633Xn9209310021619551927869394п

                              Partai Komunis Tiongkok Daftar isi Kepemimpinan | Pranala luar | Referensi | Menu navigasidiperiksa1 perubahan tertundacpc.people.com.cnSitus resmiSurat kabar resmi"Why the Communist Party is alive, well and flourishing in China"0307-1235"Full text of Constitution of Communist Party of China"smengembangkannyas

                              ValueError: Expected n_neighbors <= n_samples, but n_samples = 1, n_neighbors = 6 (SMOTE) The 2019 Stack Overflow Developer Survey Results Are InCan SMOTE be applied over sequence of words (sentences)?ValueError when doing validation with random forestsSMOTE and multi class oversamplingLogic behind SMOTE-NC?ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)SmoteBoost: Should SMOTE be ran individually for each iteration/tree in the boosting?solving multi-class imbalance classification using smote and OSSUsing SMOTE for Synthetic Data generation to improve performance on unbalanced dataproblem of entry format for a simple model in KerasSVM SMOTE fit_resample() function runs forever with no result