Precipitating silver(I) salts from the solution of barium(II) cyanate and iodide Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)I have 100 mg of a proteinase K lyophilized powder and I need to make it to a working concentration of 25 mg/mLHow to determine which salt will precipitate from a solution containing multiple ions?Is solubility in Qsp affected by coefficient?Why should I acidify twice in the procedure for qualitative analysis of chloride anions?Adding powdered Pb and Fe to a solutionApparent solubility of Ag2C2O4 in a buffer solutionFinding x and y in Pt(NH3)xClyWhat is the net ionic equation of the following?How to calculate the volume or mass of carbon dioxide gas absorbed by a calcium hydroxide solution?Precipitation of AgCl from the tap water solution of the group 2 chloride

Doubts about chords

How to recreate this effect in Photoshop?

Is above average number of years spent on PhD considered a red flag in future academia or industry positions?

How do I determine if the rules for a long jump or high jump are applicable for Monks?

Stars Make Stars

How to draw this diagram using TikZ package?

ListPlot join points by nearest neighbor rather than order

How to find all the available tools in macOS terminal?

How do I stop a creek from eroding my steep embankment?

Why was the term "discrete" used in discrete logarithm?

Is there a documented rationale why the House Ways and Means chairman can demand tax info?

Does surprise arrest existing movement?

Does polymorph use a PC’s CR or its level?

What is a Meta algorithm?

How can I make names more distinctive without making them longer?

Withdrew £2800, but only £2000 shows as withdrawn on online banking; what are my obligations?

Sorting numerically

Is there a "higher Segal conjecture"?

Is there a concise way to say "all of the X, one of each"?

Did Xerox really develop the first LAN?

How to motivate offshore teams and trust them to deliver?

What would be the ideal power source for a cybernetic eye?

When to stop saving and start investing?

If a contract sometimes uses the wrong name, is it still valid?



Precipitating silver(I) salts from the solution of barium(II) cyanate and iodide



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)I have 100 mg of a proteinase K lyophilized powder and I need to make it to a working concentration of 25 mg/mLHow to determine which salt will precipitate from a solution containing multiple ions?Is solubility in Qsp affected by coefficient?Why should I acidify twice in the procedure for qualitative analysis of chloride anions?Adding powdered Pb and Fe to a solutionApparent solubility of Ag2C2O4 in a buffer solutionFinding x and y in Pt(NH3)xClyWhat is the net ionic equation of the following?How to calculate the volume or mass of carbon dioxide gas absorbed by a calcium hydroxide solution?Precipitation of AgCl from the tap water solution of the group 2 chloride










2












$begingroup$



Consider a $pu10.0 mL$ solution containing $pu1.0e-10 M$ each of $ceBa(CN)2$ and $ceBaI2$. If $pu3.5e-9 mol$ of $ceAgNO3(s)$ is added to this solution, will any precipitate(s) form? If yes, what compound(s) will precipitate?



$K_mathrmsp(ceAgCN) = pu6.0e-17$; $K_mathrmsp(ceAgI) = pu8.5e-17$.




The answer was only $ceAgCN$ will precipitate, but I don't understand why $ceAgI$ wouldn't precipitate as well since there is more than enough excess $ceAgNO3$ available to precipitate with both $ceI-$ and $ceCN-$?










share|improve this question









New contributor




user77021 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 2




    $begingroup$
    "There is more than enough." How did you determine that with out any quantitative calculations?
    $endgroup$
    – Zhe
    8 hours ago










  • $begingroup$
    I did calculate that max CN- that could be precipitated as AgCN is 2 x 10-12 mol. This leaves 3.498 x10-9 mol Ag+ remaining to react with I-
    $endgroup$
    – user77021
    8 hours ago






  • 4




    $begingroup$
    Only if the concentrations are such that the solubility product exceeds $K_mathrmsp$.
    $endgroup$
    – Zhe
    8 hours ago















2












$begingroup$



Consider a $pu10.0 mL$ solution containing $pu1.0e-10 M$ each of $ceBa(CN)2$ and $ceBaI2$. If $pu3.5e-9 mol$ of $ceAgNO3(s)$ is added to this solution, will any precipitate(s) form? If yes, what compound(s) will precipitate?



$K_mathrmsp(ceAgCN) = pu6.0e-17$; $K_mathrmsp(ceAgI) = pu8.5e-17$.




The answer was only $ceAgCN$ will precipitate, but I don't understand why $ceAgI$ wouldn't precipitate as well since there is more than enough excess $ceAgNO3$ available to precipitate with both $ceI-$ and $ceCN-$?










share|improve this question









New contributor




user77021 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 2




    $begingroup$
    "There is more than enough." How did you determine that with out any quantitative calculations?
    $endgroup$
    – Zhe
    8 hours ago










  • $begingroup$
    I did calculate that max CN- that could be precipitated as AgCN is 2 x 10-12 mol. This leaves 3.498 x10-9 mol Ag+ remaining to react with I-
    $endgroup$
    – user77021
    8 hours ago






  • 4




    $begingroup$
    Only if the concentrations are such that the solubility product exceeds $K_mathrmsp$.
    $endgroup$
    – Zhe
    8 hours ago













2












2








2





$begingroup$



Consider a $pu10.0 mL$ solution containing $pu1.0e-10 M$ each of $ceBa(CN)2$ and $ceBaI2$. If $pu3.5e-9 mol$ of $ceAgNO3(s)$ is added to this solution, will any precipitate(s) form? If yes, what compound(s) will precipitate?



$K_mathrmsp(ceAgCN) = pu6.0e-17$; $K_mathrmsp(ceAgI) = pu8.5e-17$.




The answer was only $ceAgCN$ will precipitate, but I don't understand why $ceAgI$ wouldn't precipitate as well since there is more than enough excess $ceAgNO3$ available to precipitate with both $ceI-$ and $ceCN-$?










share|improve this question









New contributor




user77021 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$





Consider a $pu10.0 mL$ solution containing $pu1.0e-10 M$ each of $ceBa(CN)2$ and $ceBaI2$. If $pu3.5e-9 mol$ of $ceAgNO3(s)$ is added to this solution, will any precipitate(s) form? If yes, what compound(s) will precipitate?



$K_mathrmsp(ceAgCN) = pu6.0e-17$; $K_mathrmsp(ceAgI) = pu8.5e-17$.




The answer was only $ceAgCN$ will precipitate, but I don't understand why $ceAgI$ wouldn't precipitate as well since there is more than enough excess $ceAgNO3$ available to precipitate with both $ceI-$ and $ceCN-$?







inorganic-chemistry aqueous-solution solubility






share|improve this question









New contributor




user77021 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question









New contributor




user77021 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question








edited 8 hours ago









andselisk

19.4k664126




19.4k664126






New contributor




user77021 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 8 hours ago









user77021user77021

111




111




New contributor




user77021 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





user77021 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






user77021 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







  • 2




    $begingroup$
    "There is more than enough." How did you determine that with out any quantitative calculations?
    $endgroup$
    – Zhe
    8 hours ago










  • $begingroup$
    I did calculate that max CN- that could be precipitated as AgCN is 2 x 10-12 mol. This leaves 3.498 x10-9 mol Ag+ remaining to react with I-
    $endgroup$
    – user77021
    8 hours ago






  • 4




    $begingroup$
    Only if the concentrations are such that the solubility product exceeds $K_mathrmsp$.
    $endgroup$
    – Zhe
    8 hours ago












  • 2




    $begingroup$
    "There is more than enough." How did you determine that with out any quantitative calculations?
    $endgroup$
    – Zhe
    8 hours ago










  • $begingroup$
    I did calculate that max CN- that could be precipitated as AgCN is 2 x 10-12 mol. This leaves 3.498 x10-9 mol Ag+ remaining to react with I-
    $endgroup$
    – user77021
    8 hours ago






  • 4




    $begingroup$
    Only if the concentrations are such that the solubility product exceeds $K_mathrmsp$.
    $endgroup$
    – Zhe
    8 hours ago







2




2




$begingroup$
"There is more than enough." How did you determine that with out any quantitative calculations?
$endgroup$
– Zhe
8 hours ago




$begingroup$
"There is more than enough." How did you determine that with out any quantitative calculations?
$endgroup$
– Zhe
8 hours ago












$begingroup$
I did calculate that max CN- that could be precipitated as AgCN is 2 x 10-12 mol. This leaves 3.498 x10-9 mol Ag+ remaining to react with I-
$endgroup$
– user77021
8 hours ago




$begingroup$
I did calculate that max CN- that could be precipitated as AgCN is 2 x 10-12 mol. This leaves 3.498 x10-9 mol Ag+ remaining to react with I-
$endgroup$
– user77021
8 hours ago




4




4




$begingroup$
Only if the concentrations are such that the solubility product exceeds $K_mathrmsp$.
$endgroup$
– Zhe
8 hours ago




$begingroup$
Only if the concentrations are such that the solubility product exceeds $K_mathrmsp$.
$endgroup$
– Zhe
8 hours ago










2 Answers
2






active

oldest

votes


















4












$begingroup$


Consider a $pu10.0 mL$ solution containing $pu1.0e-10 M$ each of $ceBa(CN)2$ and $ceBaI2$. If $pu3.5e-9 mol$ of $ceAgNO3(s)$ is added to this solution, will any precipitate(s) form? If yes, what compound(s) will precipitate?



$K_mathrmsp(ceAgCN) = pu6.0e-17$; $K_mathrmsp(ceAgI) = pu8.5e-17$.




Assuming that $ceBa(CN)2$ and $ceBaI2$ dissociate completely.



$ce[CN-]_i = [I-]_i = 2cdot10^-10$ molar



Neglecting any volume change of solution the initial concentration of $ceAg+$ will be



$ce[Ag+]_i = dfrac3.5cdot10^-9pumol0.010puL = 3.5cdot10^-7puM$



Now if both the $ceCN-$ and $ceI-$ are quantitatively removed then the same amount of $ceAg+$ must be removed.



$ce[CN-]_i + [I-]_i = 4cdot10^-10$ molar



$ce[Ag+]_f = 3.5cdot10^-7puM - 4cdot10^-10puM approx 3.5cdot10^-7puM$



So the final concentration of $ceAg+$ is essentially the same as the initial concentration. The concentration of $ceAg+$ with the Ksp's can now be used to calculated how much of the two anions can remain in solution.



The final concentration of $ceCN-$ is



$ce[CN-]_f = dfracK_spce[Ag+]_f = dfrac6.0cdot10^-173.5cdot10^-7 = pu1.7e-10$



The the final concentration of $ceI-$ is



$ce[I-]_f = dfracK_spce[Ag+]_f = dfrac8.5cdot10^-173.5cdot10^-7 = pu2.4e-10$



Conclusion:



Since $ce[CN-]_i > [CN-]_f$ some $ceAgCN$ will ppt.



Since $ce[I-]_i < [I-]_f$ no $ceAgI$ will ppt.






share|improve this answer











$endgroup$




















    1












    $begingroup$

    Alternative method to MaxW method:



    Assume that an initial $pu10.0 mL$ solution of $pu1.0e-10 M$ in each of $ceBa(CN)2$ and $ceBaI2$ is clear (homogeneous). That means $ceBa(CN)2$ and $ceBaI2$ have dissociated completely. Thus concentrations of ions are as follows:



    $$ce[CN-]_i = [I-]_i = pu2cdot10^-10 mol ! L^-1$$



    Suppose when $pu3.5e-9 mol$ of $ceAgNO3(s)$ is added to this solution, no volume change has occured. Thus, the initial concentration of added ions in the solution will be:



    $$ce[Ag+]_i = [NO3-]_i = dfracpu3.5cdot10^-9 molpu0.010 L = pu3.5cdot10^-7 mol ! L^-1$$



    For precipitation of $ceAgCN(s)$:



    $$Q_mathrmsp = ce[Ag+]_icdot ce[CN-]_i = (pu3.5cdot10^-7 mol ! L^-1)(pu2cdot10^-10 mol ! L^-1) \ = pu7.0cdot10^-17 mol^2 ! L^-2 gt K_mathrmsp(ceAgCN) = pu6.0cdot10^-17 mol^2 ! L^-2 $$



    Therefore, $ceAgCN(s)$ will precipitate.



    For precipitation of $ceAgI(s)$:



    $$Q_mathrmsp = ce[Ag+]_icdot ce[I-]_i = (pu3.5cdot10^-7 mol ! L^-1)(pu2cdot10^-10 mol ! L^-1) \ = pu7.0cdot10^-17 mol^2 ! L^-2 lt K_mathrmsp(ceAgCN)=pu8.5cdot10^-17 mol^2 ! L^-2 $$



    Therefore, $ceAgI(s)$ will not precipitate in this condition.






    share|improve this answer











    $endgroup$













      Your Answer








      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "431"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: false,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: null,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );






      user77021 is a new contributor. Be nice, and check out our Code of Conduct.









      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f112803%2fprecipitating-silveri-salts-from-the-solution-of-bariumii-cyanate-and-iodide%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      4












      $begingroup$


      Consider a $pu10.0 mL$ solution containing $pu1.0e-10 M$ each of $ceBa(CN)2$ and $ceBaI2$. If $pu3.5e-9 mol$ of $ceAgNO3(s)$ is added to this solution, will any precipitate(s) form? If yes, what compound(s) will precipitate?



      $K_mathrmsp(ceAgCN) = pu6.0e-17$; $K_mathrmsp(ceAgI) = pu8.5e-17$.




      Assuming that $ceBa(CN)2$ and $ceBaI2$ dissociate completely.



      $ce[CN-]_i = [I-]_i = 2cdot10^-10$ molar



      Neglecting any volume change of solution the initial concentration of $ceAg+$ will be



      $ce[Ag+]_i = dfrac3.5cdot10^-9pumol0.010puL = 3.5cdot10^-7puM$



      Now if both the $ceCN-$ and $ceI-$ are quantitatively removed then the same amount of $ceAg+$ must be removed.



      $ce[CN-]_i + [I-]_i = 4cdot10^-10$ molar



      $ce[Ag+]_f = 3.5cdot10^-7puM - 4cdot10^-10puM approx 3.5cdot10^-7puM$



      So the final concentration of $ceAg+$ is essentially the same as the initial concentration. The concentration of $ceAg+$ with the Ksp's can now be used to calculated how much of the two anions can remain in solution.



      The final concentration of $ceCN-$ is



      $ce[CN-]_f = dfracK_spce[Ag+]_f = dfrac6.0cdot10^-173.5cdot10^-7 = pu1.7e-10$



      The the final concentration of $ceI-$ is



      $ce[I-]_f = dfracK_spce[Ag+]_f = dfrac8.5cdot10^-173.5cdot10^-7 = pu2.4e-10$



      Conclusion:



      Since $ce[CN-]_i > [CN-]_f$ some $ceAgCN$ will ppt.



      Since $ce[I-]_i < [I-]_f$ no $ceAgI$ will ppt.






      share|improve this answer











      $endgroup$

















        4












        $begingroup$


        Consider a $pu10.0 mL$ solution containing $pu1.0e-10 M$ each of $ceBa(CN)2$ and $ceBaI2$. If $pu3.5e-9 mol$ of $ceAgNO3(s)$ is added to this solution, will any precipitate(s) form? If yes, what compound(s) will precipitate?



        $K_mathrmsp(ceAgCN) = pu6.0e-17$; $K_mathrmsp(ceAgI) = pu8.5e-17$.




        Assuming that $ceBa(CN)2$ and $ceBaI2$ dissociate completely.



        $ce[CN-]_i = [I-]_i = 2cdot10^-10$ molar



        Neglecting any volume change of solution the initial concentration of $ceAg+$ will be



        $ce[Ag+]_i = dfrac3.5cdot10^-9pumol0.010puL = 3.5cdot10^-7puM$



        Now if both the $ceCN-$ and $ceI-$ are quantitatively removed then the same amount of $ceAg+$ must be removed.



        $ce[CN-]_i + [I-]_i = 4cdot10^-10$ molar



        $ce[Ag+]_f = 3.5cdot10^-7puM - 4cdot10^-10puM approx 3.5cdot10^-7puM$



        So the final concentration of $ceAg+$ is essentially the same as the initial concentration. The concentration of $ceAg+$ with the Ksp's can now be used to calculated how much of the two anions can remain in solution.



        The final concentration of $ceCN-$ is



        $ce[CN-]_f = dfracK_spce[Ag+]_f = dfrac6.0cdot10^-173.5cdot10^-7 = pu1.7e-10$



        The the final concentration of $ceI-$ is



        $ce[I-]_f = dfracK_spce[Ag+]_f = dfrac8.5cdot10^-173.5cdot10^-7 = pu2.4e-10$



        Conclusion:



        Since $ce[CN-]_i > [CN-]_f$ some $ceAgCN$ will ppt.



        Since $ce[I-]_i < [I-]_f$ no $ceAgI$ will ppt.






        share|improve this answer











        $endgroup$















          4












          4








          4





          $begingroup$


          Consider a $pu10.0 mL$ solution containing $pu1.0e-10 M$ each of $ceBa(CN)2$ and $ceBaI2$. If $pu3.5e-9 mol$ of $ceAgNO3(s)$ is added to this solution, will any precipitate(s) form? If yes, what compound(s) will precipitate?



          $K_mathrmsp(ceAgCN) = pu6.0e-17$; $K_mathrmsp(ceAgI) = pu8.5e-17$.




          Assuming that $ceBa(CN)2$ and $ceBaI2$ dissociate completely.



          $ce[CN-]_i = [I-]_i = 2cdot10^-10$ molar



          Neglecting any volume change of solution the initial concentration of $ceAg+$ will be



          $ce[Ag+]_i = dfrac3.5cdot10^-9pumol0.010puL = 3.5cdot10^-7puM$



          Now if both the $ceCN-$ and $ceI-$ are quantitatively removed then the same amount of $ceAg+$ must be removed.



          $ce[CN-]_i + [I-]_i = 4cdot10^-10$ molar



          $ce[Ag+]_f = 3.5cdot10^-7puM - 4cdot10^-10puM approx 3.5cdot10^-7puM$



          So the final concentration of $ceAg+$ is essentially the same as the initial concentration. The concentration of $ceAg+$ with the Ksp's can now be used to calculated how much of the two anions can remain in solution.



          The final concentration of $ceCN-$ is



          $ce[CN-]_f = dfracK_spce[Ag+]_f = dfrac6.0cdot10^-173.5cdot10^-7 = pu1.7e-10$



          The the final concentration of $ceI-$ is



          $ce[I-]_f = dfracK_spce[Ag+]_f = dfrac8.5cdot10^-173.5cdot10^-7 = pu2.4e-10$



          Conclusion:



          Since $ce[CN-]_i > [CN-]_f$ some $ceAgCN$ will ppt.



          Since $ce[I-]_i < [I-]_f$ no $ceAgI$ will ppt.






          share|improve this answer











          $endgroup$




          Consider a $pu10.0 mL$ solution containing $pu1.0e-10 M$ each of $ceBa(CN)2$ and $ceBaI2$. If $pu3.5e-9 mol$ of $ceAgNO3(s)$ is added to this solution, will any precipitate(s) form? If yes, what compound(s) will precipitate?



          $K_mathrmsp(ceAgCN) = pu6.0e-17$; $K_mathrmsp(ceAgI) = pu8.5e-17$.




          Assuming that $ceBa(CN)2$ and $ceBaI2$ dissociate completely.



          $ce[CN-]_i = [I-]_i = 2cdot10^-10$ molar



          Neglecting any volume change of solution the initial concentration of $ceAg+$ will be



          $ce[Ag+]_i = dfrac3.5cdot10^-9pumol0.010puL = 3.5cdot10^-7puM$



          Now if both the $ceCN-$ and $ceI-$ are quantitatively removed then the same amount of $ceAg+$ must be removed.



          $ce[CN-]_i + [I-]_i = 4cdot10^-10$ molar



          $ce[Ag+]_f = 3.5cdot10^-7puM - 4cdot10^-10puM approx 3.5cdot10^-7puM$



          So the final concentration of $ceAg+$ is essentially the same as the initial concentration. The concentration of $ceAg+$ with the Ksp's can now be used to calculated how much of the two anions can remain in solution.



          The final concentration of $ceCN-$ is



          $ce[CN-]_f = dfracK_spce[Ag+]_f = dfrac6.0cdot10^-173.5cdot10^-7 = pu1.7e-10$



          The the final concentration of $ceI-$ is



          $ce[I-]_f = dfracK_spce[Ag+]_f = dfrac8.5cdot10^-173.5cdot10^-7 = pu2.4e-10$



          Conclusion:



          Since $ce[CN-]_i > [CN-]_f$ some $ceAgCN$ will ppt.



          Since $ce[I-]_i < [I-]_f$ no $ceAgI$ will ppt.







          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited 7 hours ago

























          answered 7 hours ago









          MaxWMaxW

          15.7k22261




          15.7k22261





















              1












              $begingroup$

              Alternative method to MaxW method:



              Assume that an initial $pu10.0 mL$ solution of $pu1.0e-10 M$ in each of $ceBa(CN)2$ and $ceBaI2$ is clear (homogeneous). That means $ceBa(CN)2$ and $ceBaI2$ have dissociated completely. Thus concentrations of ions are as follows:



              $$ce[CN-]_i = [I-]_i = pu2cdot10^-10 mol ! L^-1$$



              Suppose when $pu3.5e-9 mol$ of $ceAgNO3(s)$ is added to this solution, no volume change has occured. Thus, the initial concentration of added ions in the solution will be:



              $$ce[Ag+]_i = [NO3-]_i = dfracpu3.5cdot10^-9 molpu0.010 L = pu3.5cdot10^-7 mol ! L^-1$$



              For precipitation of $ceAgCN(s)$:



              $$Q_mathrmsp = ce[Ag+]_icdot ce[CN-]_i = (pu3.5cdot10^-7 mol ! L^-1)(pu2cdot10^-10 mol ! L^-1) \ = pu7.0cdot10^-17 mol^2 ! L^-2 gt K_mathrmsp(ceAgCN) = pu6.0cdot10^-17 mol^2 ! L^-2 $$



              Therefore, $ceAgCN(s)$ will precipitate.



              For precipitation of $ceAgI(s)$:



              $$Q_mathrmsp = ce[Ag+]_icdot ce[I-]_i = (pu3.5cdot10^-7 mol ! L^-1)(pu2cdot10^-10 mol ! L^-1) \ = pu7.0cdot10^-17 mol^2 ! L^-2 lt K_mathrmsp(ceAgCN)=pu8.5cdot10^-17 mol^2 ! L^-2 $$



              Therefore, $ceAgI(s)$ will not precipitate in this condition.






              share|improve this answer











              $endgroup$

















                1












                $begingroup$

                Alternative method to MaxW method:



                Assume that an initial $pu10.0 mL$ solution of $pu1.0e-10 M$ in each of $ceBa(CN)2$ and $ceBaI2$ is clear (homogeneous). That means $ceBa(CN)2$ and $ceBaI2$ have dissociated completely. Thus concentrations of ions are as follows:



                $$ce[CN-]_i = [I-]_i = pu2cdot10^-10 mol ! L^-1$$



                Suppose when $pu3.5e-9 mol$ of $ceAgNO3(s)$ is added to this solution, no volume change has occured. Thus, the initial concentration of added ions in the solution will be:



                $$ce[Ag+]_i = [NO3-]_i = dfracpu3.5cdot10^-9 molpu0.010 L = pu3.5cdot10^-7 mol ! L^-1$$



                For precipitation of $ceAgCN(s)$:



                $$Q_mathrmsp = ce[Ag+]_icdot ce[CN-]_i = (pu3.5cdot10^-7 mol ! L^-1)(pu2cdot10^-10 mol ! L^-1) \ = pu7.0cdot10^-17 mol^2 ! L^-2 gt K_mathrmsp(ceAgCN) = pu6.0cdot10^-17 mol^2 ! L^-2 $$



                Therefore, $ceAgCN(s)$ will precipitate.



                For precipitation of $ceAgI(s)$:



                $$Q_mathrmsp = ce[Ag+]_icdot ce[I-]_i = (pu3.5cdot10^-7 mol ! L^-1)(pu2cdot10^-10 mol ! L^-1) \ = pu7.0cdot10^-17 mol^2 ! L^-2 lt K_mathrmsp(ceAgCN)=pu8.5cdot10^-17 mol^2 ! L^-2 $$



                Therefore, $ceAgI(s)$ will not precipitate in this condition.






                share|improve this answer











                $endgroup$















                  1












                  1








                  1





                  $begingroup$

                  Alternative method to MaxW method:



                  Assume that an initial $pu10.0 mL$ solution of $pu1.0e-10 M$ in each of $ceBa(CN)2$ and $ceBaI2$ is clear (homogeneous). That means $ceBa(CN)2$ and $ceBaI2$ have dissociated completely. Thus concentrations of ions are as follows:



                  $$ce[CN-]_i = [I-]_i = pu2cdot10^-10 mol ! L^-1$$



                  Suppose when $pu3.5e-9 mol$ of $ceAgNO3(s)$ is added to this solution, no volume change has occured. Thus, the initial concentration of added ions in the solution will be:



                  $$ce[Ag+]_i = [NO3-]_i = dfracpu3.5cdot10^-9 molpu0.010 L = pu3.5cdot10^-7 mol ! L^-1$$



                  For precipitation of $ceAgCN(s)$:



                  $$Q_mathrmsp = ce[Ag+]_icdot ce[CN-]_i = (pu3.5cdot10^-7 mol ! L^-1)(pu2cdot10^-10 mol ! L^-1) \ = pu7.0cdot10^-17 mol^2 ! L^-2 gt K_mathrmsp(ceAgCN) = pu6.0cdot10^-17 mol^2 ! L^-2 $$



                  Therefore, $ceAgCN(s)$ will precipitate.



                  For precipitation of $ceAgI(s)$:



                  $$Q_mathrmsp = ce[Ag+]_icdot ce[I-]_i = (pu3.5cdot10^-7 mol ! L^-1)(pu2cdot10^-10 mol ! L^-1) \ = pu7.0cdot10^-17 mol^2 ! L^-2 lt K_mathrmsp(ceAgCN)=pu8.5cdot10^-17 mol^2 ! L^-2 $$



                  Therefore, $ceAgI(s)$ will not precipitate in this condition.






                  share|improve this answer











                  $endgroup$



                  Alternative method to MaxW method:



                  Assume that an initial $pu10.0 mL$ solution of $pu1.0e-10 M$ in each of $ceBa(CN)2$ and $ceBaI2$ is clear (homogeneous). That means $ceBa(CN)2$ and $ceBaI2$ have dissociated completely. Thus concentrations of ions are as follows:



                  $$ce[CN-]_i = [I-]_i = pu2cdot10^-10 mol ! L^-1$$



                  Suppose when $pu3.5e-9 mol$ of $ceAgNO3(s)$ is added to this solution, no volume change has occured. Thus, the initial concentration of added ions in the solution will be:



                  $$ce[Ag+]_i = [NO3-]_i = dfracpu3.5cdot10^-9 molpu0.010 L = pu3.5cdot10^-7 mol ! L^-1$$



                  For precipitation of $ceAgCN(s)$:



                  $$Q_mathrmsp = ce[Ag+]_icdot ce[CN-]_i = (pu3.5cdot10^-7 mol ! L^-1)(pu2cdot10^-10 mol ! L^-1) \ = pu7.0cdot10^-17 mol^2 ! L^-2 gt K_mathrmsp(ceAgCN) = pu6.0cdot10^-17 mol^2 ! L^-2 $$



                  Therefore, $ceAgCN(s)$ will precipitate.



                  For precipitation of $ceAgI(s)$:



                  $$Q_mathrmsp = ce[Ag+]_icdot ce[I-]_i = (pu3.5cdot10^-7 mol ! L^-1)(pu2cdot10^-10 mol ! L^-1) \ = pu7.0cdot10^-17 mol^2 ! L^-2 lt K_mathrmsp(ceAgCN)=pu8.5cdot10^-17 mol^2 ! L^-2 $$



                  Therefore, $ceAgI(s)$ will not precipitate in this condition.







                  share|improve this answer














                  share|improve this answer



                  share|improve this answer








                  edited 4 hours ago

























                  answered 4 hours ago









                  Mathew MahindaratneMathew Mahindaratne

                  6,338725




                  6,338725




















                      user77021 is a new contributor. Be nice, and check out our Code of Conduct.









                      draft saved

                      draft discarded


















                      user77021 is a new contributor. Be nice, and check out our Code of Conduct.












                      user77021 is a new contributor. Be nice, and check out our Code of Conduct.











                      user77021 is a new contributor. Be nice, and check out our Code of Conduct.














                      Thanks for contributing an answer to Chemistry Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f112803%2fprecipitating-silveri-salts-from-the-solution-of-bariumii-cyanate-and-iodide%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      ValueError: Error when checking input: expected conv2d_13_input to have shape (3, 150, 150) but got array with shape (150, 150, 3)2019 Community Moderator ElectionError when checking : expected dense_1_input to have shape (None, 5) but got array with shape (200, 1)Error 'Expected 2D array, got 1D array instead:'ValueError: Error when checking input: expected lstm_41_input to have 3 dimensions, but got array with shape (40000,100)ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)ValueError: Error when checking target: expected dense_2 to have shape (1,) but got array with shape (0,)Keras exception: ValueError: Error when checking input: expected conv2d_1_input to have shape (150, 150, 3) but got array with shape (256, 256, 3)Steps taking too long to completewhen checking input: expected dense_1_input to have shape (13328,) but got array with shape (317,)ValueError: Error when checking target: expected dense_3 to have shape (None, 1) but got array with shape (7715, 40000)Keras exception: Error when checking input: expected dense_input to have shape (2,) but got array with shape (1,)

                      Ружовы пелікан Змест Знешні выгляд | Пашырэнне | Асаблівасці біялогіі | Літаратура | НавігацыяДагледжаная версіяправерана1 зменаДагледжаная версіяправерана1 змена/ 22697590 Сістэматыкана ВіківідахВыявына Вікісховішчы174693363011049382

                      Illegal assignment from SObject to ContactFetching String, Id from Map - Illegal Assignment Id to Field / ObjectError: Compile Error: Illegal assignment from String to BooleanError: List has no rows for assignment to SObjectError on Test Class - System.QueryException: List has no rows for assignment to SObjectRemote action problemDML requires SObject or SObject list type error“Illegal assignment from List to List”Test Class Fail: Batch Class: System.QueryException: List has no rows for assignment to SObjectMapping to a user'List has no rows for assignment to SObject' Mystery