Models of set theory where not every set can be linearly ordered Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Proving “every set can be totally ordered” without using Axiom of ChoiceHow can there be genuine models of set theory?Reverse Mathematics of Well-OrderingsHow to exhibit models of set theoryZorn's lemma and maximal linearly ordered subsetsCounterexample to the Hausdorff Maximal PrincipleCan every non-empty set satisfying the axioms of $sfZF$ be totally ordered?Can Well Ordering Theorem Be Proved Without the Axiom of Power Set?the power set of every well-ordered set is well-ordered implies well orderingEvery countable linearly ordered set is similar to one of its subsetsLinearly ordering the power set of a well ordered set with ZF (without AC)

What do you call a plan that's an alternative plan in case your initial plan fails?

Is there a documented rationale why the House Ways and Means chairman can demand tax info?

What is this single-engine low-wing propeller plane?

Why did the IBM 650 use bi-quinary?

When to stop saving and start investing?

Is high blood pressure ever a symptom attributable solely to dehydration?

Java 8 stream max() function argument type Comparator vs Comparable

Antler Helmet: Can it work?

Can Pao de Queijo, and similar foods, be kosher for Passover?

Can a non-EU citizen traveling with me come with me through the EU passport line?

What are the motives behind Cersei's orders given to Bronn?

Should I discuss the type of campaign with my players?

Is there a service that would inform me whenever a new direct route is scheduled from a given airport?

Should I call the interviewer directly, if HR aren't responding?

How do I determine if the rules for a long jump or high jump are applicable for Monks?

If a contract sometimes uses the wrong name, is it still valid?

Does surprise arrest existing movement?

Is there a "higher Segal conjecture"?

Why is "Consequences inflicted." not a sentence?

How to find all the available tools in macOS terminal?

Is a manifold-with-boundary with given interior and non-empty boundary essentially unique?

If 'B is more likely given A', then 'A is more likely given B'

What would be the ideal power source for a cybernetic eye?

Stars Make Stars



Models of set theory where not every set can be linearly ordered



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Proving “every set can be totally ordered” without using Axiom of ChoiceHow can there be genuine models of set theory?Reverse Mathematics of Well-OrderingsHow to exhibit models of set theoryZorn's lemma and maximal linearly ordered subsetsCounterexample to the Hausdorff Maximal PrincipleCan every non-empty set satisfying the axioms of $sfZF$ be totally ordered?Can Well Ordering Theorem Be Proved Without the Axiom of Power Set?the power set of every well-ordered set is well-ordered implies well orderingEvery countable linearly ordered set is similar to one of its subsetsLinearly ordering the power set of a well ordered set with ZF (without AC)










3












$begingroup$


Can anybody point me towards a model of set theory where not every set can be linearly ordered, and a corresponding proof. I have seen it claimed that in Fraenkels second permutation model that there is a set that cannot be linearly ordered, but cannot find a proof.



Essentially, I am asking for a proof that without choice sometimes the linear ordering principle fails.










share|cite|improve this question









New contributor




LGar is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    In the case of the Fraenkel model, would this just come down to saying that any linear ordering would have a finite support, and then we just consider a permutation of two atoms outside of said support?
    $endgroup$
    – LGar
    5 hours ago










  • $begingroup$
    Yes, by the way, a direct argument in both the models of Fraenkel is that any linear order would have a finite support and we can find a permutation that moves some things in an incongruous way.
    $endgroup$
    – Asaf Karagila
    3 hours ago










  • $begingroup$
    Possible duplicate of Proving "every set can be totally ordered" without using Axiom of Choice
    $endgroup$
    – YuiTo Cheng
    1 hour ago










  • $begingroup$
    This question is not as far as I can tell a duplicate - that question is asking for a proof of the linear ordering principle without choice, while I was asking for a proof that the linear ordering principle can sometimes fail in the abscence of choice.
    $endgroup$
    – LGar
    13 mins ago















3












$begingroup$


Can anybody point me towards a model of set theory where not every set can be linearly ordered, and a corresponding proof. I have seen it claimed that in Fraenkels second permutation model that there is a set that cannot be linearly ordered, but cannot find a proof.



Essentially, I am asking for a proof that without choice sometimes the linear ordering principle fails.










share|cite|improve this question









New contributor




LGar is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    In the case of the Fraenkel model, would this just come down to saying that any linear ordering would have a finite support, and then we just consider a permutation of two atoms outside of said support?
    $endgroup$
    – LGar
    5 hours ago










  • $begingroup$
    Yes, by the way, a direct argument in both the models of Fraenkel is that any linear order would have a finite support and we can find a permutation that moves some things in an incongruous way.
    $endgroup$
    – Asaf Karagila
    3 hours ago










  • $begingroup$
    Possible duplicate of Proving "every set can be totally ordered" without using Axiom of Choice
    $endgroup$
    – YuiTo Cheng
    1 hour ago










  • $begingroup$
    This question is not as far as I can tell a duplicate - that question is asking for a proof of the linear ordering principle without choice, while I was asking for a proof that the linear ordering principle can sometimes fail in the abscence of choice.
    $endgroup$
    – LGar
    13 mins ago













3












3








3





$begingroup$


Can anybody point me towards a model of set theory where not every set can be linearly ordered, and a corresponding proof. I have seen it claimed that in Fraenkels second permutation model that there is a set that cannot be linearly ordered, but cannot find a proof.



Essentially, I am asking for a proof that without choice sometimes the linear ordering principle fails.










share|cite|improve this question









New contributor




LGar is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




Can anybody point me towards a model of set theory where not every set can be linearly ordered, and a corresponding proof. I have seen it claimed that in Fraenkels second permutation model that there is a set that cannot be linearly ordered, but cannot find a proof.



Essentially, I am asking for a proof that without choice sometimes the linear ordering principle fails.







set-theory axiom-of-choice






share|cite|improve this question









New contributor




LGar is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




LGar is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited 12 mins ago







LGar













New contributor




LGar is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 5 hours ago









LGarLGar

406




406




New contributor




LGar is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





LGar is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






LGar is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











  • $begingroup$
    In the case of the Fraenkel model, would this just come down to saying that any linear ordering would have a finite support, and then we just consider a permutation of two atoms outside of said support?
    $endgroup$
    – LGar
    5 hours ago










  • $begingroup$
    Yes, by the way, a direct argument in both the models of Fraenkel is that any linear order would have a finite support and we can find a permutation that moves some things in an incongruous way.
    $endgroup$
    – Asaf Karagila
    3 hours ago










  • $begingroup$
    Possible duplicate of Proving "every set can be totally ordered" without using Axiom of Choice
    $endgroup$
    – YuiTo Cheng
    1 hour ago










  • $begingroup$
    This question is not as far as I can tell a duplicate - that question is asking for a proof of the linear ordering principle without choice, while I was asking for a proof that the linear ordering principle can sometimes fail in the abscence of choice.
    $endgroup$
    – LGar
    13 mins ago
















  • $begingroup$
    In the case of the Fraenkel model, would this just come down to saying that any linear ordering would have a finite support, and then we just consider a permutation of two atoms outside of said support?
    $endgroup$
    – LGar
    5 hours ago










  • $begingroup$
    Yes, by the way, a direct argument in both the models of Fraenkel is that any linear order would have a finite support and we can find a permutation that moves some things in an incongruous way.
    $endgroup$
    – Asaf Karagila
    3 hours ago










  • $begingroup$
    Possible duplicate of Proving "every set can be totally ordered" without using Axiom of Choice
    $endgroup$
    – YuiTo Cheng
    1 hour ago










  • $begingroup$
    This question is not as far as I can tell a duplicate - that question is asking for a proof of the linear ordering principle without choice, while I was asking for a proof that the linear ordering principle can sometimes fail in the abscence of choice.
    $endgroup$
    – LGar
    13 mins ago















$begingroup$
In the case of the Fraenkel model, would this just come down to saying that any linear ordering would have a finite support, and then we just consider a permutation of two atoms outside of said support?
$endgroup$
– LGar
5 hours ago




$begingroup$
In the case of the Fraenkel model, would this just come down to saying that any linear ordering would have a finite support, and then we just consider a permutation of two atoms outside of said support?
$endgroup$
– LGar
5 hours ago












$begingroup$
Yes, by the way, a direct argument in both the models of Fraenkel is that any linear order would have a finite support and we can find a permutation that moves some things in an incongruous way.
$endgroup$
– Asaf Karagila
3 hours ago




$begingroup$
Yes, by the way, a direct argument in both the models of Fraenkel is that any linear order would have a finite support and we can find a permutation that moves some things in an incongruous way.
$endgroup$
– Asaf Karagila
3 hours ago












$begingroup$
Possible duplicate of Proving "every set can be totally ordered" without using Axiom of Choice
$endgroup$
– YuiTo Cheng
1 hour ago




$begingroup$
Possible duplicate of Proving "every set can be totally ordered" without using Axiom of Choice
$endgroup$
– YuiTo Cheng
1 hour ago












$begingroup$
This question is not as far as I can tell a duplicate - that question is asking for a proof of the linear ordering principle without choice, while I was asking for a proof that the linear ordering principle can sometimes fail in the abscence of choice.
$endgroup$
– LGar
13 mins ago




$begingroup$
This question is not as far as I can tell a duplicate - that question is asking for a proof of the linear ordering principle without choice, while I was asking for a proof that the linear ordering principle can sometimes fail in the abscence of choice.
$endgroup$
– LGar
13 mins ago










2 Answers
2






active

oldest

votes


















5












$begingroup$

Yes, both of Fraenkel's models are examples of such models. To see why note that:



  1. In the first model, the atoms are an amorphous set. Namely, there cannot be split into two infinite sets. An amorphous set cannot be linearly ordered. To see why, note that $ain Amid atext defines a finite initial segment$ is either finite or co-finite. Assume it's co-finite, otherwise take the reverse order, then by removing finitely many elements we have a linear ordering where every proper initial segment is finite. This defines a bijection with $omega$, of course. So the set can be split into two infinite sets after all.


  2. In the second model, the atoms can be written as a countable union of pairs which do not have a choice function. If the atoms were linearly orderable in that model, then we could have defined a choice function from the pairs: take the smallest one.


For models of $sf ZF$ one can imitate Fraenkel's construction using sets-of-sets-of Cohen reals as your atoms. This can be found in Jech's "Axiom of Choice" book in Chapter 5, as Cohen's second model.






share|cite|improve this answer









$endgroup$




















    5












    $begingroup$

    An interesting example of a different kind is any model where all sets of reals have the Baire property. In any such set the quotient of $mathbb R$ by the Vitali equivalence relation is not linearly orderable. See here for a sketch.



    Examples of such models are Solovay's model where all sets of reals are Lebesgue measurable, or natural models of the axiom of determinacy, or Shelah's model from section 7 of




    MR0768264 (86g:03082a). Shelah, Saharon. Can you take Solovay's inaccessible away? Israel J. Math. 48 (1984), no. 1, 1–47.







    share|cite|improve this answer









    $endgroup$








    • 1




      $begingroup$
      Good examples, albeit significantly more complicated! :-)
      $endgroup$
      – Asaf Karagila
      3 hours ago











    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );






    LGar is a new contributor. Be nice, and check out our Code of Conduct.









    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3189095%2fmodels-of-set-theory-where-not-every-set-can-be-linearly-ordered%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    5












    $begingroup$

    Yes, both of Fraenkel's models are examples of such models. To see why note that:



    1. In the first model, the atoms are an amorphous set. Namely, there cannot be split into two infinite sets. An amorphous set cannot be linearly ordered. To see why, note that $ain Amid atext defines a finite initial segment$ is either finite or co-finite. Assume it's co-finite, otherwise take the reverse order, then by removing finitely many elements we have a linear ordering where every proper initial segment is finite. This defines a bijection with $omega$, of course. So the set can be split into two infinite sets after all.


    2. In the second model, the atoms can be written as a countable union of pairs which do not have a choice function. If the atoms were linearly orderable in that model, then we could have defined a choice function from the pairs: take the smallest one.


    For models of $sf ZF$ one can imitate Fraenkel's construction using sets-of-sets-of Cohen reals as your atoms. This can be found in Jech's "Axiom of Choice" book in Chapter 5, as Cohen's second model.






    share|cite|improve this answer









    $endgroup$

















      5












      $begingroup$

      Yes, both of Fraenkel's models are examples of such models. To see why note that:



      1. In the first model, the atoms are an amorphous set. Namely, there cannot be split into two infinite sets. An amorphous set cannot be linearly ordered. To see why, note that $ain Amid atext defines a finite initial segment$ is either finite or co-finite. Assume it's co-finite, otherwise take the reverse order, then by removing finitely many elements we have a linear ordering where every proper initial segment is finite. This defines a bijection with $omega$, of course. So the set can be split into two infinite sets after all.


      2. In the second model, the atoms can be written as a countable union of pairs which do not have a choice function. If the atoms were linearly orderable in that model, then we could have defined a choice function from the pairs: take the smallest one.


      For models of $sf ZF$ one can imitate Fraenkel's construction using sets-of-sets-of Cohen reals as your atoms. This can be found in Jech's "Axiom of Choice" book in Chapter 5, as Cohen's second model.






      share|cite|improve this answer









      $endgroup$















        5












        5








        5





        $begingroup$

        Yes, both of Fraenkel's models are examples of such models. To see why note that:



        1. In the first model, the atoms are an amorphous set. Namely, there cannot be split into two infinite sets. An amorphous set cannot be linearly ordered. To see why, note that $ain Amid atext defines a finite initial segment$ is either finite or co-finite. Assume it's co-finite, otherwise take the reverse order, then by removing finitely many elements we have a linear ordering where every proper initial segment is finite. This defines a bijection with $omega$, of course. So the set can be split into two infinite sets after all.


        2. In the second model, the atoms can be written as a countable union of pairs which do not have a choice function. If the atoms were linearly orderable in that model, then we could have defined a choice function from the pairs: take the smallest one.


        For models of $sf ZF$ one can imitate Fraenkel's construction using sets-of-sets-of Cohen reals as your atoms. This can be found in Jech's "Axiom of Choice" book in Chapter 5, as Cohen's second model.






        share|cite|improve this answer









        $endgroup$



        Yes, both of Fraenkel's models are examples of such models. To see why note that:



        1. In the first model, the atoms are an amorphous set. Namely, there cannot be split into two infinite sets. An amorphous set cannot be linearly ordered. To see why, note that $ain Amid atext defines a finite initial segment$ is either finite or co-finite. Assume it's co-finite, otherwise take the reverse order, then by removing finitely many elements we have a linear ordering where every proper initial segment is finite. This defines a bijection with $omega$, of course. So the set can be split into two infinite sets after all.


        2. In the second model, the atoms can be written as a countable union of pairs which do not have a choice function. If the atoms were linearly orderable in that model, then we could have defined a choice function from the pairs: take the smallest one.


        For models of $sf ZF$ one can imitate Fraenkel's construction using sets-of-sets-of Cohen reals as your atoms. This can be found in Jech's "Axiom of Choice" book in Chapter 5, as Cohen's second model.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 5 hours ago









        Asaf KaragilaAsaf Karagila

        308k33441775




        308k33441775





















            5












            $begingroup$

            An interesting example of a different kind is any model where all sets of reals have the Baire property. In any such set the quotient of $mathbb R$ by the Vitali equivalence relation is not linearly orderable. See here for a sketch.



            Examples of such models are Solovay's model where all sets of reals are Lebesgue measurable, or natural models of the axiom of determinacy, or Shelah's model from section 7 of




            MR0768264 (86g:03082a). Shelah, Saharon. Can you take Solovay's inaccessible away? Israel J. Math. 48 (1984), no. 1, 1–47.







            share|cite|improve this answer









            $endgroup$








            • 1




              $begingroup$
              Good examples, albeit significantly more complicated! :-)
              $endgroup$
              – Asaf Karagila
              3 hours ago















            5












            $begingroup$

            An interesting example of a different kind is any model where all sets of reals have the Baire property. In any such set the quotient of $mathbb R$ by the Vitali equivalence relation is not linearly orderable. See here for a sketch.



            Examples of such models are Solovay's model where all sets of reals are Lebesgue measurable, or natural models of the axiom of determinacy, or Shelah's model from section 7 of




            MR0768264 (86g:03082a). Shelah, Saharon. Can you take Solovay's inaccessible away? Israel J. Math. 48 (1984), no. 1, 1–47.







            share|cite|improve this answer









            $endgroup$








            • 1




              $begingroup$
              Good examples, albeit significantly more complicated! :-)
              $endgroup$
              – Asaf Karagila
              3 hours ago













            5












            5








            5





            $begingroup$

            An interesting example of a different kind is any model where all sets of reals have the Baire property. In any such set the quotient of $mathbb R$ by the Vitali equivalence relation is not linearly orderable. See here for a sketch.



            Examples of such models are Solovay's model where all sets of reals are Lebesgue measurable, or natural models of the axiom of determinacy, or Shelah's model from section 7 of




            MR0768264 (86g:03082a). Shelah, Saharon. Can you take Solovay's inaccessible away? Israel J. Math. 48 (1984), no. 1, 1–47.







            share|cite|improve this answer









            $endgroup$



            An interesting example of a different kind is any model where all sets of reals have the Baire property. In any such set the quotient of $mathbb R$ by the Vitali equivalence relation is not linearly orderable. See here for a sketch.



            Examples of such models are Solovay's model where all sets of reals are Lebesgue measurable, or natural models of the axiom of determinacy, or Shelah's model from section 7 of




            MR0768264 (86g:03082a). Shelah, Saharon. Can you take Solovay's inaccessible away? Israel J. Math. 48 (1984), no. 1, 1–47.








            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered 4 hours ago









            Andrés E. CaicedoAndrés E. Caicedo

            66.1k8160252




            66.1k8160252







            • 1




              $begingroup$
              Good examples, albeit significantly more complicated! :-)
              $endgroup$
              – Asaf Karagila
              3 hours ago












            • 1




              $begingroup$
              Good examples, albeit significantly more complicated! :-)
              $endgroup$
              – Asaf Karagila
              3 hours ago







            1




            1




            $begingroup$
            Good examples, albeit significantly more complicated! :-)
            $endgroup$
            – Asaf Karagila
            3 hours ago




            $begingroup$
            Good examples, albeit significantly more complicated! :-)
            $endgroup$
            – Asaf Karagila
            3 hours ago










            LGar is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            LGar is a new contributor. Be nice, and check out our Code of Conduct.












            LGar is a new contributor. Be nice, and check out our Code of Conduct.











            LGar is a new contributor. Be nice, and check out our Code of Conduct.














            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3189095%2fmodels-of-set-theory-where-not-every-set-can-be-linearly-ordered%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Францішак Багушэвіч Змест Сям'я | Біяграфія | Творчасць | Мова Багушэвіча | Ацэнкі дзейнасці | Цікавыя факты | Спадчына | Выбраная бібліяграфія | Ушанаванне памяці | У філатэліі | Зноскі | Літаратура | Спасылкі | НавігацыяЛяхоўскі У. Рупіўся дзеля Бога і людзей: Жыццёвы шлях Лявона Вітан-Дубейкаўскага // Вольскі і Памідораў з песняй пра немца Адвакат, паэт, народны заступнік Ашмянскі веснікВ Минске появится площадь Богушевича и улица Сырокомли, Белорусская деловая газета, 19 июля 2001 г.Айцец беларускай нацыянальнай ідэі паўстаў у бронзе Сяргей Аляксандравіч Адашкевіч (1918, Мінск). 80-я гады. Бюст «Францішак Багушэвіч».Яўген Мікалаевіч Ціхановіч. «Партрэт Францішка Багушэвіча»Мікола Мікалаевіч Купава. «Партрэт зачынальніка новай беларускай літаратуры Францішка Багушэвіча»Уладзімір Іванавіч Мелехаў. На помніку «Змагарам за родную мову» Барэльеф «Францішак Багушэвіч»Памяць пра Багушэвіча на Віленшчыне Страчаная сталіца. Беларускія шыльды на вуліцах Вільні«Krynica». Ideologia i przywódcy białoruskiego katolicyzmuФранцішак БагушэвічТворы на knihi.comТворы Францішка Багушэвіча на bellib.byСодаль Уладзімір. Францішак Багушэвіч на Лідчыне;Луцкевіч Антон. Жыцьцё і творчасьць Фр. Багушэвіча ў успамінах ягоных сучасьнікаў // Запісы Беларускага Навуковага таварыства. Вільня, 1938. Сшытак 1. С. 16-34.Большая российская1188761710000 0000 5537 633Xn9209310021619551927869394п

            Беларусь Змест Назва Гісторыя Геаграфія Сімволіка Дзяржаўны лад Палітычныя партыі Міжнароднае становішча і знешняя палітыка Адміністрацыйны падзел Насельніцтва Эканоміка Культура і грамадства Сацыяльная сфера Узброеныя сілы Заўвагі Літаратура Спасылкі НавігацыяHGЯOiТоп-2011 г. (па версіі ej.by)Топ-2013 г. (па версіі ej.by)Топ-2016 г. (па версіі ej.by)Топ-2017 г. (па версіі ej.by)Нацыянальны статыстычны камітэт Рэспублікі БеларусьШчыльнасць насельніцтва па краінахhttp://naviny.by/rubrics/society/2011/09/16/ic_articles_116_175144/А. Калечыц, У. Ксяндзоў. Спробы засялення краю неандэртальскім чалавекам.І ў Менску былі мамантыА. Калечыц, У. Ксяндзоў. Старажытны каменны век (палеаліт). Першапачатковае засяленне тэрыторыіГ. Штыхаў. Балты і славяне ў VI—VIII стст.М. Клімаў. Полацкае княства ў IX—XI стст.Г. Штыхаў, В. Ляўко. Палітычная гісторыя Полацкай зямліГ. Штыхаў. Дзяржаўны лад у землях-княствахГ. Штыхаў. Дзяржаўны лад у землях-княствахБеларускія землі ў складзе Вялікага Княства ЛітоўскагаЛюблінская унія 1569 г."The Early Stages of Independence"Zapomniane prawdy25 гадоў таму было аб'яўлена, што Язэп Пілсудскі — беларус (фота)Наша вадаДакументы ЧАЭС: Забруджванне тэрыторыі Беларусі « ЧАЭС Зона адчужэнняСведения о политических партиях, зарегистрированных в Республике Беларусь // Министерство юстиции Республики БеларусьСтатыстычны бюлетэнь „Полаўзроставая структура насельніцтва Рэспублікі Беларусь на 1 студзеня 2012 года і сярэднегадовая колькасць насельніцтва за 2011 год“Индекс человеческого развития Беларуси — не было бы нижеБеларусь занимает первое место в СНГ по индексу развития с учетом гендерного факцёраНацыянальны статыстычны камітэт Рэспублікі БеларусьКанстытуцыя РБ. Артыкул 17Трансфармацыйныя задачы БеларусіВыйсце з крызісу — далейшае рэфармаванне Беларускі рубель — сусветны лідар па дэвальвацыяхПра змену коштаў у кастрычніку 2011 г.Бядней за беларусаў у СНД толькі таджыкіСярэдні заробак у верасні дасягнуў 2,26 мільёна рублёўЭканомікаГаласуем за ТОП-100 беларускай прозыСучасныя беларускія мастакіАрхитектура Беларуси BELARUS.BYА. Каханоўскі. Культура Беларусі ўсярэдзіне XVII—XVIII ст.Анталогія беларускай народнай песні, гуказапісы спеваўБеларускія Музычныя IнструментыБеларускі рок, які мы страцілі. Топ-10 гуртоў«Мясцовы час» — нязгаслая легенда беларускай рок-музыкіСЯРГЕЙ БУДКІН. МЫ НЯ ЗНАЕМ СВАЁЙ МУЗЫКІМ. А. Каладзінскі. НАРОДНЫ ТЭАТРМагнацкія культурныя цэнтрыПублічная дыскусія «Беларуская новая пьеса: без беларускай мовы ці беларуская?»Беларускія драматургі па-ранейшаму лепш ставяцца за мяжой, чым на радзіме«Працэс незалежнага кіно пайшоў, і дзяржаву турбуе яго непадкантрольнасць»Беларускія філосафы ў пошуках прасторыВсе идём в библиотекуАрхіваванаАб Нацыянальнай праграме даследавання і выкарыстання касмічнай прасторы ў мірных мэтах на 2008—2012 гадыУ космас — разам.У суседнім з Барысаўскім раёне пабудуюць Камандна-вымяральны пунктСвяты і абрады беларусаў«Мірныя бульбашы з малой краіны» — 5 непраўдзівых стэрэатыпаў пра БеларусьМ. Раманюк. Беларускае народнае адзеннеУ Беларусі скарачаецца колькасць злачынстваўЛукашэнка незадаволены мінскімі ўладамі Крадзяжы складаюць у Мінску каля 70% злачынстваў Узровень злачыннасці ў Мінскай вобласці — адзін з самых высокіх у краіне Генпракуратура аналізуе стан са злачыннасцю ў Беларусі па каэфіцыенце злачыннасці У Беларусі стабілізавалася крымінагеннае становішча, лічыць генпракурорЗамежнікі сталі здзяйсняць у Беларусі больш злачынстваўМУС Беларусі турбуе рост рэцыдыўнай злачыннасціЯ з ЖЭСа. Дазволіце вас абкрасці! Рэйтынг усіх службаў і падраздзяленняў ГУУС Мінгарвыканкама вырасАб КДБ РБГісторыя Аператыўна-аналітычнага цэнтра РБГісторыя ДКФРТаможняagentura.ruБеларусьBelarus.by — Афіцыйны сайт Рэспублікі БеларусьСайт урада БеларусіRadzima.org — Збор архітэктурных помнікаў, гісторыя Беларусі«Глобус Беларуси»Гербы и флаги БеларусиАсаблівасці каменнага веку на БеларусіА. Калечыц, У. Ксяндзоў. Старажытны каменны век (палеаліт). Першапачатковае засяленне тэрыторыіУ. Ксяндзоў. Сярэдні каменны век (мезаліт). Засяленне краю плямёнамі паляўнічых, рыбакоў і збіральнікаўА. Калечыц, М. Чарняўскі. Плямёны на тэрыторыі Беларусі ў новым каменным веку (неаліце)А. Калечыц, У. Ксяндзоў, М. Чарняўскі. Гаспадарчыя заняткі ў каменным векуЭ. Зайкоўскі. Духоўная культура ў каменным векуАсаблівасці бронзавага веку на БеларусіФарміраванне супольнасцей ранняга перыяду бронзавага векуФотографии БеларусиРоля беларускіх зямель ва ўтварэнні і ўмацаванні ВКЛВ. Фадзеева. З гісторыі развіцця беларускай народнай вышыўкіDMOZGran catalanaБольшая российскаяBritannica (анлайн)Швейцарскі гістарычны15325917611952699xDA123282154079143-90000 0001 2171 2080n9112870100577502ge128882171858027501086026362074122714179пппппп

            ValueError: Expected n_neighbors <= n_samples, but n_samples = 1, n_neighbors = 6 (SMOTE) The 2019 Stack Overflow Developer Survey Results Are InCan SMOTE be applied over sequence of words (sentences)?ValueError when doing validation with random forestsSMOTE and multi class oversamplingLogic behind SMOTE-NC?ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)SmoteBoost: Should SMOTE be ran individually for each iteration/tree in the boosting?solving multi-class imbalance classification using smote and OSSUsing SMOTE for Synthetic Data generation to improve performance on unbalanced dataproblem of entry format for a simple model in KerasSVM SMOTE fit_resample() function runs forever with no result