Is there a “higher Segal conjecture”? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Convergence of spectral sequences of cohomological typeFormal-group interpretation for Lin's theorem?Hopf algebras as cohomology of $mathbbCP^infty$, $Omega S^3$ and related $H$-spacesIs every ''group-completion'' map an acyclic map?The cell structure of Thom spectraFailure of “equivariant triangulation” for finite complexes equipped with a $G$-action$RO(G)$-graded homotopy groups vs. Mackey functors(Pre)orientation vs. formal completionmaking the group completion in homology sense unique via the plus constructionIntuition - difference between Moore spectrum and Eilenberg-Mac Lane spectrum

Is there a “higher Segal conjecture”?



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Convergence of spectral sequences of cohomological typeFormal-group interpretation for Lin's theorem?Hopf algebras as cohomology of $mathbbCP^infty$, $Omega S^3$ and related $H$-spacesIs every ''group-completion'' map an acyclic map?The cell structure of Thom spectraFailure of “equivariant triangulation” for finite complexes equipped with a $G$-action$RO(G)$-graded homotopy groups vs. Mackey functors(Pre)orientation vs. formal completionmaking the group completion in homology sense unique via the plus constructionIntuition - difference between Moore spectrum and Eilenberg-Mac Lane spectrum










4












$begingroup$


The Segal conjecture describes the Spanier-Whitehead dual $D Sigma^infty_+ BG$ for certain $G$. Is there a similar description of $DSigma^infty_+ K(G,n)$ when $n geq 2$ when $G$ is finite (and abelian)?



Notes:



  • I'd be happy to understand the case of cyclic groups $G = C_p$.


  • $K(G,n)$ can be modeled by an abelian topological group, but I'm not sure it falls under the umbrella of other known generalizations of the Segal conjecture, although when $G = mathbb Z$ and $n=2$ there is a known decomposition (see Ravenel). For $G = mathbb Z^n$ and $n=2$ there is also this.



  • Let me recall that the Segal conjecture (proved by Carlsson) says that when $G$ is finite, the Spanier-Whitehead dual $DSigma^infty_+ BG$ is a certain completion of $vee_(H) subseteq G Sigma^infty_+ BW_G(H)$ where $(H) subseteq G$ ranges over conjugacy classes of subgroups and $W_G(H) = N_G(H) / H$ is the Weyl group of $H$ in $G$. In particular, when $G = C_p$ it says that



    $$DSigma^infty_+ BC_p = mathbb S vee(Sigma^infty_+ BC_p )^wedge_p$$



    where $mathbb S$ is the sphere spectrum (corresponding to the subgroup $C_p subseteq C_p$; the other term corresponds to the trivial subgroup $0 subseteq C_p$) and $(-)^wedge_p$ is $p$-completion.



  • Lin showed that $D H G = 0$ when $G$ is a finite abelian group, where $H$ indicates taking Eilenberg-MacLane spectra. Since $HG = varinjlim_n Sigma^infty-n K(G,n)$, we have $0 = DHG = varprojlim_n Sigma^n DSigma^infty K(G,n)$, and from the Milnor exact sequence we conclude that $varprojlim_n pi_ast-n DSigma^infty K(G,n) = varprojlim^1_n pi_ast-n D Sigma^infty K(G,n) = 0$. But I'm not sure how much information that is, really.


  • If we work in the $K(h)$-local or the $T(h)$-local category then by ambidexterity we have $F(Sigma^infty_+ K(G,n), Lmathbb S) = L Sigma^infty_+ K(G,n)$ where $L$ is the relevant localization. But it seems that the relevant limit does not commute with localization here.










share|cite|improve this question











$endgroup$
















    4












    $begingroup$


    The Segal conjecture describes the Spanier-Whitehead dual $D Sigma^infty_+ BG$ for certain $G$. Is there a similar description of $DSigma^infty_+ K(G,n)$ when $n geq 2$ when $G$ is finite (and abelian)?



    Notes:



    • I'd be happy to understand the case of cyclic groups $G = C_p$.


    • $K(G,n)$ can be modeled by an abelian topological group, but I'm not sure it falls under the umbrella of other known generalizations of the Segal conjecture, although when $G = mathbb Z$ and $n=2$ there is a known decomposition (see Ravenel). For $G = mathbb Z^n$ and $n=2$ there is also this.



    • Let me recall that the Segal conjecture (proved by Carlsson) says that when $G$ is finite, the Spanier-Whitehead dual $DSigma^infty_+ BG$ is a certain completion of $vee_(H) subseteq G Sigma^infty_+ BW_G(H)$ where $(H) subseteq G$ ranges over conjugacy classes of subgroups and $W_G(H) = N_G(H) / H$ is the Weyl group of $H$ in $G$. In particular, when $G = C_p$ it says that



      $$DSigma^infty_+ BC_p = mathbb S vee(Sigma^infty_+ BC_p )^wedge_p$$



      where $mathbb S$ is the sphere spectrum (corresponding to the subgroup $C_p subseteq C_p$; the other term corresponds to the trivial subgroup $0 subseteq C_p$) and $(-)^wedge_p$ is $p$-completion.



    • Lin showed that $D H G = 0$ when $G$ is a finite abelian group, where $H$ indicates taking Eilenberg-MacLane spectra. Since $HG = varinjlim_n Sigma^infty-n K(G,n)$, we have $0 = DHG = varprojlim_n Sigma^n DSigma^infty K(G,n)$, and from the Milnor exact sequence we conclude that $varprojlim_n pi_ast-n DSigma^infty K(G,n) = varprojlim^1_n pi_ast-n D Sigma^infty K(G,n) = 0$. But I'm not sure how much information that is, really.


    • If we work in the $K(h)$-local or the $T(h)$-local category then by ambidexterity we have $F(Sigma^infty_+ K(G,n), Lmathbb S) = L Sigma^infty_+ K(G,n)$ where $L$ is the relevant localization. But it seems that the relevant limit does not commute with localization here.










    share|cite|improve this question











    $endgroup$














      4












      4








      4





      $begingroup$


      The Segal conjecture describes the Spanier-Whitehead dual $D Sigma^infty_+ BG$ for certain $G$. Is there a similar description of $DSigma^infty_+ K(G,n)$ when $n geq 2$ when $G$ is finite (and abelian)?



      Notes:



      • I'd be happy to understand the case of cyclic groups $G = C_p$.


      • $K(G,n)$ can be modeled by an abelian topological group, but I'm not sure it falls under the umbrella of other known generalizations of the Segal conjecture, although when $G = mathbb Z$ and $n=2$ there is a known decomposition (see Ravenel). For $G = mathbb Z^n$ and $n=2$ there is also this.



      • Let me recall that the Segal conjecture (proved by Carlsson) says that when $G$ is finite, the Spanier-Whitehead dual $DSigma^infty_+ BG$ is a certain completion of $vee_(H) subseteq G Sigma^infty_+ BW_G(H)$ where $(H) subseteq G$ ranges over conjugacy classes of subgroups and $W_G(H) = N_G(H) / H$ is the Weyl group of $H$ in $G$. In particular, when $G = C_p$ it says that



        $$DSigma^infty_+ BC_p = mathbb S vee(Sigma^infty_+ BC_p )^wedge_p$$



        where $mathbb S$ is the sphere spectrum (corresponding to the subgroup $C_p subseteq C_p$; the other term corresponds to the trivial subgroup $0 subseteq C_p$) and $(-)^wedge_p$ is $p$-completion.



      • Lin showed that $D H G = 0$ when $G$ is a finite abelian group, where $H$ indicates taking Eilenberg-MacLane spectra. Since $HG = varinjlim_n Sigma^infty-n K(G,n)$, we have $0 = DHG = varprojlim_n Sigma^n DSigma^infty K(G,n)$, and from the Milnor exact sequence we conclude that $varprojlim_n pi_ast-n DSigma^infty K(G,n) = varprojlim^1_n pi_ast-n D Sigma^infty K(G,n) = 0$. But I'm not sure how much information that is, really.


      • If we work in the $K(h)$-local or the $T(h)$-local category then by ambidexterity we have $F(Sigma^infty_+ K(G,n), Lmathbb S) = L Sigma^infty_+ K(G,n)$ where $L$ is the relevant localization. But it seems that the relevant limit does not commute with localization here.










      share|cite|improve this question











      $endgroup$




      The Segal conjecture describes the Spanier-Whitehead dual $D Sigma^infty_+ BG$ for certain $G$. Is there a similar description of $DSigma^infty_+ K(G,n)$ when $n geq 2$ when $G$ is finite (and abelian)?



      Notes:



      • I'd be happy to understand the case of cyclic groups $G = C_p$.


      • $K(G,n)$ can be modeled by an abelian topological group, but I'm not sure it falls under the umbrella of other known generalizations of the Segal conjecture, although when $G = mathbb Z$ and $n=2$ there is a known decomposition (see Ravenel). For $G = mathbb Z^n$ and $n=2$ there is also this.



      • Let me recall that the Segal conjecture (proved by Carlsson) says that when $G$ is finite, the Spanier-Whitehead dual $DSigma^infty_+ BG$ is a certain completion of $vee_(H) subseteq G Sigma^infty_+ BW_G(H)$ where $(H) subseteq G$ ranges over conjugacy classes of subgroups and $W_G(H) = N_G(H) / H$ is the Weyl group of $H$ in $G$. In particular, when $G = C_p$ it says that



        $$DSigma^infty_+ BC_p = mathbb S vee(Sigma^infty_+ BC_p )^wedge_p$$



        where $mathbb S$ is the sphere spectrum (corresponding to the subgroup $C_p subseteq C_p$; the other term corresponds to the trivial subgroup $0 subseteq C_p$) and $(-)^wedge_p$ is $p$-completion.



      • Lin showed that $D H G = 0$ when $G$ is a finite abelian group, where $H$ indicates taking Eilenberg-MacLane spectra. Since $HG = varinjlim_n Sigma^infty-n K(G,n)$, we have $0 = DHG = varprojlim_n Sigma^n DSigma^infty K(G,n)$, and from the Milnor exact sequence we conclude that $varprojlim_n pi_ast-n DSigma^infty K(G,n) = varprojlim^1_n pi_ast-n D Sigma^infty K(G,n) = 0$. But I'm not sure how much information that is, really.


      • If we work in the $K(h)$-local or the $T(h)$-local category then by ambidexterity we have $F(Sigma^infty_+ K(G,n), Lmathbb S) = L Sigma^infty_+ K(G,n)$ where $L$ is the relevant localization. But it seems that the relevant limit does not commute with localization here.







      at.algebraic-topology homotopy-theory






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 3 hours ago







      Tim Campion

















      asked 4 hours ago









      Tim CampionTim Campion

      14.9k355129




      14.9k355129




















          1 Answer
          1






          active

          oldest

          votes


















          5












          $begingroup$

          In the 1980's, Chun Nip Lee showed that the Spanier Whitehead dual of (the suspension spectrum of) $K(mathbb Z/p, n)$ is contractible for $n >1$. (The key case is $n=2$. The idea: view $K(A,n+1)$ as the bar construction on $K(A,n)$.)



          (No time right now to write more ... but maybe this is enough.)






          share|cite|improve this answer











          $endgroup$








          • 1




            $begingroup$
            Ah, perfect, thanks so much! Here's a link. I was starting to wonder if this might be true... It's oddly difficult to search for basic data about Eilenberg-MacLane spaces, since they're so fundamental and typically used to study other things!
            $endgroup$
            – Tim Campion
            3 hours ago












          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "504"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f328155%2fis-there-a-higher-segal-conjecture%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          5












          $begingroup$

          In the 1980's, Chun Nip Lee showed that the Spanier Whitehead dual of (the suspension spectrum of) $K(mathbb Z/p, n)$ is contractible for $n >1$. (The key case is $n=2$. The idea: view $K(A,n+1)$ as the bar construction on $K(A,n)$.)



          (No time right now to write more ... but maybe this is enough.)






          share|cite|improve this answer











          $endgroup$








          • 1




            $begingroup$
            Ah, perfect, thanks so much! Here's a link. I was starting to wonder if this might be true... It's oddly difficult to search for basic data about Eilenberg-MacLane spaces, since they're so fundamental and typically used to study other things!
            $endgroup$
            – Tim Campion
            3 hours ago
















          5












          $begingroup$

          In the 1980's, Chun Nip Lee showed that the Spanier Whitehead dual of (the suspension spectrum of) $K(mathbb Z/p, n)$ is contractible for $n >1$. (The key case is $n=2$. The idea: view $K(A,n+1)$ as the bar construction on $K(A,n)$.)



          (No time right now to write more ... but maybe this is enough.)






          share|cite|improve this answer











          $endgroup$








          • 1




            $begingroup$
            Ah, perfect, thanks so much! Here's a link. I was starting to wonder if this might be true... It's oddly difficult to search for basic data about Eilenberg-MacLane spaces, since they're so fundamental and typically used to study other things!
            $endgroup$
            – Tim Campion
            3 hours ago














          5












          5








          5





          $begingroup$

          In the 1980's, Chun Nip Lee showed that the Spanier Whitehead dual of (the suspension spectrum of) $K(mathbb Z/p, n)$ is contractible for $n >1$. (The key case is $n=2$. The idea: view $K(A,n+1)$ as the bar construction on $K(A,n)$.)



          (No time right now to write more ... but maybe this is enough.)






          share|cite|improve this answer











          $endgroup$



          In the 1980's, Chun Nip Lee showed that the Spanier Whitehead dual of (the suspension spectrum of) $K(mathbb Z/p, n)$ is contractible for $n >1$. (The key case is $n=2$. The idea: view $K(A,n+1)$ as the bar construction on $K(A,n)$.)



          (No time right now to write more ... but maybe this is enough.)







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 4 mins ago

























          answered 3 hours ago









          Nicholas KuhnNicholas Kuhn

          3,7201221




          3,7201221







          • 1




            $begingroup$
            Ah, perfect, thanks so much! Here's a link. I was starting to wonder if this might be true... It's oddly difficult to search for basic data about Eilenberg-MacLane spaces, since they're so fundamental and typically used to study other things!
            $endgroup$
            – Tim Campion
            3 hours ago













          • 1




            $begingroup$
            Ah, perfect, thanks so much! Here's a link. I was starting to wonder if this might be true... It's oddly difficult to search for basic data about Eilenberg-MacLane spaces, since they're so fundamental and typically used to study other things!
            $endgroup$
            – Tim Campion
            3 hours ago








          1




          1




          $begingroup$
          Ah, perfect, thanks so much! Here's a link. I was starting to wonder if this might be true... It's oddly difficult to search for basic data about Eilenberg-MacLane spaces, since they're so fundamental and typically used to study other things!
          $endgroup$
          – Tim Campion
          3 hours ago





          $begingroup$
          Ah, perfect, thanks so much! Here's a link. I was starting to wonder if this might be true... It's oddly difficult to search for basic data about Eilenberg-MacLane spaces, since they're so fundamental and typically used to study other things!
          $endgroup$
          – Tim Campion
          3 hours ago


















          draft saved

          draft discarded
















































          Thanks for contributing an answer to MathOverflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f328155%2fis-there-a-higher-segal-conjecture%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Францішак Багушэвіч Змест Сям'я | Біяграфія | Творчасць | Мова Багушэвіча | Ацэнкі дзейнасці | Цікавыя факты | Спадчына | Выбраная бібліяграфія | Ушанаванне памяці | У філатэліі | Зноскі | Літаратура | Спасылкі | НавігацыяЛяхоўскі У. Рупіўся дзеля Бога і людзей: Жыццёвы шлях Лявона Вітан-Дубейкаўскага // Вольскі і Памідораў з песняй пра немца Адвакат, паэт, народны заступнік Ашмянскі веснікВ Минске появится площадь Богушевича и улица Сырокомли, Белорусская деловая газета, 19 июля 2001 г.Айцец беларускай нацыянальнай ідэі паўстаў у бронзе Сяргей Аляксандравіч Адашкевіч (1918, Мінск). 80-я гады. Бюст «Францішак Багушэвіч».Яўген Мікалаевіч Ціхановіч. «Партрэт Францішка Багушэвіча»Мікола Мікалаевіч Купава. «Партрэт зачынальніка новай беларускай літаратуры Францішка Багушэвіча»Уладзімір Іванавіч Мелехаў. На помніку «Змагарам за родную мову» Барэльеф «Францішак Багушэвіч»Памяць пра Багушэвіча на Віленшчыне Страчаная сталіца. Беларускія шыльды на вуліцах Вільні«Krynica». Ideologia i przywódcy białoruskiego katolicyzmuФранцішак БагушэвічТворы на knihi.comТворы Францішка Багушэвіча на bellib.byСодаль Уладзімір. Францішак Багушэвіч на Лідчыне;Луцкевіч Антон. Жыцьцё і творчасьць Фр. Багушэвіча ў успамінах ягоных сучасьнікаў // Запісы Беларускага Навуковага таварыства. Вільня, 1938. Сшытак 1. С. 16-34.Большая российская1188761710000 0000 5537 633Xn9209310021619551927869394п

          Partai Komunis Tiongkok Daftar isi Kepemimpinan | Pranala luar | Referensi | Menu navigasidiperiksa1 perubahan tertundacpc.people.com.cnSitus resmiSurat kabar resmi"Why the Communist Party is alive, well and flourishing in China"0307-1235"Full text of Constitution of Communist Party of China"smengembangkannyas

          ValueError: Expected n_neighbors <= n_samples, but n_samples = 1, n_neighbors = 6 (SMOTE) The 2019 Stack Overflow Developer Survey Results Are InCan SMOTE be applied over sequence of words (sentences)?ValueError when doing validation with random forestsSMOTE and multi class oversamplingLogic behind SMOTE-NC?ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)SmoteBoost: Should SMOTE be ran individually for each iteration/tree in the boosting?solving multi-class imbalance classification using smote and OSSUsing SMOTE for Synthetic Data generation to improve performance on unbalanced dataproblem of entry format for a simple model in KerasSVM SMOTE fit_resample() function runs forever with no result