How to choose the number of output channels in a convolutional layer? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) 2019 Moderator Election Q&A - Questionnaire 2019 Community Moderator Election ResultsHow does strided deconvolution works?how to propagate error from convolutional layer to previous layer?Depth of the first pooling layer outcome in tensorflow documentationShould the depth on convolutional layers be set to a figure divisible by 2?How to make output dimensions match input dimensions in CNN?Subsequent convolution layersWhat is the purpose of a 1x1 convolutional layer?Confused about transpose convolution and tensor shapes in tensorflow GAN tuturialChannels in convolutional layer

What LEGO pieces have "real-world" functionality?

What do you call a plan that's an alternative plan in case your initial plan fails?

How can I fade player when goes inside or outside of the area?

If 'B is more likely given A', then 'A is more likely given B'

Disable hyphenation for an entire paragraph

What makes black pepper strong or mild?

Why is "Consequences inflicted." not a sentence?

How can I make names more distinctive without making them longer?

G-Code for resetting to 100% speed

What is the correct way to use the pinch test for dehydration?

Do you forfeit tax refunds/credits if you aren't required to and don't file by April 15?

What do you call a phrase that's not an idiom yet?

How to motivate offshore teams and trust them to deliver?

How widely used is the term Treppenwitz? Is it something that most Germans know?

Why does Python start at index -1 when indexing a list from the end?

How do I keep my slimes from escaping their pens?

Why is black pepper both grey and black?

Is it true that "carbohydrates are of no use for the basal metabolic need"?

Is a manifold-with-boundary with given interior and non-empty boundary essentially unique?

Doubts about chords

What are 'alternative tunings' of a guitar and why would you use them? Doesn't it make it more difficult to play?

What would be the ideal power source for a cybernetic eye?

I am not a queen, who am I?

What are the motives behind Cersei's orders given to Bronn?



How to choose the number of output channels in a convolutional layer?



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)
2019 Moderator Election Q&A - Questionnaire
2019 Community Moderator Election ResultsHow does strided deconvolution works?how to propagate error from convolutional layer to previous layer?Depth of the first pooling layer outcome in tensorflow documentationShould the depth on convolutional layers be set to a figure divisible by 2?How to make output dimensions match input dimensions in CNN?Subsequent convolution layersWhat is the purpose of a 1x1 convolutional layer?Confused about transpose convolution and tensor shapes in tensorflow GAN tuturialChannels in convolutional layer










3












$begingroup$


I'm following a pytorch tutorial where for a tensor of shape [8,3,32,32], where 8 is the batch size, 3 the number of channels and 32 x 32, the pixel size, they define the first convolutional layer as nn.Conv2d(3, 16, 5 ), where 3 is the input size, 16 the output size and 5 the kernel size and it works fine.



in_size = 3
hid1_size = 16
hid2_size = 32
out_size = len(labels)
k_conv_size = 5

class ConvNet(nn.Module):

def __init__(self):
super(ConvNet, self).__init__()

self.layer1 = nn.Sequential(
nn.Conv2d(in_size, hid1_size, k_conv_size ),
nn.BatchNorm2d(hid1_size),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2))

self.layer2 = nn.Sequential(
nn.Conv2d(hid1_size, hid2_size, k_conv_size),
nn.BatchNorm2d(hid2_size),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2))

self.fc = nn.Linear(hid2_size * k_conv_size * k_conv_size, out_size)

def forward(self, x):
out = self.layer1(x)
out = self.layer2(out)
out = out.reshape(out.size(0), -1)
out = self.fc(out)

return out


I change the output size from 16 to 32 and that of the next layer from 32 to 64 and it still works.
But when I resize the tensor to have the shape [8, 3, 64, 64], it throws a mismatch error that says size mismatch, m1: [16 x 5408], m2: [800 x 4]
I understand m2 is what it's expecting and m1 is what I'm giving.



But I don't understand where the values of m2 and m1 come from and how to change the hid1_size accordingly.



I understand the relationship between the shape of input data and the neurons in the first layer when building regular linear layers but how to define the relationship between the shape of the input and the number of channels produced by the convolutional layer in cnns?










share|improve this question









$endgroup$




bumped to the homepage by Community 2 hours ago


This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.



















    3












    $begingroup$


    I'm following a pytorch tutorial where for a tensor of shape [8,3,32,32], where 8 is the batch size, 3 the number of channels and 32 x 32, the pixel size, they define the first convolutional layer as nn.Conv2d(3, 16, 5 ), where 3 is the input size, 16 the output size and 5 the kernel size and it works fine.



    in_size = 3
    hid1_size = 16
    hid2_size = 32
    out_size = len(labels)
    k_conv_size = 5

    class ConvNet(nn.Module):

    def __init__(self):
    super(ConvNet, self).__init__()

    self.layer1 = nn.Sequential(
    nn.Conv2d(in_size, hid1_size, k_conv_size ),
    nn.BatchNorm2d(hid1_size),
    nn.ReLU(),
    nn.MaxPool2d(kernel_size=2))

    self.layer2 = nn.Sequential(
    nn.Conv2d(hid1_size, hid2_size, k_conv_size),
    nn.BatchNorm2d(hid2_size),
    nn.ReLU(),
    nn.MaxPool2d(kernel_size=2))

    self.fc = nn.Linear(hid2_size * k_conv_size * k_conv_size, out_size)

    def forward(self, x):
    out = self.layer1(x)
    out = self.layer2(out)
    out = out.reshape(out.size(0), -1)
    out = self.fc(out)

    return out


    I change the output size from 16 to 32 and that of the next layer from 32 to 64 and it still works.
    But when I resize the tensor to have the shape [8, 3, 64, 64], it throws a mismatch error that says size mismatch, m1: [16 x 5408], m2: [800 x 4]
    I understand m2 is what it's expecting and m1 is what I'm giving.



    But I don't understand where the values of m2 and m1 come from and how to change the hid1_size accordingly.



    I understand the relationship between the shape of input data and the neurons in the first layer when building regular linear layers but how to define the relationship between the shape of the input and the number of channels produced by the convolutional layer in cnns?










    share|improve this question









    $endgroup$




    bumped to the homepage by Community 2 hours ago


    This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.

















      3












      3








      3





      $begingroup$


      I'm following a pytorch tutorial where for a tensor of shape [8,3,32,32], where 8 is the batch size, 3 the number of channels and 32 x 32, the pixel size, they define the first convolutional layer as nn.Conv2d(3, 16, 5 ), where 3 is the input size, 16 the output size and 5 the kernel size and it works fine.



      in_size = 3
      hid1_size = 16
      hid2_size = 32
      out_size = len(labels)
      k_conv_size = 5

      class ConvNet(nn.Module):

      def __init__(self):
      super(ConvNet, self).__init__()

      self.layer1 = nn.Sequential(
      nn.Conv2d(in_size, hid1_size, k_conv_size ),
      nn.BatchNorm2d(hid1_size),
      nn.ReLU(),
      nn.MaxPool2d(kernel_size=2))

      self.layer2 = nn.Sequential(
      nn.Conv2d(hid1_size, hid2_size, k_conv_size),
      nn.BatchNorm2d(hid2_size),
      nn.ReLU(),
      nn.MaxPool2d(kernel_size=2))

      self.fc = nn.Linear(hid2_size * k_conv_size * k_conv_size, out_size)

      def forward(self, x):
      out = self.layer1(x)
      out = self.layer2(out)
      out = out.reshape(out.size(0), -1)
      out = self.fc(out)

      return out


      I change the output size from 16 to 32 and that of the next layer from 32 to 64 and it still works.
      But when I resize the tensor to have the shape [8, 3, 64, 64], it throws a mismatch error that says size mismatch, m1: [16 x 5408], m2: [800 x 4]
      I understand m2 is what it's expecting and m1 is what I'm giving.



      But I don't understand where the values of m2 and m1 come from and how to change the hid1_size accordingly.



      I understand the relationship between the shape of input data and the neurons in the first layer when building regular linear layers but how to define the relationship between the shape of the input and the number of channels produced by the convolutional layer in cnns?










      share|improve this question









      $endgroup$




      I'm following a pytorch tutorial where for a tensor of shape [8,3,32,32], where 8 is the batch size, 3 the number of channels and 32 x 32, the pixel size, they define the first convolutional layer as nn.Conv2d(3, 16, 5 ), where 3 is the input size, 16 the output size and 5 the kernel size and it works fine.



      in_size = 3
      hid1_size = 16
      hid2_size = 32
      out_size = len(labels)
      k_conv_size = 5

      class ConvNet(nn.Module):

      def __init__(self):
      super(ConvNet, self).__init__()

      self.layer1 = nn.Sequential(
      nn.Conv2d(in_size, hid1_size, k_conv_size ),
      nn.BatchNorm2d(hid1_size),
      nn.ReLU(),
      nn.MaxPool2d(kernel_size=2))

      self.layer2 = nn.Sequential(
      nn.Conv2d(hid1_size, hid2_size, k_conv_size),
      nn.BatchNorm2d(hid2_size),
      nn.ReLU(),
      nn.MaxPool2d(kernel_size=2))

      self.fc = nn.Linear(hid2_size * k_conv_size * k_conv_size, out_size)

      def forward(self, x):
      out = self.layer1(x)
      out = self.layer2(out)
      out = out.reshape(out.size(0), -1)
      out = self.fc(out)

      return out


      I change the output size from 16 to 32 and that of the next layer from 32 to 64 and it still works.
      But when I resize the tensor to have the shape [8, 3, 64, 64], it throws a mismatch error that says size mismatch, m1: [16 x 5408], m2: [800 x 4]
      I understand m2 is what it's expecting and m1 is what I'm giving.



      But I don't understand where the values of m2 and m1 come from and how to change the hid1_size accordingly.



      I understand the relationship between the shape of input data and the neurons in the first layer when building regular linear layers but how to define the relationship between the shape of the input and the number of channels produced by the convolutional layer in cnns?







      deep-learning cnn convolution pytorch






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Mar 15 at 7:34









      Judy T RajJudy T Raj

      1211




      1211





      bumped to the homepage by Community 2 hours ago


      This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.







      bumped to the homepage by Community 2 hours ago


      This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          I recommend you reading the guide to convolution arithmetic for deep learning . There you can find very well written explanations about calculating the about size of your layers depending on kernel size, stride, dilatation, etc.



          Further you can easily get your intermediate shapes in pytorch by adding a simple print(x.shape) statement in your forward pass and adapting your number of neurons in your fully connected layers.



          Last but not least. When you cange your input size from 32x32 to 64x64 your output of your final convolutional layer will also have approximately doubled size (depends on kernel size and padding) in each dimension (height, width) and hence you quadruple (double x double) the number of neurons needed in your linear layer.






          share|improve this answer









          $endgroup$













            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "557"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f47328%2fhow-to-choose-the-number-of-output-channels-in-a-convolutional-layer%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            I recommend you reading the guide to convolution arithmetic for deep learning . There you can find very well written explanations about calculating the about size of your layers depending on kernel size, stride, dilatation, etc.



            Further you can easily get your intermediate shapes in pytorch by adding a simple print(x.shape) statement in your forward pass and adapting your number of neurons in your fully connected layers.



            Last but not least. When you cange your input size from 32x32 to 64x64 your output of your final convolutional layer will also have approximately doubled size (depends on kernel size and padding) in each dimension (height, width) and hence you quadruple (double x double) the number of neurons needed in your linear layer.






            share|improve this answer









            $endgroup$

















              0












              $begingroup$

              I recommend you reading the guide to convolution arithmetic for deep learning . There you can find very well written explanations about calculating the about size of your layers depending on kernel size, stride, dilatation, etc.



              Further you can easily get your intermediate shapes in pytorch by adding a simple print(x.shape) statement in your forward pass and adapting your number of neurons in your fully connected layers.



              Last but not least. When you cange your input size from 32x32 to 64x64 your output of your final convolutional layer will also have approximately doubled size (depends on kernel size and padding) in each dimension (height, width) and hence you quadruple (double x double) the number of neurons needed in your linear layer.






              share|improve this answer









              $endgroup$















                0












                0








                0





                $begingroup$

                I recommend you reading the guide to convolution arithmetic for deep learning . There you can find very well written explanations about calculating the about size of your layers depending on kernel size, stride, dilatation, etc.



                Further you can easily get your intermediate shapes in pytorch by adding a simple print(x.shape) statement in your forward pass and adapting your number of neurons in your fully connected layers.



                Last but not least. When you cange your input size from 32x32 to 64x64 your output of your final convolutional layer will also have approximately doubled size (depends on kernel size and padding) in each dimension (height, width) and hence you quadruple (double x double) the number of neurons needed in your linear layer.






                share|improve this answer









                $endgroup$



                I recommend you reading the guide to convolution arithmetic for deep learning . There you can find very well written explanations about calculating the about size of your layers depending on kernel size, stride, dilatation, etc.



                Further you can easily get your intermediate shapes in pytorch by adding a simple print(x.shape) statement in your forward pass and adapting your number of neurons in your fully connected layers.



                Last but not least. When you cange your input size from 32x32 to 64x64 your output of your final convolutional layer will also have approximately doubled size (depends on kernel size and padding) in each dimension (height, width) and hence you quadruple (double x double) the number of neurons needed in your linear layer.







                share|improve this answer












                share|improve this answer



                share|improve this answer










                answered Mar 15 at 7:49









                Andreas LookAndreas Look

                449111




                449111



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Data Science Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f47328%2fhow-to-choose-the-number-of-output-channels-in-a-convolutional-layer%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Францішак Багушэвіч Змест Сям'я | Біяграфія | Творчасць | Мова Багушэвіча | Ацэнкі дзейнасці | Цікавыя факты | Спадчына | Выбраная бібліяграфія | Ушанаванне памяці | У філатэліі | Зноскі | Літаратура | Спасылкі | НавігацыяЛяхоўскі У. Рупіўся дзеля Бога і людзей: Жыццёвы шлях Лявона Вітан-Дубейкаўскага // Вольскі і Памідораў з песняй пра немца Адвакат, паэт, народны заступнік Ашмянскі веснікВ Минске появится площадь Богушевича и улица Сырокомли, Белорусская деловая газета, 19 июля 2001 г.Айцец беларускай нацыянальнай ідэі паўстаў у бронзе Сяргей Аляксандравіч Адашкевіч (1918, Мінск). 80-я гады. Бюст «Францішак Багушэвіч».Яўген Мікалаевіч Ціхановіч. «Партрэт Францішка Багушэвіча»Мікола Мікалаевіч Купава. «Партрэт зачынальніка новай беларускай літаратуры Францішка Багушэвіча»Уладзімір Іванавіч Мелехаў. На помніку «Змагарам за родную мову» Барэльеф «Францішак Багушэвіч»Памяць пра Багушэвіча на Віленшчыне Страчаная сталіца. Беларускія шыльды на вуліцах Вільні«Krynica». Ideologia i przywódcy białoruskiego katolicyzmuФранцішак БагушэвічТворы на knihi.comТворы Францішка Багушэвіча на bellib.byСодаль Уладзімір. Францішак Багушэвіч на Лідчыне;Луцкевіч Антон. Жыцьцё і творчасьць Фр. Багушэвіча ў успамінах ягоных сучасьнікаў // Запісы Беларускага Навуковага таварыства. Вільня, 1938. Сшытак 1. С. 16-34.Большая российская1188761710000 0000 5537 633Xn9209310021619551927869394п

                    Беларусь Змест Назва Гісторыя Геаграфія Сімволіка Дзяржаўны лад Палітычныя партыі Міжнароднае становішча і знешняя палітыка Адміністрацыйны падзел Насельніцтва Эканоміка Культура і грамадства Сацыяльная сфера Узброеныя сілы Заўвагі Літаратура Спасылкі НавігацыяHGЯOiТоп-2011 г. (па версіі ej.by)Топ-2013 г. (па версіі ej.by)Топ-2016 г. (па версіі ej.by)Топ-2017 г. (па версіі ej.by)Нацыянальны статыстычны камітэт Рэспублікі БеларусьШчыльнасць насельніцтва па краінахhttp://naviny.by/rubrics/society/2011/09/16/ic_articles_116_175144/А. Калечыц, У. Ксяндзоў. Спробы засялення краю неандэртальскім чалавекам.І ў Менску былі мамантыА. Калечыц, У. Ксяндзоў. Старажытны каменны век (палеаліт). Першапачатковае засяленне тэрыторыіГ. Штыхаў. Балты і славяне ў VI—VIII стст.М. Клімаў. Полацкае княства ў IX—XI стст.Г. Штыхаў, В. Ляўко. Палітычная гісторыя Полацкай зямліГ. Штыхаў. Дзяржаўны лад у землях-княствахГ. Штыхаў. Дзяржаўны лад у землях-княствахБеларускія землі ў складзе Вялікага Княства ЛітоўскагаЛюблінская унія 1569 г."The Early Stages of Independence"Zapomniane prawdy25 гадоў таму было аб'яўлена, што Язэп Пілсудскі — беларус (фота)Наша вадаДакументы ЧАЭС: Забруджванне тэрыторыі Беларусі « ЧАЭС Зона адчужэнняСведения о политических партиях, зарегистрированных в Республике Беларусь // Министерство юстиции Республики БеларусьСтатыстычны бюлетэнь „Полаўзроставая структура насельніцтва Рэспублікі Беларусь на 1 студзеня 2012 года і сярэднегадовая колькасць насельніцтва за 2011 год“Индекс человеческого развития Беларуси — не было бы нижеБеларусь занимает первое место в СНГ по индексу развития с учетом гендерного факцёраНацыянальны статыстычны камітэт Рэспублікі БеларусьКанстытуцыя РБ. Артыкул 17Трансфармацыйныя задачы БеларусіВыйсце з крызісу — далейшае рэфармаванне Беларускі рубель — сусветны лідар па дэвальвацыяхПра змену коштаў у кастрычніку 2011 г.Бядней за беларусаў у СНД толькі таджыкіСярэдні заробак у верасні дасягнуў 2,26 мільёна рублёўЭканомікаГаласуем за ТОП-100 беларускай прозыСучасныя беларускія мастакіАрхитектура Беларуси BELARUS.BYА. Каханоўскі. Культура Беларусі ўсярэдзіне XVII—XVIII ст.Анталогія беларускай народнай песні, гуказапісы спеваўБеларускія Музычныя IнструментыБеларускі рок, які мы страцілі. Топ-10 гуртоў«Мясцовы час» — нязгаслая легенда беларускай рок-музыкіСЯРГЕЙ БУДКІН. МЫ НЯ ЗНАЕМ СВАЁЙ МУЗЫКІМ. А. Каладзінскі. НАРОДНЫ ТЭАТРМагнацкія культурныя цэнтрыПублічная дыскусія «Беларуская новая пьеса: без беларускай мовы ці беларуская?»Беларускія драматургі па-ранейшаму лепш ставяцца за мяжой, чым на радзіме«Працэс незалежнага кіно пайшоў, і дзяржаву турбуе яго непадкантрольнасць»Беларускія філосафы ў пошуках прасторыВсе идём в библиотекуАрхіваванаАб Нацыянальнай праграме даследавання і выкарыстання касмічнай прасторы ў мірных мэтах на 2008—2012 гадыУ космас — разам.У суседнім з Барысаўскім раёне пабудуюць Камандна-вымяральны пунктСвяты і абрады беларусаў«Мірныя бульбашы з малой краіны» — 5 непраўдзівых стэрэатыпаў пра БеларусьМ. Раманюк. Беларускае народнае адзеннеУ Беларусі скарачаецца колькасць злачынстваўЛукашэнка незадаволены мінскімі ўладамі Крадзяжы складаюць у Мінску каля 70% злачынстваў Узровень злачыннасці ў Мінскай вобласці — адзін з самых высокіх у краіне Генпракуратура аналізуе стан са злачыннасцю ў Беларусі па каэфіцыенце злачыннасці У Беларусі стабілізавалася крымінагеннае становішча, лічыць генпракурорЗамежнікі сталі здзяйсняць у Беларусі больш злачынстваўМУС Беларусі турбуе рост рэцыдыўнай злачыннасціЯ з ЖЭСа. Дазволіце вас абкрасці! Рэйтынг усіх службаў і падраздзяленняў ГУУС Мінгарвыканкама вырасАб КДБ РБГісторыя Аператыўна-аналітычнага цэнтра РБГісторыя ДКФРТаможняagentura.ruБеларусьBelarus.by — Афіцыйны сайт Рэспублікі БеларусьСайт урада БеларусіRadzima.org — Збор архітэктурных помнікаў, гісторыя Беларусі«Глобус Беларуси»Гербы и флаги БеларусиАсаблівасці каменнага веку на БеларусіА. Калечыц, У. Ксяндзоў. Старажытны каменны век (палеаліт). Першапачатковае засяленне тэрыторыіУ. Ксяндзоў. Сярэдні каменны век (мезаліт). Засяленне краю плямёнамі паляўнічых, рыбакоў і збіральнікаўА. Калечыц, М. Чарняўскі. Плямёны на тэрыторыі Беларусі ў новым каменным веку (неаліце)А. Калечыц, У. Ксяндзоў, М. Чарняўскі. Гаспадарчыя заняткі ў каменным векуЭ. Зайкоўскі. Духоўная культура ў каменным векуАсаблівасці бронзавага веку на БеларусіФарміраванне супольнасцей ранняга перыяду бронзавага векуФотографии БеларусиРоля беларускіх зямель ва ўтварэнні і ўмацаванні ВКЛВ. Фадзеева. З гісторыі развіцця беларускай народнай вышыўкіDMOZGran catalanaБольшая российскаяBritannica (анлайн)Швейцарскі гістарычны15325917611952699xDA123282154079143-90000 0001 2171 2080n9112870100577502ge128882171858027501086026362074122714179пппппп

                    ValueError: Expected n_neighbors <= n_samples, but n_samples = 1, n_neighbors = 6 (SMOTE) The 2019 Stack Overflow Developer Survey Results Are InCan SMOTE be applied over sequence of words (sentences)?ValueError when doing validation with random forestsSMOTE and multi class oversamplingLogic behind SMOTE-NC?ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)SmoteBoost: Should SMOTE be ran individually for each iteration/tree in the boosting?solving multi-class imbalance classification using smote and OSSUsing SMOTE for Synthetic Data generation to improve performance on unbalanced dataproblem of entry format for a simple model in KerasSVM SMOTE fit_resample() function runs forever with no result