Solution of this Diophantine Equation The Next CEO of Stack OverflowA Diophantine equation solved when N is not a square?Find all integer solutions to $x^2-2y^2=1$Methods for quartic diophantine equationsolving this equation using prime numbersHas anyone solved this general Diophantine Equation?Generalization of a Diophantine Equation ProblemConjecture about linear diophantine equationsDiophantine equations for polynomialsFactor proofs problemWhy $n=2$ should be a prime number however it is even integer and is not similar with other primes?Does this qualify as a prime-representing Diophantine equation?What are the properties of abundancy numbers?

Rotate a column

Why is Miller's case titled R (Miller)?

When airplanes disconnect from a tanker during air to air refueling, why do they bank so sharply to the right?

Is HostGator storing my password in plaintext?

A pseudo-riley?

Return the Closest Prime Number

Does the Brexit deal have to be agreed by both Houses?

What does this shorthand mean?

Visit to the USA with ESTA approved before trip to Iran

What is meant by a M next to a roman numeral?

Is a stroke of luck acceptable after a series of unfavorable events?

Customer Requests (Sometimes) Drive Me Bonkers!

How to Reset Passwords on Multiple Websites Easily?

The King's new dress

What is the difference between "behavior" and "behaviour"?

Under what conditions does the function C = f(A,B) satisfy H(C|A) = H(B)?

Is there a good way to store credentials outside of a password manager?

When did Lisp start using symbols for arithmetic?

How to draw fully connected graph link picture bellow in latex?

Inappropriate reference requests from Journal reviewers

How would telepathy be more difficult than verbal communication?

Why did we only see the N-1 starfighters in one film?

Increase performance creating Mandelbrot set in python

What is the point of a new vote on May's deal when the indicative votes suggest she will not win?



Solution of this Diophantine Equation



The Next CEO of Stack OverflowA Diophantine equation solved when N is not a square?Find all integer solutions to $x^2-2y^2=1$Methods for quartic diophantine equationsolving this equation using prime numbersHas anyone solved this general Diophantine Equation?Generalization of a Diophantine Equation ProblemConjecture about linear diophantine equationsDiophantine equations for polynomialsFactor proofs problemWhy $n=2$ should be a prime number however it is even integer and is not similar with other primes?Does this qualify as a prime-representing Diophantine equation?What are the properties of abundancy numbers?










4












$begingroup$



If $x$ and $y$ are prime numbers which satisfy $x^2-2y^2=1$, solve for $x$ and $y$.




My attempt:



$x^2-2y^2=1$



$implies (x+sqrt2y)(x-sqrt2y)=1$



$implies (x+sqrt2y)=1$ and $(x-sqrt2y)=1$



$implies x=1$ and $y=0$



Clearly $x$ and $y$ are not prime numbers . Why is my solution not working. I have been able to solve similar type of equations by factorizing and then listing down the integer factors and the different cases. Why is it not working here?










share|cite|improve this question









$endgroup$







  • 1




    $begingroup$
    en.wikipedia.org/wiki/Pell%27s_equation
    $endgroup$
    – Sil
    3 hours ago










  • $begingroup$
    See A Diophantine equation solved when N is not a square? and Find all integer solutions to $x^2-2y^2=1$
    $endgroup$
    – Sil
    3 hours ago















4












$begingroup$



If $x$ and $y$ are prime numbers which satisfy $x^2-2y^2=1$, solve for $x$ and $y$.




My attempt:



$x^2-2y^2=1$



$implies (x+sqrt2y)(x-sqrt2y)=1$



$implies (x+sqrt2y)=1$ and $(x-sqrt2y)=1$



$implies x=1$ and $y=0$



Clearly $x$ and $y$ are not prime numbers . Why is my solution not working. I have been able to solve similar type of equations by factorizing and then listing down the integer factors and the different cases. Why is it not working here?










share|cite|improve this question









$endgroup$







  • 1




    $begingroup$
    en.wikipedia.org/wiki/Pell%27s_equation
    $endgroup$
    – Sil
    3 hours ago










  • $begingroup$
    See A Diophantine equation solved when N is not a square? and Find all integer solutions to $x^2-2y^2=1$
    $endgroup$
    – Sil
    3 hours ago













4












4








4


1



$begingroup$



If $x$ and $y$ are prime numbers which satisfy $x^2-2y^2=1$, solve for $x$ and $y$.




My attempt:



$x^2-2y^2=1$



$implies (x+sqrt2y)(x-sqrt2y)=1$



$implies (x+sqrt2y)=1$ and $(x-sqrt2y)=1$



$implies x=1$ and $y=0$



Clearly $x$ and $y$ are not prime numbers . Why is my solution not working. I have been able to solve similar type of equations by factorizing and then listing down the integer factors and the different cases. Why is it not working here?










share|cite|improve this question









$endgroup$





If $x$ and $y$ are prime numbers which satisfy $x^2-2y^2=1$, solve for $x$ and $y$.




My attempt:



$x^2-2y^2=1$



$implies (x+sqrt2y)(x-sqrt2y)=1$



$implies (x+sqrt2y)=1$ and $(x-sqrt2y)=1$



$implies x=1$ and $y=0$



Clearly $x$ and $y$ are not prime numbers . Why is my solution not working. I have been able to solve similar type of equations by factorizing and then listing down the integer factors and the different cases. Why is it not working here?







elementary-number-theory prime-numbers diophantine-equations






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 3 hours ago









MrAPMrAP

1,25121432




1,25121432







  • 1




    $begingroup$
    en.wikipedia.org/wiki/Pell%27s_equation
    $endgroup$
    – Sil
    3 hours ago










  • $begingroup$
    See A Diophantine equation solved when N is not a square? and Find all integer solutions to $x^2-2y^2=1$
    $endgroup$
    – Sil
    3 hours ago












  • 1




    $begingroup$
    en.wikipedia.org/wiki/Pell%27s_equation
    $endgroup$
    – Sil
    3 hours ago










  • $begingroup$
    See A Diophantine equation solved when N is not a square? and Find all integer solutions to $x^2-2y^2=1$
    $endgroup$
    – Sil
    3 hours ago







1




1




$begingroup$
en.wikipedia.org/wiki/Pell%27s_equation
$endgroup$
– Sil
3 hours ago




$begingroup$
en.wikipedia.org/wiki/Pell%27s_equation
$endgroup$
– Sil
3 hours ago












$begingroup$
See A Diophantine equation solved when N is not a square? and Find all integer solutions to $x^2-2y^2=1$
$endgroup$
– Sil
3 hours ago




$begingroup$
See A Diophantine equation solved when N is not a square? and Find all integer solutions to $x^2-2y^2=1$
$endgroup$
– Sil
3 hours ago










2 Answers
2






active

oldest

votes


















6












$begingroup$

What about




beginalign*&x^2-2y^2=1tag1\iff & x^2-1=(x+1)(x-1)=2y^2endalign*




Since $2mid (x+1)(x-1)$, we conclude that both $(x+1)$ and $(x-1)$ have to be even, and hence $$4mid 2y^2implies 2mid y^2implies 2mid y$$ and since $y$ is prime, $colorredy=2$. Can you end it now?



From (1), it follows immediately that $x^2-2y^2=x^2-8=1$. Thus,
the only solution is $colorblue(3, 2)$.




Addendum



The problem with your method is that for $a,binmathbb R$



$$a·b=1notRightarrow a=1;text and ;b=1$$



In fact, this only works if $$a·b=0implies a=0;text or ;b=0$$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    +1 for the correct solution but you did not answer my question. What is wrong with my method?
    $endgroup$
    – MrAP
    2 hours ago










  • $begingroup$
    Can you put that in your answer.
    $endgroup$
    – MrAP
    2 hours ago


















1












$begingroup$

The fault is that irrationals can also produce the product to $1$.

Consider $x=3$ and $y=2$ then we get, $(3+sqrt2 *2)(3-sqrt2*2)=1$

Hence, the fault is moving from step 2 to step 3. You should look under the ring of $a+bsqrt2$ in that step.






share|cite|improve this answer









$endgroup$








  • 1




    $begingroup$
    This is not an answer to the question. If it's a comment on the other answer, then it goes under the comments section there.
    $endgroup$
    – B. Goddard
    2 hours ago










  • $begingroup$
    "Clearly x and y are not prime numbers . Why is my solution not working. I have been able to solve similar type of equations by factorizing and then listing down the integer factors and the different cases. Why is it not working here?"
    $endgroup$
    – Mann
    2 hours ago










  • $begingroup$
    Please read the question. I answered exactly what has been asked.
    $endgroup$
    – Mann
    2 hours ago












Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3166201%2fsolution-of-this-diophantine-equation%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









6












$begingroup$

What about




beginalign*&x^2-2y^2=1tag1\iff & x^2-1=(x+1)(x-1)=2y^2endalign*




Since $2mid (x+1)(x-1)$, we conclude that both $(x+1)$ and $(x-1)$ have to be even, and hence $$4mid 2y^2implies 2mid y^2implies 2mid y$$ and since $y$ is prime, $colorredy=2$. Can you end it now?



From (1), it follows immediately that $x^2-2y^2=x^2-8=1$. Thus,
the only solution is $colorblue(3, 2)$.




Addendum



The problem with your method is that for $a,binmathbb R$



$$a·b=1notRightarrow a=1;text and ;b=1$$



In fact, this only works if $$a·b=0implies a=0;text or ;b=0$$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    +1 for the correct solution but you did not answer my question. What is wrong with my method?
    $endgroup$
    – MrAP
    2 hours ago










  • $begingroup$
    Can you put that in your answer.
    $endgroup$
    – MrAP
    2 hours ago















6












$begingroup$

What about




beginalign*&x^2-2y^2=1tag1\iff & x^2-1=(x+1)(x-1)=2y^2endalign*




Since $2mid (x+1)(x-1)$, we conclude that both $(x+1)$ and $(x-1)$ have to be even, and hence $$4mid 2y^2implies 2mid y^2implies 2mid y$$ and since $y$ is prime, $colorredy=2$. Can you end it now?



From (1), it follows immediately that $x^2-2y^2=x^2-8=1$. Thus,
the only solution is $colorblue(3, 2)$.




Addendum



The problem with your method is that for $a,binmathbb R$



$$a·b=1notRightarrow a=1;text and ;b=1$$



In fact, this only works if $$a·b=0implies a=0;text or ;b=0$$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    +1 for the correct solution but you did not answer my question. What is wrong with my method?
    $endgroup$
    – MrAP
    2 hours ago










  • $begingroup$
    Can you put that in your answer.
    $endgroup$
    – MrAP
    2 hours ago













6












6








6





$begingroup$

What about




beginalign*&x^2-2y^2=1tag1\iff & x^2-1=(x+1)(x-1)=2y^2endalign*




Since $2mid (x+1)(x-1)$, we conclude that both $(x+1)$ and $(x-1)$ have to be even, and hence $$4mid 2y^2implies 2mid y^2implies 2mid y$$ and since $y$ is prime, $colorredy=2$. Can you end it now?



From (1), it follows immediately that $x^2-2y^2=x^2-8=1$. Thus,
the only solution is $colorblue(3, 2)$.




Addendum



The problem with your method is that for $a,binmathbb R$



$$a·b=1notRightarrow a=1;text and ;b=1$$



In fact, this only works if $$a·b=0implies a=0;text or ;b=0$$






share|cite|improve this answer











$endgroup$



What about




beginalign*&x^2-2y^2=1tag1\iff & x^2-1=(x+1)(x-1)=2y^2endalign*




Since $2mid (x+1)(x-1)$, we conclude that both $(x+1)$ and $(x-1)$ have to be even, and hence $$4mid 2y^2implies 2mid y^2implies 2mid y$$ and since $y$ is prime, $colorredy=2$. Can you end it now?



From (1), it follows immediately that $x^2-2y^2=x^2-8=1$. Thus,
the only solution is $colorblue(3, 2)$.




Addendum



The problem with your method is that for $a,binmathbb R$



$$a·b=1notRightarrow a=1;text and ;b=1$$



In fact, this only works if $$a·b=0implies a=0;text or ;b=0$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 2 hours ago

























answered 3 hours ago









Dr. MathvaDr. Mathva

2,992527




2,992527











  • $begingroup$
    +1 for the correct solution but you did not answer my question. What is wrong with my method?
    $endgroup$
    – MrAP
    2 hours ago










  • $begingroup$
    Can you put that in your answer.
    $endgroup$
    – MrAP
    2 hours ago
















  • $begingroup$
    +1 for the correct solution but you did not answer my question. What is wrong with my method?
    $endgroup$
    – MrAP
    2 hours ago










  • $begingroup$
    Can you put that in your answer.
    $endgroup$
    – MrAP
    2 hours ago















$begingroup$
+1 for the correct solution but you did not answer my question. What is wrong with my method?
$endgroup$
– MrAP
2 hours ago




$begingroup$
+1 for the correct solution but you did not answer my question. What is wrong with my method?
$endgroup$
– MrAP
2 hours ago












$begingroup$
Can you put that in your answer.
$endgroup$
– MrAP
2 hours ago




$begingroup$
Can you put that in your answer.
$endgroup$
– MrAP
2 hours ago











1












$begingroup$

The fault is that irrationals can also produce the product to $1$.

Consider $x=3$ and $y=2$ then we get, $(3+sqrt2 *2)(3-sqrt2*2)=1$

Hence, the fault is moving from step 2 to step 3. You should look under the ring of $a+bsqrt2$ in that step.






share|cite|improve this answer









$endgroup$








  • 1




    $begingroup$
    This is not an answer to the question. If it's a comment on the other answer, then it goes under the comments section there.
    $endgroup$
    – B. Goddard
    2 hours ago










  • $begingroup$
    "Clearly x and y are not prime numbers . Why is my solution not working. I have been able to solve similar type of equations by factorizing and then listing down the integer factors and the different cases. Why is it not working here?"
    $endgroup$
    – Mann
    2 hours ago










  • $begingroup$
    Please read the question. I answered exactly what has been asked.
    $endgroup$
    – Mann
    2 hours ago
















1












$begingroup$

The fault is that irrationals can also produce the product to $1$.

Consider $x=3$ and $y=2$ then we get, $(3+sqrt2 *2)(3-sqrt2*2)=1$

Hence, the fault is moving from step 2 to step 3. You should look under the ring of $a+bsqrt2$ in that step.






share|cite|improve this answer









$endgroup$








  • 1




    $begingroup$
    This is not an answer to the question. If it's a comment on the other answer, then it goes under the comments section there.
    $endgroup$
    – B. Goddard
    2 hours ago










  • $begingroup$
    "Clearly x and y are not prime numbers . Why is my solution not working. I have been able to solve similar type of equations by factorizing and then listing down the integer factors and the different cases. Why is it not working here?"
    $endgroup$
    – Mann
    2 hours ago










  • $begingroup$
    Please read the question. I answered exactly what has been asked.
    $endgroup$
    – Mann
    2 hours ago














1












1








1





$begingroup$

The fault is that irrationals can also produce the product to $1$.

Consider $x=3$ and $y=2$ then we get, $(3+sqrt2 *2)(3-sqrt2*2)=1$

Hence, the fault is moving from step 2 to step 3. You should look under the ring of $a+bsqrt2$ in that step.






share|cite|improve this answer









$endgroup$



The fault is that irrationals can also produce the product to $1$.

Consider $x=3$ and $y=2$ then we get, $(3+sqrt2 *2)(3-sqrt2*2)=1$

Hence, the fault is moving from step 2 to step 3. You should look under the ring of $a+bsqrt2$ in that step.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered 3 hours ago









MannMann

2,0751724




2,0751724







  • 1




    $begingroup$
    This is not an answer to the question. If it's a comment on the other answer, then it goes under the comments section there.
    $endgroup$
    – B. Goddard
    2 hours ago










  • $begingroup$
    "Clearly x and y are not prime numbers . Why is my solution not working. I have been able to solve similar type of equations by factorizing and then listing down the integer factors and the different cases. Why is it not working here?"
    $endgroup$
    – Mann
    2 hours ago










  • $begingroup$
    Please read the question. I answered exactly what has been asked.
    $endgroup$
    – Mann
    2 hours ago













  • 1




    $begingroup$
    This is not an answer to the question. If it's a comment on the other answer, then it goes under the comments section there.
    $endgroup$
    – B. Goddard
    2 hours ago










  • $begingroup$
    "Clearly x and y are not prime numbers . Why is my solution not working. I have been able to solve similar type of equations by factorizing and then listing down the integer factors and the different cases. Why is it not working here?"
    $endgroup$
    – Mann
    2 hours ago










  • $begingroup$
    Please read the question. I answered exactly what has been asked.
    $endgroup$
    – Mann
    2 hours ago








1




1




$begingroup$
This is not an answer to the question. If it's a comment on the other answer, then it goes under the comments section there.
$endgroup$
– B. Goddard
2 hours ago




$begingroup$
This is not an answer to the question. If it's a comment on the other answer, then it goes under the comments section there.
$endgroup$
– B. Goddard
2 hours ago












$begingroup$
"Clearly x and y are not prime numbers . Why is my solution not working. I have been able to solve similar type of equations by factorizing and then listing down the integer factors and the different cases. Why is it not working here?"
$endgroup$
– Mann
2 hours ago




$begingroup$
"Clearly x and y are not prime numbers . Why is my solution not working. I have been able to solve similar type of equations by factorizing and then listing down the integer factors and the different cases. Why is it not working here?"
$endgroup$
– Mann
2 hours ago












$begingroup$
Please read the question. I answered exactly what has been asked.
$endgroup$
– Mann
2 hours ago





$begingroup$
Please read the question. I answered exactly what has been asked.
$endgroup$
– Mann
2 hours ago


















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3166201%2fsolution-of-this-diophantine-equation%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

ValueError: Error when checking input: expected conv2d_13_input to have shape (3, 150, 150) but got array with shape (150, 150, 3)2019 Community Moderator ElectionError when checking : expected dense_1_input to have shape (None, 5) but got array with shape (200, 1)Error 'Expected 2D array, got 1D array instead:'ValueError: Error when checking input: expected lstm_41_input to have 3 dimensions, but got array with shape (40000,100)ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)ValueError: Error when checking target: expected dense_2 to have shape (1,) but got array with shape (0,)Keras exception: ValueError: Error when checking input: expected conv2d_1_input to have shape (150, 150, 3) but got array with shape (256, 256, 3)Steps taking too long to completewhen checking input: expected dense_1_input to have shape (13328,) but got array with shape (317,)ValueError: Error when checking target: expected dense_3 to have shape (None, 1) but got array with shape (7715, 40000)Keras exception: Error when checking input: expected dense_input to have shape (2,) but got array with shape (1,)

Ружовы пелікан Змест Знешні выгляд | Пашырэнне | Асаблівасці біялогіі | Літаратура | НавігацыяДагледжаная версіяправерана1 зменаДагледжаная версіяправерана1 змена/ 22697590 Сістэматыкана ВіківідахВыявына Вікісховішчы174693363011049382

Illegal assignment from SObject to ContactFetching String, Id from Map - Illegal Assignment Id to Field / ObjectError: Compile Error: Illegal assignment from String to BooleanError: List has no rows for assignment to SObjectError on Test Class - System.QueryException: List has no rows for assignment to SObjectRemote action problemDML requires SObject or SObject list type error“Illegal assignment from List to List”Test Class Fail: Batch Class: System.QueryException: List has no rows for assignment to SObjectMapping to a user'List has no rows for assignment to SObject' Mystery