what is the log of the PDF for a Normal Distribution? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How to solve/compute for normal distribution and log-normal CDF inverse?Distribution of the convolution of squared normal and chi-squared variables?Cramer's theorem for a precise normal asymptotic distributionConditional Expected Value of Product of Normal and Log-Normal DistributionAsymptotic relation for a class of probability distribution functionsShow that $Y_1+Y_2$ have distribution skew-normalExpected Fisher's information matrix for Student's t-distribution?Expected Value of Maximum likelihood mean for Gaussian DistributionJoint density of the sum of a random and a non-random variable?Reversing conditional distribution

Mounting TV on a weird wall that has some material between the drywall and stud

Putting class ranking in CV, but against dept guidelines

Monty Hall Problem-Probability Paradox

What is the "studentd" process?

What is the difference between CTSS and ITS?

Are the endpoints of the domain of a function counted as critical points?

Weaponising the Grasp-at-a-Distance spell

Relating to the President and obstruction, were Mueller's conclusions preordained?

Differences to CCompactSize and CVarInt

What would you call this weird metallic apparatus that allows you to lift people?

Universal covering space of the real projective line?

two integers one line calculator

The Nth Gryphon Number

Trying to understand entropy as a novice in thermodynamics

How to force a browser when connecting to a specific domain to be https only using only the client machine?

Should a wizard buy fine inks every time he want to copy spells into his spellbook?

What initially awakened the Balrog?

Can you force honesty by using the Speak with Dead and Zone of Truth spells together?

Why is std::move not [[nodiscard]] in C++20?

License to disallow distribution in closed source software, but allow exceptions made by owner?

Central Vacuuming: Is it worth it, and how does it compare to normal vacuuming?

Printing attributes of selection in ArcPy?

How to ask rejected full-time candidates to apply to teach individual courses?

Why datecode is SO IMPORTANT to chip manufacturers?



what is the log of the PDF for a Normal Distribution?



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How to solve/compute for normal distribution and log-normal CDF inverse?Distribution of the convolution of squared normal and chi-squared variables?Cramer's theorem for a precise normal asymptotic distributionConditional Expected Value of Product of Normal and Log-Normal DistributionAsymptotic relation for a class of probability distribution functionsShow that $Y_1+Y_2$ have distribution skew-normalExpected Fisher's information matrix for Student's t-distribution?Expected Value of Maximum likelihood mean for Gaussian DistributionJoint density of the sum of a random and a non-random variable?Reversing conditional distribution



.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








1












$begingroup$


I am learning Maximum Likelihood Estimation.



per this post, the log of the PDF for a Normal Distribution looks like this.



enter image description here



let's call this equation1.



according to any probability theory textbook the formula of the PDF for a Normal Distribution:



$$
frac 1sigma sqrt 2pi
e^-frac (x - mu)^22sigma ^2
,-infty <x<infty
$$



taking log produces:



beginalign
ln(frac 1sigma sqrt 2pi
e^-frac (x - mu)^22sigma ^2) &=
ln(frac 1sigma sqrt 2pi)+ln(e^-frac (x - mu)^22sigma ^2)\
&=-ln(sigma)-frac12 ln(2pi) - frac (x - mu)^22sigma ^2
endalign



which is very different from equation1.



is equation1 right? what am I missing?










share|cite|improve this question









$endgroup$







  • 3




    $begingroup$
    Your first equation is the joint log-pdf of a sample of n iid normal random variables (AKA the log-likelihood of that sample). The second equation is the the log-pdf of a single normal random variable
    $endgroup$
    – Artem Mavrin
    2 hours ago











  • $begingroup$
    @ArtemMavrin, I think your comment would be a perfectly good answer if you expanded on just a bit to make it slightly more clear.
    $endgroup$
    – StatsStudent
    1 hour ago

















1












$begingroup$


I am learning Maximum Likelihood Estimation.



per this post, the log of the PDF for a Normal Distribution looks like this.



enter image description here



let's call this equation1.



according to any probability theory textbook the formula of the PDF for a Normal Distribution:



$$
frac 1sigma sqrt 2pi
e^-frac (x - mu)^22sigma ^2
,-infty <x<infty
$$



taking log produces:



beginalign
ln(frac 1sigma sqrt 2pi
e^-frac (x - mu)^22sigma ^2) &=
ln(frac 1sigma sqrt 2pi)+ln(e^-frac (x - mu)^22sigma ^2)\
&=-ln(sigma)-frac12 ln(2pi) - frac (x - mu)^22sigma ^2
endalign



which is very different from equation1.



is equation1 right? what am I missing?










share|cite|improve this question









$endgroup$







  • 3




    $begingroup$
    Your first equation is the joint log-pdf of a sample of n iid normal random variables (AKA the log-likelihood of that sample). The second equation is the the log-pdf of a single normal random variable
    $endgroup$
    – Artem Mavrin
    2 hours ago











  • $begingroup$
    @ArtemMavrin, I think your comment would be a perfectly good answer if you expanded on just a bit to make it slightly more clear.
    $endgroup$
    – StatsStudent
    1 hour ago













1












1








1





$begingroup$


I am learning Maximum Likelihood Estimation.



per this post, the log of the PDF for a Normal Distribution looks like this.



enter image description here



let's call this equation1.



according to any probability theory textbook the formula of the PDF for a Normal Distribution:



$$
frac 1sigma sqrt 2pi
e^-frac (x - mu)^22sigma ^2
,-infty <x<infty
$$



taking log produces:



beginalign
ln(frac 1sigma sqrt 2pi
e^-frac (x - mu)^22sigma ^2) &=
ln(frac 1sigma sqrt 2pi)+ln(e^-frac (x - mu)^22sigma ^2)\
&=-ln(sigma)-frac12 ln(2pi) - frac (x - mu)^22sigma ^2
endalign



which is very different from equation1.



is equation1 right? what am I missing?










share|cite|improve this question









$endgroup$




I am learning Maximum Likelihood Estimation.



per this post, the log of the PDF for a Normal Distribution looks like this.



enter image description here



let's call this equation1.



according to any probability theory textbook the formula of the PDF for a Normal Distribution:



$$
frac 1sigma sqrt 2pi
e^-frac (x - mu)^22sigma ^2
,-infty <x<infty
$$



taking log produces:



beginalign
ln(frac 1sigma sqrt 2pi
e^-frac (x - mu)^22sigma ^2) &=
ln(frac 1sigma sqrt 2pi)+ln(e^-frac (x - mu)^22sigma ^2)\
&=-ln(sigma)-frac12 ln(2pi) - frac (x - mu)^22sigma ^2
endalign



which is very different from equation1.



is equation1 right? what am I missing?







probability log






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 2 hours ago









shi95shi95

83




83







  • 3




    $begingroup$
    Your first equation is the joint log-pdf of a sample of n iid normal random variables (AKA the log-likelihood of that sample). The second equation is the the log-pdf of a single normal random variable
    $endgroup$
    – Artem Mavrin
    2 hours ago











  • $begingroup$
    @ArtemMavrin, I think your comment would be a perfectly good answer if you expanded on just a bit to make it slightly more clear.
    $endgroup$
    – StatsStudent
    1 hour ago












  • 3




    $begingroup$
    Your first equation is the joint log-pdf of a sample of n iid normal random variables (AKA the log-likelihood of that sample). The second equation is the the log-pdf of a single normal random variable
    $endgroup$
    – Artem Mavrin
    2 hours ago











  • $begingroup$
    @ArtemMavrin, I think your comment would be a perfectly good answer if you expanded on just a bit to make it slightly more clear.
    $endgroup$
    – StatsStudent
    1 hour ago







3




3




$begingroup$
Your first equation is the joint log-pdf of a sample of n iid normal random variables (AKA the log-likelihood of that sample). The second equation is the the log-pdf of a single normal random variable
$endgroup$
– Artem Mavrin
2 hours ago





$begingroup$
Your first equation is the joint log-pdf of a sample of n iid normal random variables (AKA the log-likelihood of that sample). The second equation is the the log-pdf of a single normal random variable
$endgroup$
– Artem Mavrin
2 hours ago













$begingroup$
@ArtemMavrin, I think your comment would be a perfectly good answer if you expanded on just a bit to make it slightly more clear.
$endgroup$
– StatsStudent
1 hour ago




$begingroup$
@ArtemMavrin, I think your comment would be a perfectly good answer if you expanded on just a bit to make it slightly more clear.
$endgroup$
– StatsStudent
1 hour ago










1 Answer
1






active

oldest

votes


















2












$begingroup$

For a single observed value $x$ you have log-likelihood:



$$ell_x(mu,sigma^2) = - ln sigma - frac12 ln (2 pi) - frac12 Big( fracx-musigma Big)^2.$$



For a sample of observed values $mathbfx = (x_1,...,x_n)$ you then have:



$$ell_mathbfx(mu,sigma^2) = sum_i=1^n ell_x(mu,sigma^2) = - n ln sigma - fracn2 ln (2 pi) - frac12 sigma^2 sum_i=1^n (x_i-mu)^2.$$






share|cite|improve this answer









$endgroup$













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "65"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f404191%2fwhat-is-the-log-of-the-pdf-for-a-normal-distribution%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    For a single observed value $x$ you have log-likelihood:



    $$ell_x(mu,sigma^2) = - ln sigma - frac12 ln (2 pi) - frac12 Big( fracx-musigma Big)^2.$$



    For a sample of observed values $mathbfx = (x_1,...,x_n)$ you then have:



    $$ell_mathbfx(mu,sigma^2) = sum_i=1^n ell_x(mu,sigma^2) = - n ln sigma - fracn2 ln (2 pi) - frac12 sigma^2 sum_i=1^n (x_i-mu)^2.$$






    share|cite|improve this answer









    $endgroup$

















      2












      $begingroup$

      For a single observed value $x$ you have log-likelihood:



      $$ell_x(mu,sigma^2) = - ln sigma - frac12 ln (2 pi) - frac12 Big( fracx-musigma Big)^2.$$



      For a sample of observed values $mathbfx = (x_1,...,x_n)$ you then have:



      $$ell_mathbfx(mu,sigma^2) = sum_i=1^n ell_x(mu,sigma^2) = - n ln sigma - fracn2 ln (2 pi) - frac12 sigma^2 sum_i=1^n (x_i-mu)^2.$$






      share|cite|improve this answer









      $endgroup$















        2












        2








        2





        $begingroup$

        For a single observed value $x$ you have log-likelihood:



        $$ell_x(mu,sigma^2) = - ln sigma - frac12 ln (2 pi) - frac12 Big( fracx-musigma Big)^2.$$



        For a sample of observed values $mathbfx = (x_1,...,x_n)$ you then have:



        $$ell_mathbfx(mu,sigma^2) = sum_i=1^n ell_x(mu,sigma^2) = - n ln sigma - fracn2 ln (2 pi) - frac12 sigma^2 sum_i=1^n (x_i-mu)^2.$$






        share|cite|improve this answer









        $endgroup$



        For a single observed value $x$ you have log-likelihood:



        $$ell_x(mu,sigma^2) = - ln sigma - frac12 ln (2 pi) - frac12 Big( fracx-musigma Big)^2.$$



        For a sample of observed values $mathbfx = (x_1,...,x_n)$ you then have:



        $$ell_mathbfx(mu,sigma^2) = sum_i=1^n ell_x(mu,sigma^2) = - n ln sigma - fracn2 ln (2 pi) - frac12 sigma^2 sum_i=1^n (x_i-mu)^2.$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 1 hour ago









        BenBen

        28.9k233129




        28.9k233129



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Cross Validated!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f404191%2fwhat-is-the-log-of-the-pdf-for-a-normal-distribution%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Францішак Багушэвіч Змест Сям'я | Біяграфія | Творчасць | Мова Багушэвіча | Ацэнкі дзейнасці | Цікавыя факты | Спадчына | Выбраная бібліяграфія | Ушанаванне памяці | У філатэліі | Зноскі | Літаратура | Спасылкі | НавігацыяЛяхоўскі У. Рупіўся дзеля Бога і людзей: Жыццёвы шлях Лявона Вітан-Дубейкаўскага // Вольскі і Памідораў з песняй пра немца Адвакат, паэт, народны заступнік Ашмянскі веснікВ Минске появится площадь Богушевича и улица Сырокомли, Белорусская деловая газета, 19 июля 2001 г.Айцец беларускай нацыянальнай ідэі паўстаў у бронзе Сяргей Аляксандравіч Адашкевіч (1918, Мінск). 80-я гады. Бюст «Францішак Багушэвіч».Яўген Мікалаевіч Ціхановіч. «Партрэт Францішка Багушэвіча»Мікола Мікалаевіч Купава. «Партрэт зачынальніка новай беларускай літаратуры Францішка Багушэвіча»Уладзімір Іванавіч Мелехаў. На помніку «Змагарам за родную мову» Барэльеф «Францішак Багушэвіч»Памяць пра Багушэвіча на Віленшчыне Страчаная сталіца. Беларускія шыльды на вуліцах Вільні«Krynica». Ideologia i przywódcy białoruskiego katolicyzmuФранцішак БагушэвічТворы на knihi.comТворы Францішка Багушэвіча на bellib.byСодаль Уладзімір. Францішак Багушэвіч на Лідчыне;Луцкевіч Антон. Жыцьцё і творчасьць Фр. Багушэвіча ў успамінах ягоных сучасьнікаў // Запісы Беларускага Навуковага таварыства. Вільня, 1938. Сшытак 1. С. 16-34.Большая российская1188761710000 0000 5537 633Xn9209310021619551927869394п

            Partai Komunis Tiongkok Daftar isi Kepemimpinan | Pranala luar | Referensi | Menu navigasidiperiksa1 perubahan tertundacpc.people.com.cnSitus resmiSurat kabar resmi"Why the Communist Party is alive, well and flourishing in China"0307-1235"Full text of Constitution of Communist Party of China"smengembangkannyas

            ValueError: Expected n_neighbors <= n_samples, but n_samples = 1, n_neighbors = 6 (SMOTE) The 2019 Stack Overflow Developer Survey Results Are InCan SMOTE be applied over sequence of words (sentences)?ValueError when doing validation with random forestsSMOTE and multi class oversamplingLogic behind SMOTE-NC?ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)SmoteBoost: Should SMOTE be ran individually for each iteration/tree in the boosting?solving multi-class imbalance classification using smote and OSSUsing SMOTE for Synthetic Data generation to improve performance on unbalanced dataproblem of entry format for a simple model in KerasSVM SMOTE fit_resample() function runs forever with no result