Languages that we cannot (dis)prove to be Context-FreeBase-k representations of the co-domain of a polynomial - is it context-free?For a language to be programmable, is it mandatory that it be based on a context free grammarSufficient conditions for the regularity of a context-free languageDoes there exist an extension of regular expressions that captures the context free languages?Are deterministic context-free languages closed under outfix (or other erasing operations)Is SAT a context-free language?Is equivalence of unambiguous context-free languages decidable?Example of context-free tree language which can not be generated by monadic CFTGNumber of words of length n in a context-free languageFor which $R$ is $0^a10^b10^cmid R(a,b,c)$ context-free?Continuous mathematics and formal language theory
How do I deal with an unproductive colleague in a small company?
NMaximize is not converging to a solution
Is it unprofessional to ask if a job posting on GlassDoor is real?
High voltage LED indicator 40-1000 VDC without additional power supply
Do infinite dimensional systems make sense?
Add text to same line using sed
Unable to deploy metadata from Partner Developer scratch org because of extra fields
What are these boxed doors outside store fronts in New York?
Are astronomers waiting to see something in an image from a gravitational lens that they've already seen in an adjacent image?
Arrow those variables!
How old can references or sources in a thesis be?
How much of data wrangling is a data scientist's job?
How is the claim "I am in New York only if I am in America" the same as "If I am in New York, then I am in America?
Paid for article while in US on F-1 visa?
DC-DC converter from low voltage at high current, to high voltage at low current
How does quantile regression compare to logistic regression with the variable split at the quantile?
Approximately how much travel time was saved by the opening of the Suez Canal in 1869?
Does an object always see its latest internal state irrespective of thread?
Why doesn't Newton's third law mean a person bounces back to where they started when they hit the ground?
Is it legal for company to use my work email to pretend I still work there?
I'm flying to France today and my passport expires in less than 2 months
Could an aircraft fly or hover using only jets of compressed air?
A newer friend of my brother's gave him a load of baseball cards that are supposedly extremely valuable. Is this a scam?
What's the output of a record needle playing an out-of-speed record
Languages that we cannot (dis)prove to be Context-Free
Base-k representations of the co-domain of a polynomial - is it context-free?For a language to be programmable, is it mandatory that it be based on a context free grammarSufficient conditions for the regularity of a context-free languageDoes there exist an extension of regular expressions that captures the context free languages?Are deterministic context-free languages closed under outfix (or other erasing operations)Is SAT a context-free language?Is equivalence of unambiguous context-free languages decidable?Example of context-free tree language which can not be generated by monadic CFTGNumber of words of length n in a context-free languageFor which $R$ is $0^a10^b10^cmid R(a,b,c)$ context-free?Continuous mathematics and formal language theory
$begingroup$
I'm looking for languages which are "probably not Context-Free" but we are not able to (dis)prove it using known standard techniques.
Is there a recent survey on the subject or an open problem section from a recent conference ?
Probably there are not many languages which are not known to be CF, so if you know one you can also post it as an answer.
The examples I found are:
- the well known language of Primitive words $Q = > 1) $ (there's a whole nice recent book on it: Context-Free Languages and Primitive Words)
- the Base-k representations of the co-domain of a polynomial (see question "Base-k representations of the co-domain of a polynomial - is it context-free?" on cstheory)
Note: as showed by Aryeh in his answer you can build a whole class of such languages if you "link" a language to an unknown conjecture about the (non)finiteness or (non)emptiness of some sets (e.g. $L_Goldbach = 1^2n mid 2n$ cannot be expressed as a sum of two primes$$). I'm not quite interested in such examples.
reference-request big-list context-free
$endgroup$
add a comment |
$begingroup$
I'm looking for languages which are "probably not Context-Free" but we are not able to (dis)prove it using known standard techniques.
Is there a recent survey on the subject or an open problem section from a recent conference ?
Probably there are not many languages which are not known to be CF, so if you know one you can also post it as an answer.
The examples I found are:
- the well known language of Primitive words $Q = > 1) $ (there's a whole nice recent book on it: Context-Free Languages and Primitive Words)
- the Base-k representations of the co-domain of a polynomial (see question "Base-k representations of the co-domain of a polynomial - is it context-free?" on cstheory)
Note: as showed by Aryeh in his answer you can build a whole class of such languages if you "link" a language to an unknown conjecture about the (non)finiteness or (non)emptiness of some sets (e.g. $L_Goldbach = 1^2n mid 2n$ cannot be expressed as a sum of two primes$$). I'm not quite interested in such examples.
reference-request big-list context-free
$endgroup$
add a comment |
$begingroup$
I'm looking for languages which are "probably not Context-Free" but we are not able to (dis)prove it using known standard techniques.
Is there a recent survey on the subject or an open problem section from a recent conference ?
Probably there are not many languages which are not known to be CF, so if you know one you can also post it as an answer.
The examples I found are:
- the well known language of Primitive words $Q = > 1) $ (there's a whole nice recent book on it: Context-Free Languages and Primitive Words)
- the Base-k representations of the co-domain of a polynomial (see question "Base-k representations of the co-domain of a polynomial - is it context-free?" on cstheory)
Note: as showed by Aryeh in his answer you can build a whole class of such languages if you "link" a language to an unknown conjecture about the (non)finiteness or (non)emptiness of some sets (e.g. $L_Goldbach = 1^2n mid 2n$ cannot be expressed as a sum of two primes$$). I'm not quite interested in such examples.
reference-request big-list context-free
$endgroup$
I'm looking for languages which are "probably not Context-Free" but we are not able to (dis)prove it using known standard techniques.
Is there a recent survey on the subject or an open problem section from a recent conference ?
Probably there are not many languages which are not known to be CF, so if you know one you can also post it as an answer.
The examples I found are:
- the well known language of Primitive words $Q = > 1) $ (there's a whole nice recent book on it: Context-Free Languages and Primitive Words)
- the Base-k representations of the co-domain of a polynomial (see question "Base-k representations of the co-domain of a polynomial - is it context-free?" on cstheory)
Note: as showed by Aryeh in his answer you can build a whole class of such languages if you "link" a language to an unknown conjecture about the (non)finiteness or (non)emptiness of some sets (e.g. $L_Goldbach = 1^2n mid 2n$ cannot be expressed as a sum of two primes$$). I'm not quite interested in such examples.
reference-request big-list context-free
reference-request big-list context-free
edited 11 hours ago
Marzio De Biasi
asked 14 hours ago
Marzio De BiasiMarzio De Biasi
18.5k243113
18.5k243113
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
How about the language $L_TP$ of twin primes? I.e., all pairs of natural numbers $(p,p')$ (represented, say, in unary), such that $p,p'$ are both prime and $p'=p+2$? If twin primes conjecture is true, then $L_TP$ is not context-free; otherwise, it's finite.
Edit: Let me give a quick proof sketch that the twin primes conjecture implies that $L_TP$ is not context-free. Associate to any language $L$ its length sequence $0le a_1le a_2leldots$, where the integer $ell$ appears in the sequence iff there is a word of length $ell$ in $L$. It is a consequence of the pumping lemma(s) that for $L$ that are regular or CFL, the length sequence satisfies the bounded differences property: there is an $R>0$ such that $a_n+1-a_nle R$ for all $n$. It is an easy and well-known fact in number theory that the primes do not have bounded differences. Finally, any infinite subsequence of a sequence violating the bounded differences property itself must violate it.
$endgroup$
2
$begingroup$
Nice, thanks! But I'm not quite interested in languages that are linked to unknown conjectures about the (non)finiteness of some sets. BTW if those conjectures are true the resulting language is also regular :-)
$endgroup$
– Marzio De Biasi
11 hours ago
$begingroup$
If there are infinitely many twin primes, how do you see that $L_TP$ is regular?
$endgroup$
– Aryeh
11 hours ago
$begingroup$
I mean if (dis)proving a conjecture, results in a finite set. In your case - twin primes - if the conjecture is false.
$endgroup$
– Marzio De Biasi
11 hours ago
1
$begingroup$
If there are infinitely many twin primes, how do you show that $L_TP$ is not context-free?
$endgroup$
– Emil Jeřábek
10 hours ago
1
$begingroup$
Oh, sorry, I didn’t notice you represent the numbers in unary. Then it is clear. (I believe that proving this for binary representation would require a considerable progress on the twin primes conjecture.)
$endgroup$
– Emil Jeřábek
10 hours ago
|
show 3 more comments
$begingroup$
Another good one is the complement of the set $S$ of contiguous subwords (aka "factors") of the Thue-Morse sequence $bf t = 0110100110010110 cdots $. To give some context, Jean Berstel proved that the complement of the set $T$ of prefixes of the Thue-Morse word is context-free (and actually something more general than that). But the corresponding result for subwords is still open.
$endgroup$
$begingroup$
Great, thanks! If you saw it stated somewhere (perhaps in one of your many papers on the Thue-Morse sequence? ;-) you can add the reference (even if stated in the iterated morphism form).
$endgroup$
– Marzio De Biasi
6 hours ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "114"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcstheory.stackexchange.com%2fquestions%2f42658%2flanguages-that-we-cannot-disprove-to-be-context-free%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
How about the language $L_TP$ of twin primes? I.e., all pairs of natural numbers $(p,p')$ (represented, say, in unary), such that $p,p'$ are both prime and $p'=p+2$? If twin primes conjecture is true, then $L_TP$ is not context-free; otherwise, it's finite.
Edit: Let me give a quick proof sketch that the twin primes conjecture implies that $L_TP$ is not context-free. Associate to any language $L$ its length sequence $0le a_1le a_2leldots$, where the integer $ell$ appears in the sequence iff there is a word of length $ell$ in $L$. It is a consequence of the pumping lemma(s) that for $L$ that are regular or CFL, the length sequence satisfies the bounded differences property: there is an $R>0$ such that $a_n+1-a_nle R$ for all $n$. It is an easy and well-known fact in number theory that the primes do not have bounded differences. Finally, any infinite subsequence of a sequence violating the bounded differences property itself must violate it.
$endgroup$
2
$begingroup$
Nice, thanks! But I'm not quite interested in languages that are linked to unknown conjectures about the (non)finiteness of some sets. BTW if those conjectures are true the resulting language is also regular :-)
$endgroup$
– Marzio De Biasi
11 hours ago
$begingroup$
If there are infinitely many twin primes, how do you see that $L_TP$ is regular?
$endgroup$
– Aryeh
11 hours ago
$begingroup$
I mean if (dis)proving a conjecture, results in a finite set. In your case - twin primes - if the conjecture is false.
$endgroup$
– Marzio De Biasi
11 hours ago
1
$begingroup$
If there are infinitely many twin primes, how do you show that $L_TP$ is not context-free?
$endgroup$
– Emil Jeřábek
10 hours ago
1
$begingroup$
Oh, sorry, I didn’t notice you represent the numbers in unary. Then it is clear. (I believe that proving this for binary representation would require a considerable progress on the twin primes conjecture.)
$endgroup$
– Emil Jeřábek
10 hours ago
|
show 3 more comments
$begingroup$
How about the language $L_TP$ of twin primes? I.e., all pairs of natural numbers $(p,p')$ (represented, say, in unary), such that $p,p'$ are both prime and $p'=p+2$? If twin primes conjecture is true, then $L_TP$ is not context-free; otherwise, it's finite.
Edit: Let me give a quick proof sketch that the twin primes conjecture implies that $L_TP$ is not context-free. Associate to any language $L$ its length sequence $0le a_1le a_2leldots$, where the integer $ell$ appears in the sequence iff there is a word of length $ell$ in $L$. It is a consequence of the pumping lemma(s) that for $L$ that are regular or CFL, the length sequence satisfies the bounded differences property: there is an $R>0$ such that $a_n+1-a_nle R$ for all $n$. It is an easy and well-known fact in number theory that the primes do not have bounded differences. Finally, any infinite subsequence of a sequence violating the bounded differences property itself must violate it.
$endgroup$
2
$begingroup$
Nice, thanks! But I'm not quite interested in languages that are linked to unknown conjectures about the (non)finiteness of some sets. BTW if those conjectures are true the resulting language is also regular :-)
$endgroup$
– Marzio De Biasi
11 hours ago
$begingroup$
If there are infinitely many twin primes, how do you see that $L_TP$ is regular?
$endgroup$
– Aryeh
11 hours ago
$begingroup$
I mean if (dis)proving a conjecture, results in a finite set. In your case - twin primes - if the conjecture is false.
$endgroup$
– Marzio De Biasi
11 hours ago
1
$begingroup$
If there are infinitely many twin primes, how do you show that $L_TP$ is not context-free?
$endgroup$
– Emil Jeřábek
10 hours ago
1
$begingroup$
Oh, sorry, I didn’t notice you represent the numbers in unary. Then it is clear. (I believe that proving this for binary representation would require a considerable progress on the twin primes conjecture.)
$endgroup$
– Emil Jeřábek
10 hours ago
|
show 3 more comments
$begingroup$
How about the language $L_TP$ of twin primes? I.e., all pairs of natural numbers $(p,p')$ (represented, say, in unary), such that $p,p'$ are both prime and $p'=p+2$? If twin primes conjecture is true, then $L_TP$ is not context-free; otherwise, it's finite.
Edit: Let me give a quick proof sketch that the twin primes conjecture implies that $L_TP$ is not context-free. Associate to any language $L$ its length sequence $0le a_1le a_2leldots$, where the integer $ell$ appears in the sequence iff there is a word of length $ell$ in $L$. It is a consequence of the pumping lemma(s) that for $L$ that are regular or CFL, the length sequence satisfies the bounded differences property: there is an $R>0$ such that $a_n+1-a_nle R$ for all $n$. It is an easy and well-known fact in number theory that the primes do not have bounded differences. Finally, any infinite subsequence of a sequence violating the bounded differences property itself must violate it.
$endgroup$
How about the language $L_TP$ of twin primes? I.e., all pairs of natural numbers $(p,p')$ (represented, say, in unary), such that $p,p'$ are both prime and $p'=p+2$? If twin primes conjecture is true, then $L_TP$ is not context-free; otherwise, it's finite.
Edit: Let me give a quick proof sketch that the twin primes conjecture implies that $L_TP$ is not context-free. Associate to any language $L$ its length sequence $0le a_1le a_2leldots$, where the integer $ell$ appears in the sequence iff there is a word of length $ell$ in $L$. It is a consequence of the pumping lemma(s) that for $L$ that are regular or CFL, the length sequence satisfies the bounded differences property: there is an $R>0$ such that $a_n+1-a_nle R$ for all $n$. It is an easy and well-known fact in number theory that the primes do not have bounded differences. Finally, any infinite subsequence of a sequence violating the bounded differences property itself must violate it.
edited 10 hours ago
answered 13 hours ago
AryehAryeh
5,84411840
5,84411840
2
$begingroup$
Nice, thanks! But I'm not quite interested in languages that are linked to unknown conjectures about the (non)finiteness of some sets. BTW if those conjectures are true the resulting language is also regular :-)
$endgroup$
– Marzio De Biasi
11 hours ago
$begingroup$
If there are infinitely many twin primes, how do you see that $L_TP$ is regular?
$endgroup$
– Aryeh
11 hours ago
$begingroup$
I mean if (dis)proving a conjecture, results in a finite set. In your case - twin primes - if the conjecture is false.
$endgroup$
– Marzio De Biasi
11 hours ago
1
$begingroup$
If there are infinitely many twin primes, how do you show that $L_TP$ is not context-free?
$endgroup$
– Emil Jeřábek
10 hours ago
1
$begingroup$
Oh, sorry, I didn’t notice you represent the numbers in unary. Then it is clear. (I believe that proving this for binary representation would require a considerable progress on the twin primes conjecture.)
$endgroup$
– Emil Jeřábek
10 hours ago
|
show 3 more comments
2
$begingroup$
Nice, thanks! But I'm not quite interested in languages that are linked to unknown conjectures about the (non)finiteness of some sets. BTW if those conjectures are true the resulting language is also regular :-)
$endgroup$
– Marzio De Biasi
11 hours ago
$begingroup$
If there are infinitely many twin primes, how do you see that $L_TP$ is regular?
$endgroup$
– Aryeh
11 hours ago
$begingroup$
I mean if (dis)proving a conjecture, results in a finite set. In your case - twin primes - if the conjecture is false.
$endgroup$
– Marzio De Biasi
11 hours ago
1
$begingroup$
If there are infinitely many twin primes, how do you show that $L_TP$ is not context-free?
$endgroup$
– Emil Jeřábek
10 hours ago
1
$begingroup$
Oh, sorry, I didn’t notice you represent the numbers in unary. Then it is clear. (I believe that proving this for binary representation would require a considerable progress on the twin primes conjecture.)
$endgroup$
– Emil Jeřábek
10 hours ago
2
2
$begingroup$
Nice, thanks! But I'm not quite interested in languages that are linked to unknown conjectures about the (non)finiteness of some sets. BTW if those conjectures are true the resulting language is also regular :-)
$endgroup$
– Marzio De Biasi
11 hours ago
$begingroup$
Nice, thanks! But I'm not quite interested in languages that are linked to unknown conjectures about the (non)finiteness of some sets. BTW if those conjectures are true the resulting language is also regular :-)
$endgroup$
– Marzio De Biasi
11 hours ago
$begingroup$
If there are infinitely many twin primes, how do you see that $L_TP$ is regular?
$endgroup$
– Aryeh
11 hours ago
$begingroup$
If there are infinitely many twin primes, how do you see that $L_TP$ is regular?
$endgroup$
– Aryeh
11 hours ago
$begingroup$
I mean if (dis)proving a conjecture, results in a finite set. In your case - twin primes - if the conjecture is false.
$endgroup$
– Marzio De Biasi
11 hours ago
$begingroup$
I mean if (dis)proving a conjecture, results in a finite set. In your case - twin primes - if the conjecture is false.
$endgroup$
– Marzio De Biasi
11 hours ago
1
1
$begingroup$
If there are infinitely many twin primes, how do you show that $L_TP$ is not context-free?
$endgroup$
– Emil Jeřábek
10 hours ago
$begingroup$
If there are infinitely many twin primes, how do you show that $L_TP$ is not context-free?
$endgroup$
– Emil Jeřábek
10 hours ago
1
1
$begingroup$
Oh, sorry, I didn’t notice you represent the numbers in unary. Then it is clear. (I believe that proving this for binary representation would require a considerable progress on the twin primes conjecture.)
$endgroup$
– Emil Jeřábek
10 hours ago
$begingroup$
Oh, sorry, I didn’t notice you represent the numbers in unary. Then it is clear. (I believe that proving this for binary representation would require a considerable progress on the twin primes conjecture.)
$endgroup$
– Emil Jeřábek
10 hours ago
|
show 3 more comments
$begingroup$
Another good one is the complement of the set $S$ of contiguous subwords (aka "factors") of the Thue-Morse sequence $bf t = 0110100110010110 cdots $. To give some context, Jean Berstel proved that the complement of the set $T$ of prefixes of the Thue-Morse word is context-free (and actually something more general than that). But the corresponding result for subwords is still open.
$endgroup$
$begingroup$
Great, thanks! If you saw it stated somewhere (perhaps in one of your many papers on the Thue-Morse sequence? ;-) you can add the reference (even if stated in the iterated morphism form).
$endgroup$
– Marzio De Biasi
6 hours ago
add a comment |
$begingroup$
Another good one is the complement of the set $S$ of contiguous subwords (aka "factors") of the Thue-Morse sequence $bf t = 0110100110010110 cdots $. To give some context, Jean Berstel proved that the complement of the set $T$ of prefixes of the Thue-Morse word is context-free (and actually something more general than that). But the corresponding result for subwords is still open.
$endgroup$
$begingroup$
Great, thanks! If you saw it stated somewhere (perhaps in one of your many papers on the Thue-Morse sequence? ;-) you can add the reference (even if stated in the iterated morphism form).
$endgroup$
– Marzio De Biasi
6 hours ago
add a comment |
$begingroup$
Another good one is the complement of the set $S$ of contiguous subwords (aka "factors") of the Thue-Morse sequence $bf t = 0110100110010110 cdots $. To give some context, Jean Berstel proved that the complement of the set $T$ of prefixes of the Thue-Morse word is context-free (and actually something more general than that). But the corresponding result for subwords is still open.
$endgroup$
Another good one is the complement of the set $S$ of contiguous subwords (aka "factors") of the Thue-Morse sequence $bf t = 0110100110010110 cdots $. To give some context, Jean Berstel proved that the complement of the set $T$ of prefixes of the Thue-Morse word is context-free (and actually something more general than that). But the corresponding result for subwords is still open.
answered 8 hours ago
Jeffrey ShallitJeffrey Shallit
6,4832635
6,4832635
$begingroup$
Great, thanks! If you saw it stated somewhere (perhaps in one of your many papers on the Thue-Morse sequence? ;-) you can add the reference (even if stated in the iterated morphism form).
$endgroup$
– Marzio De Biasi
6 hours ago
add a comment |
$begingroup$
Great, thanks! If you saw it stated somewhere (perhaps in one of your many papers on the Thue-Morse sequence? ;-) you can add the reference (even if stated in the iterated morphism form).
$endgroup$
– Marzio De Biasi
6 hours ago
$begingroup$
Great, thanks! If you saw it stated somewhere (perhaps in one of your many papers on the Thue-Morse sequence? ;-) you can add the reference (even if stated in the iterated morphism form).
$endgroup$
– Marzio De Biasi
6 hours ago
$begingroup$
Great, thanks! If you saw it stated somewhere (perhaps in one of your many papers on the Thue-Morse sequence? ;-) you can add the reference (even if stated in the iterated morphism form).
$endgroup$
– Marzio De Biasi
6 hours ago
add a comment |
Thanks for contributing an answer to Theoretical Computer Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcstheory.stackexchange.com%2fquestions%2f42658%2flanguages-that-we-cannot-disprove-to-be-context-free%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown