Should the isomorphism theorems be seen as an “interface” between algebra and category theory?Motivation and use for category theory?Meaning of “a mapping preserves structures/properties”What are some examples of hard theorems in category theory?What is the relationship between the second isomorphism theorem and the third one in group theory?On the Importance of the Second and Fourth Isomorphism TheoremsMonomorphisms, epimorphisms and isomorphisms of groups categoryWhat do we need to define a category?Are objects in the category Grp actually groups or isomorphism classes of groups? Is there a difference?What does it mean for two morphisms with different sources and targets to be isomorphic?Describing the monomorphisms and epimorphisms in the category of multisets

Why are electrically insulating heatsinks so rare? Is it just cost?

Why can't I see bouncing of a switch on an oscilloscope?

Accidentally leaked the solution to an assignment, what to do now? (I'm the prof)

How to format long polynomial?

Has there ever been an airliner design involving reducing generator load by installing solar panels?

Can I ask the recruiters in my resume to put the reason why I am rejected?

Why is 150k or 200k jobs considered good when there's 300k+ births a month?

Was any UN Security Council vote triple-vetoed?

Can a Cauchy sequence converge for one metric while not converging for another?

How is it possible to have an ability score that is less than 3?

"You are your self first supporter", a more proper way to say it

Is it tax fraud for an individual to declare non-taxable revenue as taxable income? (US tax laws)

Are astronomers waiting to see something in an image from a gravitational lens that they've already seen in an adjacent image?

Horror movie about a virus at the prom; beginning and end are stylized as a cartoon

Do infinite dimensional systems make sense?

How does quantile regression compare to logistic regression with the variable split at the quantile?

How to determine what difficulty is right for the game?

Malformed Address '10.10.21.08/24', must be X.X.X.X/NN or

Client team has low performances and low technical skills: we always fix their work and now they stop collaborate with us. How to solve?

Maximum likelihood parameters deviate from posterior distributions

LWC SFDX source push error TypeError: LWC1009: decl.moveTo is not a function

DC-DC converter from low voltage at high current, to high voltage at low current

Is it possible to do 50 km distance without any previous training?

When a company launches a new product do they "come out" with a new product or do they "come up" with a new product?



Should the isomorphism theorems be seen as an “interface” between algebra and category theory?


Motivation and use for category theory?Meaning of “a mapping preserves structures/properties”What are some examples of hard theorems in category theory?What is the relationship between the second isomorphism theorem and the third one in group theory?On the Importance of the Second and Fourth Isomorphism TheoremsMonomorphisms, epimorphisms and isomorphisms of groups categoryWhat do we need to define a category?Are objects in the category Grp actually groups or isomorphism classes of groups? Is there a difference?What does it mean for two morphisms with different sources and targets to be isomorphic?Describing the monomorphisms and epimorphisms in the category of multisets













4












$begingroup$


My first instinct when I thought about algebra in category theory, was to try to "generalize the isomorphism theorems in category theory".



So I tried to prove the generalization of "the image of a group homomorphism is isomorphic to the quotient group generated by its kernel".



But then I found out that in category subobjects are actually defined in terms of monomorphisms, which for the category Grp is essentially implicitly using that isomorphism theorem.



  • So is it correct that I shouldn't be trying to prove the isomorphism theorems in category theory?


  • Is it correct that instead, the isomorphism theorems are kind of like "interfaces", which justify talking about algebraic structures (among other structuers) in terms of structure preserving morphisms?










share|cite|improve this question









$endgroup$
















    4












    $begingroup$


    My first instinct when I thought about algebra in category theory, was to try to "generalize the isomorphism theorems in category theory".



    So I tried to prove the generalization of "the image of a group homomorphism is isomorphic to the quotient group generated by its kernel".



    But then I found out that in category subobjects are actually defined in terms of monomorphisms, which for the category Grp is essentially implicitly using that isomorphism theorem.



    • So is it correct that I shouldn't be trying to prove the isomorphism theorems in category theory?


    • Is it correct that instead, the isomorphism theorems are kind of like "interfaces", which justify talking about algebraic structures (among other structuers) in terms of structure preserving morphisms?










    share|cite|improve this question









    $endgroup$














      4












      4








      4


      2



      $begingroup$


      My first instinct when I thought about algebra in category theory, was to try to "generalize the isomorphism theorems in category theory".



      So I tried to prove the generalization of "the image of a group homomorphism is isomorphic to the quotient group generated by its kernel".



      But then I found out that in category subobjects are actually defined in terms of monomorphisms, which for the category Grp is essentially implicitly using that isomorphism theorem.



      • So is it correct that I shouldn't be trying to prove the isomorphism theorems in category theory?


      • Is it correct that instead, the isomorphism theorems are kind of like "interfaces", which justify talking about algebraic structures (among other structuers) in terms of structure preserving morphisms?










      share|cite|improve this question









      $endgroup$




      My first instinct when I thought about algebra in category theory, was to try to "generalize the isomorphism theorems in category theory".



      So I tried to prove the generalization of "the image of a group homomorphism is isomorphic to the quotient group generated by its kernel".



      But then I found out that in category subobjects are actually defined in terms of monomorphisms, which for the category Grp is essentially implicitly using that isomorphism theorem.



      • So is it correct that I shouldn't be trying to prove the isomorphism theorems in category theory?


      • Is it correct that instead, the isomorphism theorems are kind of like "interfaces", which justify talking about algebraic structures (among other structuers) in terms of structure preserving morphisms?







      abstract-algebra category-theory group-isomorphism






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 11 hours ago









      user56834user56834

      3,41821253




      3,41821253




















          2 Answers
          2






          active

          oldest

          votes


















          3












          $begingroup$

          Before addressing your questions I will write here my favorite version of the first isomorphism theorem. As others have commented, you need notions of quotients, images and kernels before even attempting to enunciate such a result. There's more than one way to do this (for example, additive categories). Here we are going to work with concrete categories. Recall the notion of images.




          Definition [kernel]: Let $f colon X to Y$ be a function. The kernel of $f$ is the set $(a,b) in X times X mid f(a)=f(b)$.




          The notion of kernel as defined here is simply the kernel pair of $f$, that is, the pullback of $X xrightarrowf Y xleftarrowf X$.




          Definition [concrete quotients and congruences]: Let $(C,U)$ be a concrete category and $X$ an object of $C$. A concrete quotient of $X$ is an epimorphism $pi colon X to Y$ such that $U(pi)$ is epi and for every object $Z$ of $C$ and every function $f colon U(Y) to U(Z)$, the following are equivalents:



          • There exists a morphism $f' colon Y to Z$ such that $U(f') = f$.

          • There exists a morphism $g colon X to Z$ such that $U(g) = f circ U(pi)$.

          The set $ker(U(pi))$ is called a congruence on $X$.




          If you prefer, you can define concrete quotients as equivalence classes instead. Note that this notion of quotient coincides with topological quotients, for instance, while the usual notion of quotients (that is, epimorphisms) does not. In essence, concrete quotients allow you to complete diagrams in the base category by looking at the underlying diagrams in $Set$. A congruence on an object $X$ is essentially an equivalence relation on $U(X)$ with an associated concrete quotient of $X$. Observe, however, that congruences need not to arise only from $U(pi)$ for $pi$ a concrete quotient.




          Theorem [the First Isomorphism Theorem]: Let $(C,U)$ be a concrete category, where $C$ is complete and $U$ is continuous. Let $q colon X to Z$ be a morphism in $C$ such that $ker(U(q))$ is a congruence on $X$. Then the morphism $m colon X/ker(U(q)) to Z$ (such that $q = m circ pi_q$) is the image of $q$.



          Proof : First of all we must verify that $m$ is a monomorphism. Let $x,y in U(X)$ and $[x],[y]$ their equivalence classes regarding $ker(U(q))$. If $U(m)([x])=U(m)([y])$, then $(U(pi_q) circ U(m))(x)=(U(pi_q) circ U(m))(y)$, hence $U(pi_q circ m)(x)=U(pi_q circ m)(y)$, which implies $U(q)(x)=U(q)(y)$. Therefore $(x,y) in ker(U(q))$ and $[x]=[y]$. $U(m)$ is mono, hence $m$ is as well ($U$ is faithful).



          Now let $m' colon Y to Z$ be a monomorphism and $h colon X to Y$ be a morphism such that $q= m' circ h$. we wish to prove the existence of $f colon X/ker((U(q))) to Y$ such that $m = m' circ f$. If $(x,y) in ker(U(q))$, then $U(q)(x)=U(q)(y)$, hence $U(h)(x)=U(h)(y)$ (since $U$ is continuous and $m'$ is mono, $U(m')$ is mono). By the definition of concrete quotients, there exists a morphism $f colon X/ker((U(q))) to Y$ such that $h = f circ pi_q$. Since $m' circ h = q = m circ pi_q$, we have $m' circ f circ pi_q = m circ pi_q$. Since $pi_q$ is epi, we have $m' circ f = m$.




          Note that, in particular, this isomorphism theorem is valid on the category of topological spaces (with the obvious forgetful functor to $Set$)! What is the problem here? I'll leave that as an exercise.



          Now, addressing the questions:




          So is it correct that I shouldn't be trying to prove the isomorphism theorems in category theory?




          That is not correct. However, you should be aware of the fact that general categories might not always have the structure/properties you need to talk about certain concepts. In that case, however, you should still be able to consider a particular class of categories in which you can prove your desired results.




          Is it correct that instead, the isomorphism theorems are kind of like "interfaces", which justify talking about algebraic structures (among other structuers) in terms of structure preserving morphisms?




          I'm not sure if I understand this question. The fact that homomorphisms between algebraic structures satisfy the isomorphism theorems is certainly a good reason to talk about structure preserving functions (instead of non-structure preserving functions) in certain scenarios. However, in other structures, where the theorem might not be valid (topological spaces for example), it is still "better" to consider structure preserving functions than simply general functions.






          share|cite|improve this answer











          $endgroup$








          • 1




            $begingroup$
            I wish I had known this version of the isomorphism theorem before writing my answer, +1
            $endgroup$
            – Max
            8 hours ago










          • $begingroup$
            For the LaTeX, writing f:Xto Y ($f:Xto Y$) as opposed to fcolon Xto Y ($fcolon Xto Y$) seems easier and renders better... (at least for me).
            $endgroup$
            – Derek Elkins
            59 mins ago


















          2












          $begingroup$

          This isn't a full answer as I don't understand half of the question, and have asked for precision on the other half, but it's too long to be a comment



          No, it's not implicitly using the isomorphism theorem, it's using the fact that (in algebraic structures) the corestriction of an injective morphism to its image is an isomorphism, which is way more basic than the first isomorphism theorem.



          Then, for your questions :



          $bullet$ No you shouldn't try to prove the isomorphism theorem in general categories because it simply isn't true in general. First of all, you would have to have a notion of image and of kernel, which don't usually make sense in an arbitrary category, and even when they do exist, it's not true that the theorem holds. For me to make a precise statement and give counterexamples here you have to tell me what you mean by "image" in a general category, for instance are you referring to this definition ?



          $bullet$ I don't understand this question. Let me just say how I feel about the isomorphism theorem (the first one, the others are just immediate corollaries) for groups, and algebraic structures more generally, in the hope that it will shed some light on them; and perhaps you can edit your post to clarify your question.



          The first isomorphism theorem is basically a tautology : it tells you that if you have a surjective morphism and declare "$x=y$" precisely when $f(x)=f(y)$ then you get an induced map on the new structure when your declaration is true, and that this induced map is injective, and has the same image as the original one. The fact that it has the same image is obvious because there is a factorisation, so I won't mention it. The fact that you get an induced map is also obvious, because if you don't know which antecedent to choose, it doesn't matter, as they all have the same images; so just choose any antecedent.



          Finally, the fact that the induced map is injective is also obvious because you've forced it to be ! If $x,y$ have the same image in the new structure, then any antecedent of them do too, so they have been declared to be equal ! Therefore $x=y$ by the pure will of you, the new structure creator. In other words, the first isomorphism theorem is you wanting a map to be injective, and declaring "it is", and by doing so you simply create a new structure (the quotient structure), on which it is, precisely because you declared it to be.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3176023%2fshould-the-isomorphism-theorems-be-seen-as-an-interface-between-algebra-and-ca%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3












            $begingroup$

            Before addressing your questions I will write here my favorite version of the first isomorphism theorem. As others have commented, you need notions of quotients, images and kernels before even attempting to enunciate such a result. There's more than one way to do this (for example, additive categories). Here we are going to work with concrete categories. Recall the notion of images.




            Definition [kernel]: Let $f colon X to Y$ be a function. The kernel of $f$ is the set $(a,b) in X times X mid f(a)=f(b)$.




            The notion of kernel as defined here is simply the kernel pair of $f$, that is, the pullback of $X xrightarrowf Y xleftarrowf X$.




            Definition [concrete quotients and congruences]: Let $(C,U)$ be a concrete category and $X$ an object of $C$. A concrete quotient of $X$ is an epimorphism $pi colon X to Y$ such that $U(pi)$ is epi and for every object $Z$ of $C$ and every function $f colon U(Y) to U(Z)$, the following are equivalents:



            • There exists a morphism $f' colon Y to Z$ such that $U(f') = f$.

            • There exists a morphism $g colon X to Z$ such that $U(g) = f circ U(pi)$.

            The set $ker(U(pi))$ is called a congruence on $X$.




            If you prefer, you can define concrete quotients as equivalence classes instead. Note that this notion of quotient coincides with topological quotients, for instance, while the usual notion of quotients (that is, epimorphisms) does not. In essence, concrete quotients allow you to complete diagrams in the base category by looking at the underlying diagrams in $Set$. A congruence on an object $X$ is essentially an equivalence relation on $U(X)$ with an associated concrete quotient of $X$. Observe, however, that congruences need not to arise only from $U(pi)$ for $pi$ a concrete quotient.




            Theorem [the First Isomorphism Theorem]: Let $(C,U)$ be a concrete category, where $C$ is complete and $U$ is continuous. Let $q colon X to Z$ be a morphism in $C$ such that $ker(U(q))$ is a congruence on $X$. Then the morphism $m colon X/ker(U(q)) to Z$ (such that $q = m circ pi_q$) is the image of $q$.



            Proof : First of all we must verify that $m$ is a monomorphism. Let $x,y in U(X)$ and $[x],[y]$ their equivalence classes regarding $ker(U(q))$. If $U(m)([x])=U(m)([y])$, then $(U(pi_q) circ U(m))(x)=(U(pi_q) circ U(m))(y)$, hence $U(pi_q circ m)(x)=U(pi_q circ m)(y)$, which implies $U(q)(x)=U(q)(y)$. Therefore $(x,y) in ker(U(q))$ and $[x]=[y]$. $U(m)$ is mono, hence $m$ is as well ($U$ is faithful).



            Now let $m' colon Y to Z$ be a monomorphism and $h colon X to Y$ be a morphism such that $q= m' circ h$. we wish to prove the existence of $f colon X/ker((U(q))) to Y$ such that $m = m' circ f$. If $(x,y) in ker(U(q))$, then $U(q)(x)=U(q)(y)$, hence $U(h)(x)=U(h)(y)$ (since $U$ is continuous and $m'$ is mono, $U(m')$ is mono). By the definition of concrete quotients, there exists a morphism $f colon X/ker((U(q))) to Y$ such that $h = f circ pi_q$. Since $m' circ h = q = m circ pi_q$, we have $m' circ f circ pi_q = m circ pi_q$. Since $pi_q$ is epi, we have $m' circ f = m$.




            Note that, in particular, this isomorphism theorem is valid on the category of topological spaces (with the obvious forgetful functor to $Set$)! What is the problem here? I'll leave that as an exercise.



            Now, addressing the questions:




            So is it correct that I shouldn't be trying to prove the isomorphism theorems in category theory?




            That is not correct. However, you should be aware of the fact that general categories might not always have the structure/properties you need to talk about certain concepts. In that case, however, you should still be able to consider a particular class of categories in which you can prove your desired results.




            Is it correct that instead, the isomorphism theorems are kind of like "interfaces", which justify talking about algebraic structures (among other structuers) in terms of structure preserving morphisms?




            I'm not sure if I understand this question. The fact that homomorphisms between algebraic structures satisfy the isomorphism theorems is certainly a good reason to talk about structure preserving functions (instead of non-structure preserving functions) in certain scenarios. However, in other structures, where the theorem might not be valid (topological spaces for example), it is still "better" to consider structure preserving functions than simply general functions.






            share|cite|improve this answer











            $endgroup$








            • 1




              $begingroup$
              I wish I had known this version of the isomorphism theorem before writing my answer, +1
              $endgroup$
              – Max
              8 hours ago










            • $begingroup$
              For the LaTeX, writing f:Xto Y ($f:Xto Y$) as opposed to fcolon Xto Y ($fcolon Xto Y$) seems easier and renders better... (at least for me).
              $endgroup$
              – Derek Elkins
              59 mins ago















            3












            $begingroup$

            Before addressing your questions I will write here my favorite version of the first isomorphism theorem. As others have commented, you need notions of quotients, images and kernels before even attempting to enunciate such a result. There's more than one way to do this (for example, additive categories). Here we are going to work with concrete categories. Recall the notion of images.




            Definition [kernel]: Let $f colon X to Y$ be a function. The kernel of $f$ is the set $(a,b) in X times X mid f(a)=f(b)$.




            The notion of kernel as defined here is simply the kernel pair of $f$, that is, the pullback of $X xrightarrowf Y xleftarrowf X$.




            Definition [concrete quotients and congruences]: Let $(C,U)$ be a concrete category and $X$ an object of $C$. A concrete quotient of $X$ is an epimorphism $pi colon X to Y$ such that $U(pi)$ is epi and for every object $Z$ of $C$ and every function $f colon U(Y) to U(Z)$, the following are equivalents:



            • There exists a morphism $f' colon Y to Z$ such that $U(f') = f$.

            • There exists a morphism $g colon X to Z$ such that $U(g) = f circ U(pi)$.

            The set $ker(U(pi))$ is called a congruence on $X$.




            If you prefer, you can define concrete quotients as equivalence classes instead. Note that this notion of quotient coincides with topological quotients, for instance, while the usual notion of quotients (that is, epimorphisms) does not. In essence, concrete quotients allow you to complete diagrams in the base category by looking at the underlying diagrams in $Set$. A congruence on an object $X$ is essentially an equivalence relation on $U(X)$ with an associated concrete quotient of $X$. Observe, however, that congruences need not to arise only from $U(pi)$ for $pi$ a concrete quotient.




            Theorem [the First Isomorphism Theorem]: Let $(C,U)$ be a concrete category, where $C$ is complete and $U$ is continuous. Let $q colon X to Z$ be a morphism in $C$ such that $ker(U(q))$ is a congruence on $X$. Then the morphism $m colon X/ker(U(q)) to Z$ (such that $q = m circ pi_q$) is the image of $q$.



            Proof : First of all we must verify that $m$ is a monomorphism. Let $x,y in U(X)$ and $[x],[y]$ their equivalence classes regarding $ker(U(q))$. If $U(m)([x])=U(m)([y])$, then $(U(pi_q) circ U(m))(x)=(U(pi_q) circ U(m))(y)$, hence $U(pi_q circ m)(x)=U(pi_q circ m)(y)$, which implies $U(q)(x)=U(q)(y)$. Therefore $(x,y) in ker(U(q))$ and $[x]=[y]$. $U(m)$ is mono, hence $m$ is as well ($U$ is faithful).



            Now let $m' colon Y to Z$ be a monomorphism and $h colon X to Y$ be a morphism such that $q= m' circ h$. we wish to prove the existence of $f colon X/ker((U(q))) to Y$ such that $m = m' circ f$. If $(x,y) in ker(U(q))$, then $U(q)(x)=U(q)(y)$, hence $U(h)(x)=U(h)(y)$ (since $U$ is continuous and $m'$ is mono, $U(m')$ is mono). By the definition of concrete quotients, there exists a morphism $f colon X/ker((U(q))) to Y$ such that $h = f circ pi_q$. Since $m' circ h = q = m circ pi_q$, we have $m' circ f circ pi_q = m circ pi_q$. Since $pi_q$ is epi, we have $m' circ f = m$.




            Note that, in particular, this isomorphism theorem is valid on the category of topological spaces (with the obvious forgetful functor to $Set$)! What is the problem here? I'll leave that as an exercise.



            Now, addressing the questions:




            So is it correct that I shouldn't be trying to prove the isomorphism theorems in category theory?




            That is not correct. However, you should be aware of the fact that general categories might not always have the structure/properties you need to talk about certain concepts. In that case, however, you should still be able to consider a particular class of categories in which you can prove your desired results.




            Is it correct that instead, the isomorphism theorems are kind of like "interfaces", which justify talking about algebraic structures (among other structuers) in terms of structure preserving morphisms?




            I'm not sure if I understand this question. The fact that homomorphisms between algebraic structures satisfy the isomorphism theorems is certainly a good reason to talk about structure preserving functions (instead of non-structure preserving functions) in certain scenarios. However, in other structures, where the theorem might not be valid (topological spaces for example), it is still "better" to consider structure preserving functions than simply general functions.






            share|cite|improve this answer











            $endgroup$








            • 1




              $begingroup$
              I wish I had known this version of the isomorphism theorem before writing my answer, +1
              $endgroup$
              – Max
              8 hours ago










            • $begingroup$
              For the LaTeX, writing f:Xto Y ($f:Xto Y$) as opposed to fcolon Xto Y ($fcolon Xto Y$) seems easier and renders better... (at least for me).
              $endgroup$
              – Derek Elkins
              59 mins ago













            3












            3








            3





            $begingroup$

            Before addressing your questions I will write here my favorite version of the first isomorphism theorem. As others have commented, you need notions of quotients, images and kernels before even attempting to enunciate such a result. There's more than one way to do this (for example, additive categories). Here we are going to work with concrete categories. Recall the notion of images.




            Definition [kernel]: Let $f colon X to Y$ be a function. The kernel of $f$ is the set $(a,b) in X times X mid f(a)=f(b)$.




            The notion of kernel as defined here is simply the kernel pair of $f$, that is, the pullback of $X xrightarrowf Y xleftarrowf X$.




            Definition [concrete quotients and congruences]: Let $(C,U)$ be a concrete category and $X$ an object of $C$. A concrete quotient of $X$ is an epimorphism $pi colon X to Y$ such that $U(pi)$ is epi and for every object $Z$ of $C$ and every function $f colon U(Y) to U(Z)$, the following are equivalents:



            • There exists a morphism $f' colon Y to Z$ such that $U(f') = f$.

            • There exists a morphism $g colon X to Z$ such that $U(g) = f circ U(pi)$.

            The set $ker(U(pi))$ is called a congruence on $X$.




            If you prefer, you can define concrete quotients as equivalence classes instead. Note that this notion of quotient coincides with topological quotients, for instance, while the usual notion of quotients (that is, epimorphisms) does not. In essence, concrete quotients allow you to complete diagrams in the base category by looking at the underlying diagrams in $Set$. A congruence on an object $X$ is essentially an equivalence relation on $U(X)$ with an associated concrete quotient of $X$. Observe, however, that congruences need not to arise only from $U(pi)$ for $pi$ a concrete quotient.




            Theorem [the First Isomorphism Theorem]: Let $(C,U)$ be a concrete category, where $C$ is complete and $U$ is continuous. Let $q colon X to Z$ be a morphism in $C$ such that $ker(U(q))$ is a congruence on $X$. Then the morphism $m colon X/ker(U(q)) to Z$ (such that $q = m circ pi_q$) is the image of $q$.



            Proof : First of all we must verify that $m$ is a monomorphism. Let $x,y in U(X)$ and $[x],[y]$ their equivalence classes regarding $ker(U(q))$. If $U(m)([x])=U(m)([y])$, then $(U(pi_q) circ U(m))(x)=(U(pi_q) circ U(m))(y)$, hence $U(pi_q circ m)(x)=U(pi_q circ m)(y)$, which implies $U(q)(x)=U(q)(y)$. Therefore $(x,y) in ker(U(q))$ and $[x]=[y]$. $U(m)$ is mono, hence $m$ is as well ($U$ is faithful).



            Now let $m' colon Y to Z$ be a monomorphism and $h colon X to Y$ be a morphism such that $q= m' circ h$. we wish to prove the existence of $f colon X/ker((U(q))) to Y$ such that $m = m' circ f$. If $(x,y) in ker(U(q))$, then $U(q)(x)=U(q)(y)$, hence $U(h)(x)=U(h)(y)$ (since $U$ is continuous and $m'$ is mono, $U(m')$ is mono). By the definition of concrete quotients, there exists a morphism $f colon X/ker((U(q))) to Y$ such that $h = f circ pi_q$. Since $m' circ h = q = m circ pi_q$, we have $m' circ f circ pi_q = m circ pi_q$. Since $pi_q$ is epi, we have $m' circ f = m$.




            Note that, in particular, this isomorphism theorem is valid on the category of topological spaces (with the obvious forgetful functor to $Set$)! What is the problem here? I'll leave that as an exercise.



            Now, addressing the questions:




            So is it correct that I shouldn't be trying to prove the isomorphism theorems in category theory?




            That is not correct. However, you should be aware of the fact that general categories might not always have the structure/properties you need to talk about certain concepts. In that case, however, you should still be able to consider a particular class of categories in which you can prove your desired results.




            Is it correct that instead, the isomorphism theorems are kind of like "interfaces", which justify talking about algebraic structures (among other structuers) in terms of structure preserving morphisms?




            I'm not sure if I understand this question. The fact that homomorphisms between algebraic structures satisfy the isomorphism theorems is certainly a good reason to talk about structure preserving functions (instead of non-structure preserving functions) in certain scenarios. However, in other structures, where the theorem might not be valid (topological spaces for example), it is still "better" to consider structure preserving functions than simply general functions.






            share|cite|improve this answer











            $endgroup$



            Before addressing your questions I will write here my favorite version of the first isomorphism theorem. As others have commented, you need notions of quotients, images and kernels before even attempting to enunciate such a result. There's more than one way to do this (for example, additive categories). Here we are going to work with concrete categories. Recall the notion of images.




            Definition [kernel]: Let $f colon X to Y$ be a function. The kernel of $f$ is the set $(a,b) in X times X mid f(a)=f(b)$.




            The notion of kernel as defined here is simply the kernel pair of $f$, that is, the pullback of $X xrightarrowf Y xleftarrowf X$.




            Definition [concrete quotients and congruences]: Let $(C,U)$ be a concrete category and $X$ an object of $C$. A concrete quotient of $X$ is an epimorphism $pi colon X to Y$ such that $U(pi)$ is epi and for every object $Z$ of $C$ and every function $f colon U(Y) to U(Z)$, the following are equivalents:



            • There exists a morphism $f' colon Y to Z$ such that $U(f') = f$.

            • There exists a morphism $g colon X to Z$ such that $U(g) = f circ U(pi)$.

            The set $ker(U(pi))$ is called a congruence on $X$.




            If you prefer, you can define concrete quotients as equivalence classes instead. Note that this notion of quotient coincides with topological quotients, for instance, while the usual notion of quotients (that is, epimorphisms) does not. In essence, concrete quotients allow you to complete diagrams in the base category by looking at the underlying diagrams in $Set$. A congruence on an object $X$ is essentially an equivalence relation on $U(X)$ with an associated concrete quotient of $X$. Observe, however, that congruences need not to arise only from $U(pi)$ for $pi$ a concrete quotient.




            Theorem [the First Isomorphism Theorem]: Let $(C,U)$ be a concrete category, where $C$ is complete and $U$ is continuous. Let $q colon X to Z$ be a morphism in $C$ such that $ker(U(q))$ is a congruence on $X$. Then the morphism $m colon X/ker(U(q)) to Z$ (such that $q = m circ pi_q$) is the image of $q$.



            Proof : First of all we must verify that $m$ is a monomorphism. Let $x,y in U(X)$ and $[x],[y]$ their equivalence classes regarding $ker(U(q))$. If $U(m)([x])=U(m)([y])$, then $(U(pi_q) circ U(m))(x)=(U(pi_q) circ U(m))(y)$, hence $U(pi_q circ m)(x)=U(pi_q circ m)(y)$, which implies $U(q)(x)=U(q)(y)$. Therefore $(x,y) in ker(U(q))$ and $[x]=[y]$. $U(m)$ is mono, hence $m$ is as well ($U$ is faithful).



            Now let $m' colon Y to Z$ be a monomorphism and $h colon X to Y$ be a morphism such that $q= m' circ h$. we wish to prove the existence of $f colon X/ker((U(q))) to Y$ such that $m = m' circ f$. If $(x,y) in ker(U(q))$, then $U(q)(x)=U(q)(y)$, hence $U(h)(x)=U(h)(y)$ (since $U$ is continuous and $m'$ is mono, $U(m')$ is mono). By the definition of concrete quotients, there exists a morphism $f colon X/ker((U(q))) to Y$ such that $h = f circ pi_q$. Since $m' circ h = q = m circ pi_q$, we have $m' circ f circ pi_q = m circ pi_q$. Since $pi_q$ is epi, we have $m' circ f = m$.




            Note that, in particular, this isomorphism theorem is valid on the category of topological spaces (with the obvious forgetful functor to $Set$)! What is the problem here? I'll leave that as an exercise.



            Now, addressing the questions:




            So is it correct that I shouldn't be trying to prove the isomorphism theorems in category theory?




            That is not correct. However, you should be aware of the fact that general categories might not always have the structure/properties you need to talk about certain concepts. In that case, however, you should still be able to consider a particular class of categories in which you can prove your desired results.




            Is it correct that instead, the isomorphism theorems are kind of like "interfaces", which justify talking about algebraic structures (among other structuers) in terms of structure preserving morphisms?




            I'm not sure if I understand this question. The fact that homomorphisms between algebraic structures satisfy the isomorphism theorems is certainly a good reason to talk about structure preserving functions (instead of non-structure preserving functions) in certain scenarios. However, in other structures, where the theorem might not be valid (topological spaces for example), it is still "better" to consider structure preserving functions than simply general functions.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited 8 hours ago

























            answered 9 hours ago









            Hilario FernandesHilario Fernandes

            430410




            430410







            • 1




              $begingroup$
              I wish I had known this version of the isomorphism theorem before writing my answer, +1
              $endgroup$
              – Max
              8 hours ago










            • $begingroup$
              For the LaTeX, writing f:Xto Y ($f:Xto Y$) as opposed to fcolon Xto Y ($fcolon Xto Y$) seems easier and renders better... (at least for me).
              $endgroup$
              – Derek Elkins
              59 mins ago












            • 1




              $begingroup$
              I wish I had known this version of the isomorphism theorem before writing my answer, +1
              $endgroup$
              – Max
              8 hours ago










            • $begingroup$
              For the LaTeX, writing f:Xto Y ($f:Xto Y$) as opposed to fcolon Xto Y ($fcolon Xto Y$) seems easier and renders better... (at least for me).
              $endgroup$
              – Derek Elkins
              59 mins ago







            1




            1




            $begingroup$
            I wish I had known this version of the isomorphism theorem before writing my answer, +1
            $endgroup$
            – Max
            8 hours ago




            $begingroup$
            I wish I had known this version of the isomorphism theorem before writing my answer, +1
            $endgroup$
            – Max
            8 hours ago












            $begingroup$
            For the LaTeX, writing f:Xto Y ($f:Xto Y$) as opposed to fcolon Xto Y ($fcolon Xto Y$) seems easier and renders better... (at least for me).
            $endgroup$
            – Derek Elkins
            59 mins ago




            $begingroup$
            For the LaTeX, writing f:Xto Y ($f:Xto Y$) as opposed to fcolon Xto Y ($fcolon Xto Y$) seems easier and renders better... (at least for me).
            $endgroup$
            – Derek Elkins
            59 mins ago











            2












            $begingroup$

            This isn't a full answer as I don't understand half of the question, and have asked for precision on the other half, but it's too long to be a comment



            No, it's not implicitly using the isomorphism theorem, it's using the fact that (in algebraic structures) the corestriction of an injective morphism to its image is an isomorphism, which is way more basic than the first isomorphism theorem.



            Then, for your questions :



            $bullet$ No you shouldn't try to prove the isomorphism theorem in general categories because it simply isn't true in general. First of all, you would have to have a notion of image and of kernel, which don't usually make sense in an arbitrary category, and even when they do exist, it's not true that the theorem holds. For me to make a precise statement and give counterexamples here you have to tell me what you mean by "image" in a general category, for instance are you referring to this definition ?



            $bullet$ I don't understand this question. Let me just say how I feel about the isomorphism theorem (the first one, the others are just immediate corollaries) for groups, and algebraic structures more generally, in the hope that it will shed some light on them; and perhaps you can edit your post to clarify your question.



            The first isomorphism theorem is basically a tautology : it tells you that if you have a surjective morphism and declare "$x=y$" precisely when $f(x)=f(y)$ then you get an induced map on the new structure when your declaration is true, and that this induced map is injective, and has the same image as the original one. The fact that it has the same image is obvious because there is a factorisation, so I won't mention it. The fact that you get an induced map is also obvious, because if you don't know which antecedent to choose, it doesn't matter, as they all have the same images; so just choose any antecedent.



            Finally, the fact that the induced map is injective is also obvious because you've forced it to be ! If $x,y$ have the same image in the new structure, then any antecedent of them do too, so they have been declared to be equal ! Therefore $x=y$ by the pure will of you, the new structure creator. In other words, the first isomorphism theorem is you wanting a map to be injective, and declaring "it is", and by doing so you simply create a new structure (the quotient structure), on which it is, precisely because you declared it to be.






            share|cite|improve this answer









            $endgroup$

















              2












              $begingroup$

              This isn't a full answer as I don't understand half of the question, and have asked for precision on the other half, but it's too long to be a comment



              No, it's not implicitly using the isomorphism theorem, it's using the fact that (in algebraic structures) the corestriction of an injective morphism to its image is an isomorphism, which is way more basic than the first isomorphism theorem.



              Then, for your questions :



              $bullet$ No you shouldn't try to prove the isomorphism theorem in general categories because it simply isn't true in general. First of all, you would have to have a notion of image and of kernel, which don't usually make sense in an arbitrary category, and even when they do exist, it's not true that the theorem holds. For me to make a precise statement and give counterexamples here you have to tell me what you mean by "image" in a general category, for instance are you referring to this definition ?



              $bullet$ I don't understand this question. Let me just say how I feel about the isomorphism theorem (the first one, the others are just immediate corollaries) for groups, and algebraic structures more generally, in the hope that it will shed some light on them; and perhaps you can edit your post to clarify your question.



              The first isomorphism theorem is basically a tautology : it tells you that if you have a surjective morphism and declare "$x=y$" precisely when $f(x)=f(y)$ then you get an induced map on the new structure when your declaration is true, and that this induced map is injective, and has the same image as the original one. The fact that it has the same image is obvious because there is a factorisation, so I won't mention it. The fact that you get an induced map is also obvious, because if you don't know which antecedent to choose, it doesn't matter, as they all have the same images; so just choose any antecedent.



              Finally, the fact that the induced map is injective is also obvious because you've forced it to be ! If $x,y$ have the same image in the new structure, then any antecedent of them do too, so they have been declared to be equal ! Therefore $x=y$ by the pure will of you, the new structure creator. In other words, the first isomorphism theorem is you wanting a map to be injective, and declaring "it is", and by doing so you simply create a new structure (the quotient structure), on which it is, precisely because you declared it to be.






              share|cite|improve this answer









              $endgroup$















                2












                2








                2





                $begingroup$

                This isn't a full answer as I don't understand half of the question, and have asked for precision on the other half, but it's too long to be a comment



                No, it's not implicitly using the isomorphism theorem, it's using the fact that (in algebraic structures) the corestriction of an injective morphism to its image is an isomorphism, which is way more basic than the first isomorphism theorem.



                Then, for your questions :



                $bullet$ No you shouldn't try to prove the isomorphism theorem in general categories because it simply isn't true in general. First of all, you would have to have a notion of image and of kernel, which don't usually make sense in an arbitrary category, and even when they do exist, it's not true that the theorem holds. For me to make a precise statement and give counterexamples here you have to tell me what you mean by "image" in a general category, for instance are you referring to this definition ?



                $bullet$ I don't understand this question. Let me just say how I feel about the isomorphism theorem (the first one, the others are just immediate corollaries) for groups, and algebraic structures more generally, in the hope that it will shed some light on them; and perhaps you can edit your post to clarify your question.



                The first isomorphism theorem is basically a tautology : it tells you that if you have a surjective morphism and declare "$x=y$" precisely when $f(x)=f(y)$ then you get an induced map on the new structure when your declaration is true, and that this induced map is injective, and has the same image as the original one. The fact that it has the same image is obvious because there is a factorisation, so I won't mention it. The fact that you get an induced map is also obvious, because if you don't know which antecedent to choose, it doesn't matter, as they all have the same images; so just choose any antecedent.



                Finally, the fact that the induced map is injective is also obvious because you've forced it to be ! If $x,y$ have the same image in the new structure, then any antecedent of them do too, so they have been declared to be equal ! Therefore $x=y$ by the pure will of you, the new structure creator. In other words, the first isomorphism theorem is you wanting a map to be injective, and declaring "it is", and by doing so you simply create a new structure (the quotient structure), on which it is, precisely because you declared it to be.






                share|cite|improve this answer









                $endgroup$



                This isn't a full answer as I don't understand half of the question, and have asked for precision on the other half, but it's too long to be a comment



                No, it's not implicitly using the isomorphism theorem, it's using the fact that (in algebraic structures) the corestriction of an injective morphism to its image is an isomorphism, which is way more basic than the first isomorphism theorem.



                Then, for your questions :



                $bullet$ No you shouldn't try to prove the isomorphism theorem in general categories because it simply isn't true in general. First of all, you would have to have a notion of image and of kernel, which don't usually make sense in an arbitrary category, and even when they do exist, it's not true that the theorem holds. For me to make a precise statement and give counterexamples here you have to tell me what you mean by "image" in a general category, for instance are you referring to this definition ?



                $bullet$ I don't understand this question. Let me just say how I feel about the isomorphism theorem (the first one, the others are just immediate corollaries) for groups, and algebraic structures more generally, in the hope that it will shed some light on them; and perhaps you can edit your post to clarify your question.



                The first isomorphism theorem is basically a tautology : it tells you that if you have a surjective morphism and declare "$x=y$" precisely when $f(x)=f(y)$ then you get an induced map on the new structure when your declaration is true, and that this induced map is injective, and has the same image as the original one. The fact that it has the same image is obvious because there is a factorisation, so I won't mention it. The fact that you get an induced map is also obvious, because if you don't know which antecedent to choose, it doesn't matter, as they all have the same images; so just choose any antecedent.



                Finally, the fact that the induced map is injective is also obvious because you've forced it to be ! If $x,y$ have the same image in the new structure, then any antecedent of them do too, so they have been declared to be equal ! Therefore $x=y$ by the pure will of you, the new structure creator. In other words, the first isomorphism theorem is you wanting a map to be injective, and declaring "it is", and by doing so you simply create a new structure (the quotient structure), on which it is, precisely because you declared it to be.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 10 hours ago









                MaxMax

                16k11144




                16k11144



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3176023%2fshould-the-isomorphism-theorems-be-seen-as-an-interface-between-algebra-and-ca%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Францішак Багушэвіч Змест Сям'я | Біяграфія | Творчасць | Мова Багушэвіча | Ацэнкі дзейнасці | Цікавыя факты | Спадчына | Выбраная бібліяграфія | Ушанаванне памяці | У філатэліі | Зноскі | Літаратура | Спасылкі | НавігацыяЛяхоўскі У. Рупіўся дзеля Бога і людзей: Жыццёвы шлях Лявона Вітан-Дубейкаўскага // Вольскі і Памідораў з песняй пра немца Адвакат, паэт, народны заступнік Ашмянскі веснікВ Минске появится площадь Богушевича и улица Сырокомли, Белорусская деловая газета, 19 июля 2001 г.Айцец беларускай нацыянальнай ідэі паўстаў у бронзе Сяргей Аляксандравіч Адашкевіч (1918, Мінск). 80-я гады. Бюст «Францішак Багушэвіч».Яўген Мікалаевіч Ціхановіч. «Партрэт Францішка Багушэвіча»Мікола Мікалаевіч Купава. «Партрэт зачынальніка новай беларускай літаратуры Францішка Багушэвіча»Уладзімір Іванавіч Мелехаў. На помніку «Змагарам за родную мову» Барэльеф «Францішак Багушэвіч»Памяць пра Багушэвіча на Віленшчыне Страчаная сталіца. Беларускія шыльды на вуліцах Вільні«Krynica». Ideologia i przywódcy białoruskiego katolicyzmuФранцішак БагушэвічТворы на knihi.comТворы Францішка Багушэвіча на bellib.byСодаль Уладзімір. Францішак Багушэвіч на Лідчыне;Луцкевіч Антон. Жыцьцё і творчасьць Фр. Багушэвіча ў успамінах ягоных сучасьнікаў // Запісы Беларускага Навуковага таварыства. Вільня, 1938. Сшытак 1. С. 16-34.Большая российская1188761710000 0000 5537 633Xn9209310021619551927869394п

                    Беларусь Змест Назва Гісторыя Геаграфія Сімволіка Дзяржаўны лад Палітычныя партыі Міжнароднае становішча і знешняя палітыка Адміністрацыйны падзел Насельніцтва Эканоміка Культура і грамадства Сацыяльная сфера Узброеныя сілы Заўвагі Літаратура Спасылкі НавігацыяHGЯOiТоп-2011 г. (па версіі ej.by)Топ-2013 г. (па версіі ej.by)Топ-2016 г. (па версіі ej.by)Топ-2017 г. (па версіі ej.by)Нацыянальны статыстычны камітэт Рэспублікі БеларусьШчыльнасць насельніцтва па краінахhttp://naviny.by/rubrics/society/2011/09/16/ic_articles_116_175144/А. Калечыц, У. Ксяндзоў. Спробы засялення краю неандэртальскім чалавекам.І ў Менску былі мамантыА. Калечыц, У. Ксяндзоў. Старажытны каменны век (палеаліт). Першапачатковае засяленне тэрыторыіГ. Штыхаў. Балты і славяне ў VI—VIII стст.М. Клімаў. Полацкае княства ў IX—XI стст.Г. Штыхаў, В. Ляўко. Палітычная гісторыя Полацкай зямліГ. Штыхаў. Дзяржаўны лад у землях-княствахГ. Штыхаў. Дзяржаўны лад у землях-княствахБеларускія землі ў складзе Вялікага Княства ЛітоўскагаЛюблінская унія 1569 г."The Early Stages of Independence"Zapomniane prawdy25 гадоў таму было аб'яўлена, што Язэп Пілсудскі — беларус (фота)Наша вадаДакументы ЧАЭС: Забруджванне тэрыторыі Беларусі « ЧАЭС Зона адчужэнняСведения о политических партиях, зарегистрированных в Республике Беларусь // Министерство юстиции Республики БеларусьСтатыстычны бюлетэнь „Полаўзроставая структура насельніцтва Рэспублікі Беларусь на 1 студзеня 2012 года і сярэднегадовая колькасць насельніцтва за 2011 год“Индекс человеческого развития Беларуси — не было бы нижеБеларусь занимает первое место в СНГ по индексу развития с учетом гендерного факцёраНацыянальны статыстычны камітэт Рэспублікі БеларусьКанстытуцыя РБ. Артыкул 17Трансфармацыйныя задачы БеларусіВыйсце з крызісу — далейшае рэфармаванне Беларускі рубель — сусветны лідар па дэвальвацыяхПра змену коштаў у кастрычніку 2011 г.Бядней за беларусаў у СНД толькі таджыкіСярэдні заробак у верасні дасягнуў 2,26 мільёна рублёўЭканомікаГаласуем за ТОП-100 беларускай прозыСучасныя беларускія мастакіАрхитектура Беларуси BELARUS.BYА. Каханоўскі. Культура Беларусі ўсярэдзіне XVII—XVIII ст.Анталогія беларускай народнай песні, гуказапісы спеваўБеларускія Музычныя IнструментыБеларускі рок, які мы страцілі. Топ-10 гуртоў«Мясцовы час» — нязгаслая легенда беларускай рок-музыкіСЯРГЕЙ БУДКІН. МЫ НЯ ЗНАЕМ СВАЁЙ МУЗЫКІМ. А. Каладзінскі. НАРОДНЫ ТЭАТРМагнацкія культурныя цэнтрыПублічная дыскусія «Беларуская новая пьеса: без беларускай мовы ці беларуская?»Беларускія драматургі па-ранейшаму лепш ставяцца за мяжой, чым на радзіме«Працэс незалежнага кіно пайшоў, і дзяржаву турбуе яго непадкантрольнасць»Беларускія філосафы ў пошуках прасторыВсе идём в библиотекуАрхіваванаАб Нацыянальнай праграме даследавання і выкарыстання касмічнай прасторы ў мірных мэтах на 2008—2012 гадыУ космас — разам.У суседнім з Барысаўскім раёне пабудуюць Камандна-вымяральны пунктСвяты і абрады беларусаў«Мірныя бульбашы з малой краіны» — 5 непраўдзівых стэрэатыпаў пра БеларусьМ. Раманюк. Беларускае народнае адзеннеУ Беларусі скарачаецца колькасць злачынстваўЛукашэнка незадаволены мінскімі ўладамі Крадзяжы складаюць у Мінску каля 70% злачынстваў Узровень злачыннасці ў Мінскай вобласці — адзін з самых высокіх у краіне Генпракуратура аналізуе стан са злачыннасцю ў Беларусі па каэфіцыенце злачыннасці У Беларусі стабілізавалася крымінагеннае становішча, лічыць генпракурорЗамежнікі сталі здзяйсняць у Беларусі больш злачынстваўМУС Беларусі турбуе рост рэцыдыўнай злачыннасціЯ з ЖЭСа. Дазволіце вас абкрасці! Рэйтынг усіх службаў і падраздзяленняў ГУУС Мінгарвыканкама вырасАб КДБ РБГісторыя Аператыўна-аналітычнага цэнтра РБГісторыя ДКФРТаможняagentura.ruБеларусьBelarus.by — Афіцыйны сайт Рэспублікі БеларусьСайт урада БеларусіRadzima.org — Збор архітэктурных помнікаў, гісторыя Беларусі«Глобус Беларуси»Гербы и флаги БеларусиАсаблівасці каменнага веку на БеларусіА. Калечыц, У. Ксяндзоў. Старажытны каменны век (палеаліт). Першапачатковае засяленне тэрыторыіУ. Ксяндзоў. Сярэдні каменны век (мезаліт). Засяленне краю плямёнамі паляўнічых, рыбакоў і збіральнікаўА. Калечыц, М. Чарняўскі. Плямёны на тэрыторыі Беларусі ў новым каменным веку (неаліце)А. Калечыц, У. Ксяндзоў, М. Чарняўскі. Гаспадарчыя заняткі ў каменным векуЭ. Зайкоўскі. Духоўная культура ў каменным векуАсаблівасці бронзавага веку на БеларусіФарміраванне супольнасцей ранняга перыяду бронзавага векуФотографии БеларусиРоля беларускіх зямель ва ўтварэнні і ўмацаванні ВКЛВ. Фадзеева. З гісторыі развіцця беларускай народнай вышыўкіDMOZGran catalanaБольшая российскаяBritannica (анлайн)Швейцарскі гістарычны15325917611952699xDA123282154079143-90000 0001 2171 2080n9112870100577502ge128882171858027501086026362074122714179пппппп

                    ValueError: Expected n_neighbors <= n_samples, but n_samples = 1, n_neighbors = 6 (SMOTE) The 2019 Stack Overflow Developer Survey Results Are InCan SMOTE be applied over sequence of words (sentences)?ValueError when doing validation with random forestsSMOTE and multi class oversamplingLogic behind SMOTE-NC?ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)SmoteBoost: Should SMOTE be ran individually for each iteration/tree in the boosting?solving multi-class imbalance classification using smote and OSSUsing SMOTE for Synthetic Data generation to improve performance on unbalanced dataproblem of entry format for a simple model in KerasSVM SMOTE fit_resample() function runs forever with no result