PySpark: java.io.EOFException2019 Community Moderator ElectionHow to select particular column in Spark(pyspark)?key parameter in max function in PysparkMerging multiple data frames row-wise in PySparkWhen does cache get expired for a RDD in pyspark?PySpark dataframe repartitionPySpark Filter shows only 1 rowPlotting in PySpark?Navigating the jungle of choices for scalable ML deploymentAccumulators in Spark (PySpark) without global variables?

Languages that we cannot (dis)prove to be Context-Free

What would happen to a modern skyscraper if it rains micro blackholes?

Has there ever been an airliner design involving reducing generator load by installing solar panels?

Why can't we play rap on piano?

Why doesn't Newton's third law mean a person bounces back to where they started when they hit the ground?

How much of data wrangling is a data scientist's job?

High voltage LED indicator 40-1000 VDC without additional power supply

Does an object always see its latest internal state irrespective of thread?

What's the point of deactivating Num Lock on login screens?

NMaximize is not converging to a solution

How do I deal with an unproductive colleague in a small company?

When a company launches a new product do they "come out" with a new product or do they "come up" with a new product?

Codimension of non-flat locus

A newer friend of my brother's gave him a load of baseball cards that are supposedly extremely valuable. Is this a scam?

Was any UN Security Council vote triple-vetoed?

What is the word for reserving something for yourself before others do?

Arrow those variables!

Meaning of に in 本当に

What do the dots in this tr command do: tr .............A-Z A-ZA-Z <<< "JVPQBOV" (with 13 dots)

What's the output of a record needle playing an out-of-speed record

Can a vampire attack twice with their claws using Multiattack?

Accidentally leaked the solution to an assignment, what to do now? (I'm the prof)

I'm flying to France today and my passport expires in less than 2 months

How do I draw and define two right triangles next to each other?



PySpark: java.io.EOFException



2019 Community Moderator ElectionHow to select particular column in Spark(pyspark)?key parameter in max function in PysparkMerging multiple data frames row-wise in PySparkWhen does cache get expired for a RDD in pyspark?PySpark dataframe repartitionPySpark Filter shows only 1 rowPlotting in PySpark?Navigating the jungle of choices for scalable ML deploymentAccumulators in Spark (PySpark) without global variables?










0












$begingroup$


System:



  • 1 name node, 4 cores, 16 GB RAM

  • 1 master node, 4 cores, 16 GB RAM

  • 6 data nodes, 4 cores, 16 GB RAM each

  • 6 worker nodes, 4 cores, 16 GB RAM each

  • around 5 Terabytes of storage space

The data nodes and worker nodes exist on the same 6 machines and the name node and master node exist on the same machine. In our docker compose, we have 6 GB set for the master, 8 GB set for name node, 6 GB set for the workers, and 8 GB set for the data nodes.





I have 2 rdds which I am calculating the cartesian product of, applying a function I wrote to it, and then storing the data in Hadoop as parquet tables. After around 180k parquet tables written to Hadoop, the python worker unexpectedly crashes due to EOFException in Java.




conf = SparkConf().setAppName(
"TBG Input Creation App").setMaster("spark://master:7077").setAll(
[('spark.executor.memory', '6g'),
('spark.driver.memory', '4g'),
('spark.executor.heartbeatInterval', '3s'),
('spark.driver.extraJavaOptions', '-XX:+UseG1GC -verbose:gc -XX:+PrintGCDetails -XX:+PrintGCTimeStamps'),
('spark.executor.extraJavaOptions', '-XX:+UseG1GC -verbose:gc -XX:+PrintGCDetails -XX:+PrintGCTimeStamps')])

rdd_cart = rdd.cartesian(rdd2)
rdd.unpersist()
rdd2.unpersist()

rdd_cart.foreach(lambda row: calc_model(row, fields, vfp_fields))


Then inside the calc_model function, I write out the parquet table. After the crash, I can re-start the run with PySpark filtering out the ones I all ready ran but after a few thousand more, it will crash again with the same EOFException. I am using foreach since I don't care about any returned values and simply just want the tables written to Hadoop.




How can identify the root cause of this Py4JJavaError and fix it to prevent constant crashing of the workers?




stackoverflow relevant question and answer




Job aborted due to stage failure: Task 10 in stage 148.0 failed 4 times, most recent failure: Lost task 10.3 in stage 148.0 (TID 4253, 10.0.5.19, executor 0): org.apache.spark.SparkException: Python worker exited unexpectedly (crashed)
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator$$anonfun$1.applyOrElse(PythonRunner.scala:333)
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator$$anonfun$1.applyOrElse(PythonRunner.scala:322)
at scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:36)
at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:443)
at org.apache.spark.api.python.PythonRunner$$
anon$1.read(PythonRunner.scala:421)
at org.apache.spark.api.python.BasePythonRunner$
ReaderIterator.hasNext(PythonRunner.scala:252)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at scala.collection.Iterator$class.foreach(Iterator.scala:893)
at org.apache.spark.InterruptibleIterator.foreach(InterruptibleIterator.scala:28)
at scala.collection.generic.Growable$
class.$plus$plus$eq(Growable.scala:59)
at scala.collection.mutable.ArrayBuffer.$
plus$plus$eq(ArrayBuffer.scala:104)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48)
at scala.collection.TraversableOnce$
class.to(TraversableOnce.scala:310)
at org.apache.spark.InterruptibleIterator.to(InterruptibleIterator.scala:28)
at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:302)
at org.apache.spark.InterruptibleIterator.toBuffer(InterruptibleIterator.scala:28)
at scala.collection.TraversableOnce$
class.toArray(TraversableOnce.scala:289)
at org.apache.spark.InterruptibleIterator.toArray(InterruptibleIterator.scala:28)
at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$12.apply(RDD.scala:939)
at org.apache.spark.rdd.RDD$$anonfun$
collect$1$$anonfun$12.apply(RDD.scala:939)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2074)
at org.apache.spark.SparkContext$$
anonfun$runJob$5.apply(SparkContext.scala:2074)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:109)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$
Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Caused by: java.io.EOFException
at java.io.DataInputStream.readInt(DataInputStream.java:392)
at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:428)

Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1602)
at org.apache.spark.scheduler.DAGScheduler$$
anonfun$abortStage$1.apply(DAGScheduler.scala:1590)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1589)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1589)
at org.apache.spark.scheduler.DAGScheduler$$
anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:831)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:831)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:831)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1823)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1772)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1761)
at org.apache.spark.util.EventLoop$$
anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:642)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2034)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2055)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2074)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2099)
at org.apache.spark.rdd.RDD$$anonfun$
collect$1.apply(RDD.scala:939)
at org.apache.spark.rdd.RDDOperationScope$
.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:363)
at org.apache.spark.rdd.RDD.collect(RDD.scala:938)
at org.apache.spark.api.python.PythonRDD$
.collectAndServe(PythonRDD.scala:162)
at org.apache.spark.api.python.PythonRDD.collectAndServe(PythonRDD.scala)
at sun.reflect.GeneratedMethodAccessor101.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.spark.SparkException: Python worker exited unexpectedly (crashed)
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator$$anonfun$1.applyOrElse(PythonRunner.scala:333)
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator$$anonfun$1.applyOrElse(PythonRunner.scala:322)
at scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:36)
at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:443)
at org.apache.spark.api.python.PythonRunner$$
anon$1.read(PythonRunner.scala:421)
at org.apache.spark.api.python.BasePythonRunner$
ReaderIterator.hasNext(PythonRunner.scala:252)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at scala.collection.Iterator$class.foreach(Iterator.scala:893)
at org.apache.spark.InterruptibleIterator.foreach(InterruptibleIterator.scala:28)
at scala.collection.generic.Growable$
class.$plus$plus$eq(Growable.scala:59)
at scala.collection.mutable.ArrayBuffer.$
plus$plus$eq(ArrayBuffer.scala:104)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48)
at scala.collection.TraversableOnce$
class.to(TraversableOnce.scala:310)
at org.apache.spark.InterruptibleIterator.to(InterruptibleIterator.scala:28)
at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:302)
at org.apache.spark.InterruptibleIterator.toBuffer(InterruptibleIterator.scala:28)
at scala.collection.TraversableOnce$
class.toArray(TraversableOnce.scala:289)
at org.apache.spark.InterruptibleIterator.toArray(InterruptibleIterator.scala:28)
at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$12.apply(RDD.scala:939)
at org.apache.spark.rdd.RDD$$anonfun$
collect$1$$anonfun$12.apply(RDD.scala:939)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2074)
at org.apache.spark.SparkContext$$
anonfun$runJob$5.apply(SparkContext.scala:2074)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:109)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$
Worker.run(ThreadPoolExecutor.java:624)
... 1 more
Caused by: java.io.EOFException
at java.io.DataInputStream.readInt(DataInputStream.java:392)
at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:428)
... 24 more









share|improve this question











$endgroup$




bumped to the homepage by Community 7 hours ago


This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.



















    0












    $begingroup$


    System:



    • 1 name node, 4 cores, 16 GB RAM

    • 1 master node, 4 cores, 16 GB RAM

    • 6 data nodes, 4 cores, 16 GB RAM each

    • 6 worker nodes, 4 cores, 16 GB RAM each

    • around 5 Terabytes of storage space

    The data nodes and worker nodes exist on the same 6 machines and the name node and master node exist on the same machine. In our docker compose, we have 6 GB set for the master, 8 GB set for name node, 6 GB set for the workers, and 8 GB set for the data nodes.





    I have 2 rdds which I am calculating the cartesian product of, applying a function I wrote to it, and then storing the data in Hadoop as parquet tables. After around 180k parquet tables written to Hadoop, the python worker unexpectedly crashes due to EOFException in Java.




    conf = SparkConf().setAppName(
    "TBG Input Creation App").setMaster("spark://master:7077").setAll(
    [('spark.executor.memory', '6g'),
    ('spark.driver.memory', '4g'),
    ('spark.executor.heartbeatInterval', '3s'),
    ('spark.driver.extraJavaOptions', '-XX:+UseG1GC -verbose:gc -XX:+PrintGCDetails -XX:+PrintGCTimeStamps'),
    ('spark.executor.extraJavaOptions', '-XX:+UseG1GC -verbose:gc -XX:+PrintGCDetails -XX:+PrintGCTimeStamps')])

    rdd_cart = rdd.cartesian(rdd2)
    rdd.unpersist()
    rdd2.unpersist()

    rdd_cart.foreach(lambda row: calc_model(row, fields, vfp_fields))


    Then inside the calc_model function, I write out the parquet table. After the crash, I can re-start the run with PySpark filtering out the ones I all ready ran but after a few thousand more, it will crash again with the same EOFException. I am using foreach since I don't care about any returned values and simply just want the tables written to Hadoop.




    How can identify the root cause of this Py4JJavaError and fix it to prevent constant crashing of the workers?




    stackoverflow relevant question and answer




    Job aborted due to stage failure: Task 10 in stage 148.0 failed 4 times, most recent failure: Lost task 10.3 in stage 148.0 (TID 4253, 10.0.5.19, executor 0): org.apache.spark.SparkException: Python worker exited unexpectedly (crashed)
    at org.apache.spark.api.python.BasePythonRunner$ReaderIterator$$anonfun$1.applyOrElse(PythonRunner.scala:333)
    at org.apache.spark.api.python.BasePythonRunner$ReaderIterator$$anonfun$1.applyOrElse(PythonRunner.scala:322)
    at scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:36)
    at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:443)
    at org.apache.spark.api.python.PythonRunner$$
    anon$1.read(PythonRunner.scala:421)
    at org.apache.spark.api.python.BasePythonRunner$
    ReaderIterator.hasNext(PythonRunner.scala:252)
    at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
    at scala.collection.Iterator$class.foreach(Iterator.scala:893)
    at org.apache.spark.InterruptibleIterator.foreach(InterruptibleIterator.scala:28)
    at scala.collection.generic.Growable$
    class.$plus$plus$eq(Growable.scala:59)
    at scala.collection.mutable.ArrayBuffer.$
    plus$plus$eq(ArrayBuffer.scala:104)
    at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48)
    at scala.collection.TraversableOnce$
    class.to(TraversableOnce.scala:310)
    at org.apache.spark.InterruptibleIterator.to(InterruptibleIterator.scala:28)
    at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:302)
    at org.apache.spark.InterruptibleIterator.toBuffer(InterruptibleIterator.scala:28)
    at scala.collection.TraversableOnce$
    class.toArray(TraversableOnce.scala:289)
    at org.apache.spark.InterruptibleIterator.toArray(InterruptibleIterator.scala:28)
    at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$12.apply(RDD.scala:939)
    at org.apache.spark.rdd.RDD$$anonfun$
    collect$1$$anonfun$12.apply(RDD.scala:939)
    at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2074)
    at org.apache.spark.SparkContext$$
    anonfun$runJob$5.apply(SparkContext.scala:2074)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
    at org.apache.spark.scheduler.Task.run(Task.scala:109)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$
    Worker.run(ThreadPoolExecutor.java:624)
    at java.lang.Thread.run(Thread.java:748)
    Caused by: java.io.EOFException
    at java.io.DataInputStream.readInt(DataInputStream.java:392)
    at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:428)

    Driver stacktrace:
    at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1602)
    at org.apache.spark.scheduler.DAGScheduler$$
    anonfun$abortStage$1.apply(DAGScheduler.scala:1590)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1589)
    at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
    at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
    at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1589)
    at org.apache.spark.scheduler.DAGScheduler$$
    anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:831)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:831)
    at scala.Option.foreach(Option.scala:257)
    at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:831)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1823)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1772)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1761)
    at org.apache.spark.util.EventLoop$$
    anon$1.run(EventLoop.scala:48)
    at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:642)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2034)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2055)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2074)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2099)
    at org.apache.spark.rdd.RDD$$anonfun$
    collect$1.apply(RDD.scala:939)
    at org.apache.spark.rdd.RDDOperationScope$
    .withScope(RDDOperationScope.scala:151)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
    at org.apache.spark.rdd.RDD.withScope(RDD.scala:363)
    at org.apache.spark.rdd.RDD.collect(RDD.scala:938)
    at org.apache.spark.api.python.PythonRDD$
    .collectAndServe(PythonRDD.scala:162)
    at org.apache.spark.api.python.PythonRDD.collectAndServe(PythonRDD.scala)
    at sun.reflect.GeneratedMethodAccessor101.invoke(Unknown Source)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:498)
    at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
    at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
    at py4j.Gateway.invoke(Gateway.java:282)
    at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
    at py4j.commands.CallCommand.execute(CallCommand.java:79)
    at py4j.GatewayConnection.run(GatewayConnection.java:238)
    at java.lang.Thread.run(Thread.java:748)
    Caused by: org.apache.spark.SparkException: Python worker exited unexpectedly (crashed)
    at org.apache.spark.api.python.BasePythonRunner$ReaderIterator$$anonfun$1.applyOrElse(PythonRunner.scala:333)
    at org.apache.spark.api.python.BasePythonRunner$ReaderIterator$$anonfun$1.applyOrElse(PythonRunner.scala:322)
    at scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:36)
    at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:443)
    at org.apache.spark.api.python.PythonRunner$$
    anon$1.read(PythonRunner.scala:421)
    at org.apache.spark.api.python.BasePythonRunner$
    ReaderIterator.hasNext(PythonRunner.scala:252)
    at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
    at scala.collection.Iterator$class.foreach(Iterator.scala:893)
    at org.apache.spark.InterruptibleIterator.foreach(InterruptibleIterator.scala:28)
    at scala.collection.generic.Growable$
    class.$plus$plus$eq(Growable.scala:59)
    at scala.collection.mutable.ArrayBuffer.$
    plus$plus$eq(ArrayBuffer.scala:104)
    at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48)
    at scala.collection.TraversableOnce$
    class.to(TraversableOnce.scala:310)
    at org.apache.spark.InterruptibleIterator.to(InterruptibleIterator.scala:28)
    at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:302)
    at org.apache.spark.InterruptibleIterator.toBuffer(InterruptibleIterator.scala:28)
    at scala.collection.TraversableOnce$
    class.toArray(TraversableOnce.scala:289)
    at org.apache.spark.InterruptibleIterator.toArray(InterruptibleIterator.scala:28)
    at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$12.apply(RDD.scala:939)
    at org.apache.spark.rdd.RDD$$anonfun$
    collect$1$$anonfun$12.apply(RDD.scala:939)
    at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2074)
    at org.apache.spark.SparkContext$$
    anonfun$runJob$5.apply(SparkContext.scala:2074)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
    at org.apache.spark.scheduler.Task.run(Task.scala:109)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$
    Worker.run(ThreadPoolExecutor.java:624)
    ... 1 more
    Caused by: java.io.EOFException
    at java.io.DataInputStream.readInt(DataInputStream.java:392)
    at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:428)
    ... 24 more









    share|improve this question











    $endgroup$




    bumped to the homepage by Community 7 hours ago


    This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.

















      0












      0








      0





      $begingroup$


      System:



      • 1 name node, 4 cores, 16 GB RAM

      • 1 master node, 4 cores, 16 GB RAM

      • 6 data nodes, 4 cores, 16 GB RAM each

      • 6 worker nodes, 4 cores, 16 GB RAM each

      • around 5 Terabytes of storage space

      The data nodes and worker nodes exist on the same 6 machines and the name node and master node exist on the same machine. In our docker compose, we have 6 GB set for the master, 8 GB set for name node, 6 GB set for the workers, and 8 GB set for the data nodes.





      I have 2 rdds which I am calculating the cartesian product of, applying a function I wrote to it, and then storing the data in Hadoop as parquet tables. After around 180k parquet tables written to Hadoop, the python worker unexpectedly crashes due to EOFException in Java.




      conf = SparkConf().setAppName(
      "TBG Input Creation App").setMaster("spark://master:7077").setAll(
      [('spark.executor.memory', '6g'),
      ('spark.driver.memory', '4g'),
      ('spark.executor.heartbeatInterval', '3s'),
      ('spark.driver.extraJavaOptions', '-XX:+UseG1GC -verbose:gc -XX:+PrintGCDetails -XX:+PrintGCTimeStamps'),
      ('spark.executor.extraJavaOptions', '-XX:+UseG1GC -verbose:gc -XX:+PrintGCDetails -XX:+PrintGCTimeStamps')])

      rdd_cart = rdd.cartesian(rdd2)
      rdd.unpersist()
      rdd2.unpersist()

      rdd_cart.foreach(lambda row: calc_model(row, fields, vfp_fields))


      Then inside the calc_model function, I write out the parquet table. After the crash, I can re-start the run with PySpark filtering out the ones I all ready ran but after a few thousand more, it will crash again with the same EOFException. I am using foreach since I don't care about any returned values and simply just want the tables written to Hadoop.




      How can identify the root cause of this Py4JJavaError and fix it to prevent constant crashing of the workers?




      stackoverflow relevant question and answer




      Job aborted due to stage failure: Task 10 in stage 148.0 failed 4 times, most recent failure: Lost task 10.3 in stage 148.0 (TID 4253, 10.0.5.19, executor 0): org.apache.spark.SparkException: Python worker exited unexpectedly (crashed)
      at org.apache.spark.api.python.BasePythonRunner$ReaderIterator$$anonfun$1.applyOrElse(PythonRunner.scala:333)
      at org.apache.spark.api.python.BasePythonRunner$ReaderIterator$$anonfun$1.applyOrElse(PythonRunner.scala:322)
      at scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:36)
      at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:443)
      at org.apache.spark.api.python.PythonRunner$$
      anon$1.read(PythonRunner.scala:421)
      at org.apache.spark.api.python.BasePythonRunner$
      ReaderIterator.hasNext(PythonRunner.scala:252)
      at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
      at scala.collection.Iterator$class.foreach(Iterator.scala:893)
      at org.apache.spark.InterruptibleIterator.foreach(InterruptibleIterator.scala:28)
      at scala.collection.generic.Growable$
      class.$plus$plus$eq(Growable.scala:59)
      at scala.collection.mutable.ArrayBuffer.$
      plus$plus$eq(ArrayBuffer.scala:104)
      at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48)
      at scala.collection.TraversableOnce$
      class.to(TraversableOnce.scala:310)
      at org.apache.spark.InterruptibleIterator.to(InterruptibleIterator.scala:28)
      at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:302)
      at org.apache.spark.InterruptibleIterator.toBuffer(InterruptibleIterator.scala:28)
      at scala.collection.TraversableOnce$
      class.toArray(TraversableOnce.scala:289)
      at org.apache.spark.InterruptibleIterator.toArray(InterruptibleIterator.scala:28)
      at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$12.apply(RDD.scala:939)
      at org.apache.spark.rdd.RDD$$anonfun$
      collect$1$$anonfun$12.apply(RDD.scala:939)
      at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2074)
      at org.apache.spark.SparkContext$$
      anonfun$runJob$5.apply(SparkContext.scala:2074)
      at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
      at org.apache.spark.scheduler.Task.run(Task.scala:109)
      at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345)
      at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
      at java.util.concurrent.ThreadPoolExecutor$
      Worker.run(ThreadPoolExecutor.java:624)
      at java.lang.Thread.run(Thread.java:748)
      Caused by: java.io.EOFException
      at java.io.DataInputStream.readInt(DataInputStream.java:392)
      at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:428)

      Driver stacktrace:
      at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1602)
      at org.apache.spark.scheduler.DAGScheduler$$
      anonfun$abortStage$1.apply(DAGScheduler.scala:1590)
      at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1589)
      at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
      at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
      at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1589)
      at org.apache.spark.scheduler.DAGScheduler$$
      anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:831)
      at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:831)
      at scala.Option.foreach(Option.scala:257)
      at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:831)
      at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1823)
      at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1772)
      at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1761)
      at org.apache.spark.util.EventLoop$$
      anon$1.run(EventLoop.scala:48)
      at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:642)
      at org.apache.spark.SparkContext.runJob(SparkContext.scala:2034)
      at org.apache.spark.SparkContext.runJob(SparkContext.scala:2055)
      at org.apache.spark.SparkContext.runJob(SparkContext.scala:2074)
      at org.apache.spark.SparkContext.runJob(SparkContext.scala:2099)
      at org.apache.spark.rdd.RDD$$anonfun$
      collect$1.apply(RDD.scala:939)
      at org.apache.spark.rdd.RDDOperationScope$
      .withScope(RDDOperationScope.scala:151)
      at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
      at org.apache.spark.rdd.RDD.withScope(RDD.scala:363)
      at org.apache.spark.rdd.RDD.collect(RDD.scala:938)
      at org.apache.spark.api.python.PythonRDD$
      .collectAndServe(PythonRDD.scala:162)
      at org.apache.spark.api.python.PythonRDD.collectAndServe(PythonRDD.scala)
      at sun.reflect.GeneratedMethodAccessor101.invoke(Unknown Source)
      at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
      at java.lang.reflect.Method.invoke(Method.java:498)
      at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
      at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
      at py4j.Gateway.invoke(Gateway.java:282)
      at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
      at py4j.commands.CallCommand.execute(CallCommand.java:79)
      at py4j.GatewayConnection.run(GatewayConnection.java:238)
      at java.lang.Thread.run(Thread.java:748)
      Caused by: org.apache.spark.SparkException: Python worker exited unexpectedly (crashed)
      at org.apache.spark.api.python.BasePythonRunner$ReaderIterator$$anonfun$1.applyOrElse(PythonRunner.scala:333)
      at org.apache.spark.api.python.BasePythonRunner$ReaderIterator$$anonfun$1.applyOrElse(PythonRunner.scala:322)
      at scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:36)
      at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:443)
      at org.apache.spark.api.python.PythonRunner$$
      anon$1.read(PythonRunner.scala:421)
      at org.apache.spark.api.python.BasePythonRunner$
      ReaderIterator.hasNext(PythonRunner.scala:252)
      at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
      at scala.collection.Iterator$class.foreach(Iterator.scala:893)
      at org.apache.spark.InterruptibleIterator.foreach(InterruptibleIterator.scala:28)
      at scala.collection.generic.Growable$
      class.$plus$plus$eq(Growable.scala:59)
      at scala.collection.mutable.ArrayBuffer.$
      plus$plus$eq(ArrayBuffer.scala:104)
      at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48)
      at scala.collection.TraversableOnce$
      class.to(TraversableOnce.scala:310)
      at org.apache.spark.InterruptibleIterator.to(InterruptibleIterator.scala:28)
      at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:302)
      at org.apache.spark.InterruptibleIterator.toBuffer(InterruptibleIterator.scala:28)
      at scala.collection.TraversableOnce$
      class.toArray(TraversableOnce.scala:289)
      at org.apache.spark.InterruptibleIterator.toArray(InterruptibleIterator.scala:28)
      at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$12.apply(RDD.scala:939)
      at org.apache.spark.rdd.RDD$$anonfun$
      collect$1$$anonfun$12.apply(RDD.scala:939)
      at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2074)
      at org.apache.spark.SparkContext$$
      anonfun$runJob$5.apply(SparkContext.scala:2074)
      at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
      at org.apache.spark.scheduler.Task.run(Task.scala:109)
      at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345)
      at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
      at java.util.concurrent.ThreadPoolExecutor$
      Worker.run(ThreadPoolExecutor.java:624)
      ... 1 more
      Caused by: java.io.EOFException
      at java.io.DataInputStream.readInt(DataInputStream.java:392)
      at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:428)
      ... 24 more









      share|improve this question











      $endgroup$




      System:



      • 1 name node, 4 cores, 16 GB RAM

      • 1 master node, 4 cores, 16 GB RAM

      • 6 data nodes, 4 cores, 16 GB RAM each

      • 6 worker nodes, 4 cores, 16 GB RAM each

      • around 5 Terabytes of storage space

      The data nodes and worker nodes exist on the same 6 machines and the name node and master node exist on the same machine. In our docker compose, we have 6 GB set for the master, 8 GB set for name node, 6 GB set for the workers, and 8 GB set for the data nodes.





      I have 2 rdds which I am calculating the cartesian product of, applying a function I wrote to it, and then storing the data in Hadoop as parquet tables. After around 180k parquet tables written to Hadoop, the python worker unexpectedly crashes due to EOFException in Java.




      conf = SparkConf().setAppName(
      "TBG Input Creation App").setMaster("spark://master:7077").setAll(
      [('spark.executor.memory', '6g'),
      ('spark.driver.memory', '4g'),
      ('spark.executor.heartbeatInterval', '3s'),
      ('spark.driver.extraJavaOptions', '-XX:+UseG1GC -verbose:gc -XX:+PrintGCDetails -XX:+PrintGCTimeStamps'),
      ('spark.executor.extraJavaOptions', '-XX:+UseG1GC -verbose:gc -XX:+PrintGCDetails -XX:+PrintGCTimeStamps')])

      rdd_cart = rdd.cartesian(rdd2)
      rdd.unpersist()
      rdd2.unpersist()

      rdd_cart.foreach(lambda row: calc_model(row, fields, vfp_fields))


      Then inside the calc_model function, I write out the parquet table. After the crash, I can re-start the run with PySpark filtering out the ones I all ready ran but after a few thousand more, it will crash again with the same EOFException. I am using foreach since I don't care about any returned values and simply just want the tables written to Hadoop.




      How can identify the root cause of this Py4JJavaError and fix it to prevent constant crashing of the workers?




      stackoverflow relevant question and answer




      Job aborted due to stage failure: Task 10 in stage 148.0 failed 4 times, most recent failure: Lost task 10.3 in stage 148.0 (TID 4253, 10.0.5.19, executor 0): org.apache.spark.SparkException: Python worker exited unexpectedly (crashed)
      at org.apache.spark.api.python.BasePythonRunner$ReaderIterator$$anonfun$1.applyOrElse(PythonRunner.scala:333)
      at org.apache.spark.api.python.BasePythonRunner$ReaderIterator$$anonfun$1.applyOrElse(PythonRunner.scala:322)
      at scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:36)
      at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:443)
      at org.apache.spark.api.python.PythonRunner$$
      anon$1.read(PythonRunner.scala:421)
      at org.apache.spark.api.python.BasePythonRunner$
      ReaderIterator.hasNext(PythonRunner.scala:252)
      at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
      at scala.collection.Iterator$class.foreach(Iterator.scala:893)
      at org.apache.spark.InterruptibleIterator.foreach(InterruptibleIterator.scala:28)
      at scala.collection.generic.Growable$
      class.$plus$plus$eq(Growable.scala:59)
      at scala.collection.mutable.ArrayBuffer.$
      plus$plus$eq(ArrayBuffer.scala:104)
      at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48)
      at scala.collection.TraversableOnce$
      class.to(TraversableOnce.scala:310)
      at org.apache.spark.InterruptibleIterator.to(InterruptibleIterator.scala:28)
      at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:302)
      at org.apache.spark.InterruptibleIterator.toBuffer(InterruptibleIterator.scala:28)
      at scala.collection.TraversableOnce$
      class.toArray(TraversableOnce.scala:289)
      at org.apache.spark.InterruptibleIterator.toArray(InterruptibleIterator.scala:28)
      at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$12.apply(RDD.scala:939)
      at org.apache.spark.rdd.RDD$$anonfun$
      collect$1$$anonfun$12.apply(RDD.scala:939)
      at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2074)
      at org.apache.spark.SparkContext$$
      anonfun$runJob$5.apply(SparkContext.scala:2074)
      at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
      at org.apache.spark.scheduler.Task.run(Task.scala:109)
      at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345)
      at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
      at java.util.concurrent.ThreadPoolExecutor$
      Worker.run(ThreadPoolExecutor.java:624)
      at java.lang.Thread.run(Thread.java:748)
      Caused by: java.io.EOFException
      at java.io.DataInputStream.readInt(DataInputStream.java:392)
      at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:428)

      Driver stacktrace:
      at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1602)
      at org.apache.spark.scheduler.DAGScheduler$$
      anonfun$abortStage$1.apply(DAGScheduler.scala:1590)
      at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1589)
      at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
      at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
      at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1589)
      at org.apache.spark.scheduler.DAGScheduler$$
      anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:831)
      at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:831)
      at scala.Option.foreach(Option.scala:257)
      at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:831)
      at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1823)
      at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1772)
      at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1761)
      at org.apache.spark.util.EventLoop$$
      anon$1.run(EventLoop.scala:48)
      at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:642)
      at org.apache.spark.SparkContext.runJob(SparkContext.scala:2034)
      at org.apache.spark.SparkContext.runJob(SparkContext.scala:2055)
      at org.apache.spark.SparkContext.runJob(SparkContext.scala:2074)
      at org.apache.spark.SparkContext.runJob(SparkContext.scala:2099)
      at org.apache.spark.rdd.RDD$$anonfun$
      collect$1.apply(RDD.scala:939)
      at org.apache.spark.rdd.RDDOperationScope$
      .withScope(RDDOperationScope.scala:151)
      at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
      at org.apache.spark.rdd.RDD.withScope(RDD.scala:363)
      at org.apache.spark.rdd.RDD.collect(RDD.scala:938)
      at org.apache.spark.api.python.PythonRDD$
      .collectAndServe(PythonRDD.scala:162)
      at org.apache.spark.api.python.PythonRDD.collectAndServe(PythonRDD.scala)
      at sun.reflect.GeneratedMethodAccessor101.invoke(Unknown Source)
      at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
      at java.lang.reflect.Method.invoke(Method.java:498)
      at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
      at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
      at py4j.Gateway.invoke(Gateway.java:282)
      at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
      at py4j.commands.CallCommand.execute(CallCommand.java:79)
      at py4j.GatewayConnection.run(GatewayConnection.java:238)
      at java.lang.Thread.run(Thread.java:748)
      Caused by: org.apache.spark.SparkException: Python worker exited unexpectedly (crashed)
      at org.apache.spark.api.python.BasePythonRunner$ReaderIterator$$anonfun$1.applyOrElse(PythonRunner.scala:333)
      at org.apache.spark.api.python.BasePythonRunner$ReaderIterator$$anonfun$1.applyOrElse(PythonRunner.scala:322)
      at scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:36)
      at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:443)
      at org.apache.spark.api.python.PythonRunner$$
      anon$1.read(PythonRunner.scala:421)
      at org.apache.spark.api.python.BasePythonRunner$
      ReaderIterator.hasNext(PythonRunner.scala:252)
      at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
      at scala.collection.Iterator$class.foreach(Iterator.scala:893)
      at org.apache.spark.InterruptibleIterator.foreach(InterruptibleIterator.scala:28)
      at scala.collection.generic.Growable$
      class.$plus$plus$eq(Growable.scala:59)
      at scala.collection.mutable.ArrayBuffer.$
      plus$plus$eq(ArrayBuffer.scala:104)
      at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48)
      at scala.collection.TraversableOnce$
      class.to(TraversableOnce.scala:310)
      at org.apache.spark.InterruptibleIterator.to(InterruptibleIterator.scala:28)
      at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:302)
      at org.apache.spark.InterruptibleIterator.toBuffer(InterruptibleIterator.scala:28)
      at scala.collection.TraversableOnce$
      class.toArray(TraversableOnce.scala:289)
      at org.apache.spark.InterruptibleIterator.toArray(InterruptibleIterator.scala:28)
      at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$12.apply(RDD.scala:939)
      at org.apache.spark.rdd.RDD$$anonfun$
      collect$1$$anonfun$12.apply(RDD.scala:939)
      at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2074)
      at org.apache.spark.SparkContext$$
      anonfun$runJob$5.apply(SparkContext.scala:2074)
      at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
      at org.apache.spark.scheduler.Task.run(Task.scala:109)
      at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345)
      at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
      at java.util.concurrent.ThreadPoolExecutor$
      Worker.run(ThreadPoolExecutor.java:624)
      ... 1 more
      Caused by: java.io.EOFException
      at java.io.DataInputStream.readInt(DataInputStream.java:392)
      at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:428)
      ... 24 more






      python apache-spark apache-hadoop pyspark error-handling






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Oct 24 '18 at 7:30







      dustin

















      asked Oct 24 '18 at 7:16









      dustindustin

      1114




      1114





      bumped to the homepage by Community 7 hours ago


      This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.







      bumped to the homepage by Community 7 hours ago


      This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          I would look at memory use:



          Spark is (I presume) using all 4 cores, each with 6GB RAM (('spark.executor.memory', '6g')); plus 4GB for the driver ('spark.driver.memory', '4g'); the spark result size limit defaults to 1GB (but I don't think you've got as far as a result yet); and maybe a bit for the OS.



          That's maybe 26 to 30GB getting used vs node memory of 16 GB.



          So, your choice seems to be:



          • dial down the RAM settings on spark

          • add more RAM (easy if in the cloud, but that isn't clear here)

          • sample the data





          share|improve this answer











          $endgroup$












          • $begingroup$
            I have tried decreasing memory limits but all the same results.
            $endgroup$
            – dustin
            Nov 9 '18 at 5:00










          • $begingroup$
            If the total memory being made available is now below the system memory, then maybe sample the data to something small enough that it really ought to work is worth a go?
            $endgroup$
            – Dan
            Nov 9 '18 at 10:40










          • $begingroup$
            Alternatively, it isn't clear what calc_model is doing or the size of the data it is getting. Is there something there that is breaking on this size of data? Would an alternative to forEach, e.g. a map or foreachPartition avoid some repeated action there that is being costly?
            $endgroup$
            – Dan
            Nov 9 '18 at 10:44











          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "557"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f40130%2fpyspark-java-io-eofexception%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          0












          $begingroup$

          I would look at memory use:



          Spark is (I presume) using all 4 cores, each with 6GB RAM (('spark.executor.memory', '6g')); plus 4GB for the driver ('spark.driver.memory', '4g'); the spark result size limit defaults to 1GB (but I don't think you've got as far as a result yet); and maybe a bit for the OS.



          That's maybe 26 to 30GB getting used vs node memory of 16 GB.



          So, your choice seems to be:



          • dial down the RAM settings on spark

          • add more RAM (easy if in the cloud, but that isn't clear here)

          • sample the data





          share|improve this answer











          $endgroup$












          • $begingroup$
            I have tried decreasing memory limits but all the same results.
            $endgroup$
            – dustin
            Nov 9 '18 at 5:00










          • $begingroup$
            If the total memory being made available is now below the system memory, then maybe sample the data to something small enough that it really ought to work is worth a go?
            $endgroup$
            – Dan
            Nov 9 '18 at 10:40










          • $begingroup$
            Alternatively, it isn't clear what calc_model is doing or the size of the data it is getting. Is there something there that is breaking on this size of data? Would an alternative to forEach, e.g. a map or foreachPartition avoid some repeated action there that is being costly?
            $endgroup$
            – Dan
            Nov 9 '18 at 10:44















          0












          $begingroup$

          I would look at memory use:



          Spark is (I presume) using all 4 cores, each with 6GB RAM (('spark.executor.memory', '6g')); plus 4GB for the driver ('spark.driver.memory', '4g'); the spark result size limit defaults to 1GB (but I don't think you've got as far as a result yet); and maybe a bit for the OS.



          That's maybe 26 to 30GB getting used vs node memory of 16 GB.



          So, your choice seems to be:



          • dial down the RAM settings on spark

          • add more RAM (easy if in the cloud, but that isn't clear here)

          • sample the data





          share|improve this answer











          $endgroup$












          • $begingroup$
            I have tried decreasing memory limits but all the same results.
            $endgroup$
            – dustin
            Nov 9 '18 at 5:00










          • $begingroup$
            If the total memory being made available is now below the system memory, then maybe sample the data to something small enough that it really ought to work is worth a go?
            $endgroup$
            – Dan
            Nov 9 '18 at 10:40










          • $begingroup$
            Alternatively, it isn't clear what calc_model is doing or the size of the data it is getting. Is there something there that is breaking on this size of data? Would an alternative to forEach, e.g. a map or foreachPartition avoid some repeated action there that is being costly?
            $endgroup$
            – Dan
            Nov 9 '18 at 10:44













          0












          0








          0





          $begingroup$

          I would look at memory use:



          Spark is (I presume) using all 4 cores, each with 6GB RAM (('spark.executor.memory', '6g')); plus 4GB for the driver ('spark.driver.memory', '4g'); the spark result size limit defaults to 1GB (but I don't think you've got as far as a result yet); and maybe a bit for the OS.



          That's maybe 26 to 30GB getting used vs node memory of 16 GB.



          So, your choice seems to be:



          • dial down the RAM settings on spark

          • add more RAM (easy if in the cloud, but that isn't clear here)

          • sample the data





          share|improve this answer











          $endgroup$



          I would look at memory use:



          Spark is (I presume) using all 4 cores, each with 6GB RAM (('spark.executor.memory', '6g')); plus 4GB for the driver ('spark.driver.memory', '4g'); the spark result size limit defaults to 1GB (but I don't think you've got as far as a result yet); and maybe a bit for the OS.



          That's maybe 26 to 30GB getting used vs node memory of 16 GB.



          So, your choice seems to be:



          • dial down the RAM settings on spark

          • add more RAM (easy if in the cloud, but that isn't clear here)

          • sample the data






          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited Nov 6 '18 at 14:24









          Stephen Rauch

          1,52551330




          1,52551330










          answered Nov 6 '18 at 11:53









          DanDan

          1011




          1011











          • $begingroup$
            I have tried decreasing memory limits but all the same results.
            $endgroup$
            – dustin
            Nov 9 '18 at 5:00










          • $begingroup$
            If the total memory being made available is now below the system memory, then maybe sample the data to something small enough that it really ought to work is worth a go?
            $endgroup$
            – Dan
            Nov 9 '18 at 10:40










          • $begingroup$
            Alternatively, it isn't clear what calc_model is doing or the size of the data it is getting. Is there something there that is breaking on this size of data? Would an alternative to forEach, e.g. a map or foreachPartition avoid some repeated action there that is being costly?
            $endgroup$
            – Dan
            Nov 9 '18 at 10:44
















          • $begingroup$
            I have tried decreasing memory limits but all the same results.
            $endgroup$
            – dustin
            Nov 9 '18 at 5:00










          • $begingroup$
            If the total memory being made available is now below the system memory, then maybe sample the data to something small enough that it really ought to work is worth a go?
            $endgroup$
            – Dan
            Nov 9 '18 at 10:40










          • $begingroup$
            Alternatively, it isn't clear what calc_model is doing or the size of the data it is getting. Is there something there that is breaking on this size of data? Would an alternative to forEach, e.g. a map or foreachPartition avoid some repeated action there that is being costly?
            $endgroup$
            – Dan
            Nov 9 '18 at 10:44















          $begingroup$
          I have tried decreasing memory limits but all the same results.
          $endgroup$
          – dustin
          Nov 9 '18 at 5:00




          $begingroup$
          I have tried decreasing memory limits but all the same results.
          $endgroup$
          – dustin
          Nov 9 '18 at 5:00












          $begingroup$
          If the total memory being made available is now below the system memory, then maybe sample the data to something small enough that it really ought to work is worth a go?
          $endgroup$
          – Dan
          Nov 9 '18 at 10:40




          $begingroup$
          If the total memory being made available is now below the system memory, then maybe sample the data to something small enough that it really ought to work is worth a go?
          $endgroup$
          – Dan
          Nov 9 '18 at 10:40












          $begingroup$
          Alternatively, it isn't clear what calc_model is doing or the size of the data it is getting. Is there something there that is breaking on this size of data? Would an alternative to forEach, e.g. a map or foreachPartition avoid some repeated action there that is being costly?
          $endgroup$
          – Dan
          Nov 9 '18 at 10:44




          $begingroup$
          Alternatively, it isn't clear what calc_model is doing or the size of the data it is getting. Is there something there that is breaking on this size of data? Would an alternative to forEach, e.g. a map or foreachPartition avoid some repeated action there that is being costly?
          $endgroup$
          – Dan
          Nov 9 '18 at 10:44

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Data Science Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f40130%2fpyspark-java-io-eofexception%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Францішак Багушэвіч Змест Сям'я | Біяграфія | Творчасць | Мова Багушэвіча | Ацэнкі дзейнасці | Цікавыя факты | Спадчына | Выбраная бібліяграфія | Ушанаванне памяці | У філатэліі | Зноскі | Літаратура | Спасылкі | НавігацыяЛяхоўскі У. Рупіўся дзеля Бога і людзей: Жыццёвы шлях Лявона Вітан-Дубейкаўскага // Вольскі і Памідораў з песняй пра немца Адвакат, паэт, народны заступнік Ашмянскі веснікВ Минске появится площадь Богушевича и улица Сырокомли, Белорусская деловая газета, 19 июля 2001 г.Айцец беларускай нацыянальнай ідэі паўстаў у бронзе Сяргей Аляксандравіч Адашкевіч (1918, Мінск). 80-я гады. Бюст «Францішак Багушэвіч».Яўген Мікалаевіч Ціхановіч. «Партрэт Францішка Багушэвіча»Мікола Мікалаевіч Купава. «Партрэт зачынальніка новай беларускай літаратуры Францішка Багушэвіча»Уладзімір Іванавіч Мелехаў. На помніку «Змагарам за родную мову» Барэльеф «Францішак Багушэвіч»Памяць пра Багушэвіча на Віленшчыне Страчаная сталіца. Беларускія шыльды на вуліцах Вільні«Krynica». Ideologia i przywódcy białoruskiego katolicyzmuФранцішак БагушэвічТворы на knihi.comТворы Францішка Багушэвіча на bellib.byСодаль Уладзімір. Францішак Багушэвіч на Лідчыне;Луцкевіч Антон. Жыцьцё і творчасьць Фр. Багушэвіча ў успамінах ягоных сучасьнікаў // Запісы Беларускага Навуковага таварыства. Вільня, 1938. Сшытак 1. С. 16-34.Большая российская1188761710000 0000 5537 633Xn9209310021619551927869394п

          Partai Komunis Tiongkok Daftar isi Kepemimpinan | Pranala luar | Referensi | Menu navigasidiperiksa1 perubahan tertundacpc.people.com.cnSitus resmiSurat kabar resmi"Why the Communist Party is alive, well and flourishing in China"0307-1235"Full text of Constitution of Communist Party of China"smengembangkannyas

          ValueError: Expected n_neighbors <= n_samples, but n_samples = 1, n_neighbors = 6 (SMOTE) The 2019 Stack Overflow Developer Survey Results Are InCan SMOTE be applied over sequence of words (sentences)?ValueError when doing validation with random forestsSMOTE and multi class oversamplingLogic behind SMOTE-NC?ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)SmoteBoost: Should SMOTE be ran individually for each iteration/tree in the boosting?solving multi-class imbalance classification using smote and OSSUsing SMOTE for Synthetic Data generation to improve performance on unbalanced dataproblem of entry format for a simple model in KerasSVM SMOTE fit_resample() function runs forever with no result