Hyper parameters tuning XGBClassifier Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) 2019 Moderator Election Q&A - Questionnaire 2019 Community Moderator Election ResultsOverfitting XGBoostdifference between XGBRegressor and XGBClassifierWhich parameters are hyper parameters in a linear regression?Hyper parameters and ValidationSetA way to Identify tuning parameters and their possible rangeComparing XGBR with CatBoost performanceHyperparameter tuning for stacked modelsWhich is first ? Tuning the parameters or selecting the modelProblem about tuning hyper-parametresSetting best SVM hyper parameters

Why does BitLocker not use RSA?

Im stuck and having trouble with ¬P ∨ Q Prove: P → Q

How to create a command for the "strange m" symbol in latex?

Is there a verb for listening stealthily?

Married in secret, can marital status in passport be changed at a later date?

How to leave only the following strings?

Can this water damage be explained by lack of gutters and grading issues?

What could prevent concentrated local exploration?

Marquee sign letters

How to break 信じようとしていただけかも知れない into separate parts?

Is it OK if I do not take the receipt in Germany?

What's the difference between using dependency injection with a container and using a service locator?

Can the van der Waals coefficients be negative in the van der Waals equation for real gases?

Does traveling In The United States require a passport or can I use my green card if not a US citizen?

Pointing to problems without suggesting solutions

How can I introduce the names of fantasy creatures to the reader?

How to mute a string and play another at the same time

2 sample t test for sample sizes - 30,000 and 150,000

Is my guitar’s action too high?

How is an IPA symbol that lacks a name (e.g. ɲ) called?

Lights are flickering on and off after accidentally bumping into light switch

Why is one lightbulb in a string illuminated?

Can I take recommendation from someone I met at a conference?

What is the evidence that custom checks in Northern Ireland are going to result in violence?



Hyper parameters tuning XGBClassifier



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)
2019 Moderator Election Q&A - Questionnaire
2019 Community Moderator Election ResultsOverfitting XGBoostdifference between XGBRegressor and XGBClassifierWhich parameters are hyper parameters in a linear regression?Hyper parameters and ValidationSetA way to Identify tuning parameters and their possible rangeComparing XGBR with CatBoost performanceHyperparameter tuning for stacked modelsWhich is first ? Tuning the parameters or selecting the modelProblem about tuning hyper-parametresSetting best SVM hyper parameters










0












$begingroup$


I am working on a highly imbalanced dataset for a competition.



The training data shape is : (166573, 14)



train['outcome'].value_counts()

0 159730
1 6843


I am using XGBClassifier for building model and the only parameter I manually set is scale_pos_weight : 23.34 (0 value counts / 1 value counts)



and it's giving around 82% under AUC metric.



I guess I can get much accuracy if I hypertune all other parameters.



XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,
colsample_bytree=1, gamma=0, learning_rate=0.1, max_delta_step=0,
max_depth=3, min_child_weight=1, missing=None, n_estimators=100,
n_jobs=1, nthread=None, objective='binary:logistic', random_state=0,
reg_alpha=0, reg_lambda=1, scale_pos_weight=23.4, seed=None,
silent=True, subsample=1)


I tried GridSearchCV but it's taking a lot of time to complete on my local machine and I am not able to get any result back.



clf = XGBClassifier()
grid = GridSearchCV(clf,
params, n_jobs=-1,
scoring="roc_auc",
cv=3)

grid.fit(X_train, y_train)
print("Best: %f using %s" % (grid.best_score_, grid.best_params_))


What others parameters should I target to tune considering higly imbalanced dataset and how to run it so that I can actually get some results back?









share







New contributor




Praveenks is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$
















    0












    $begingroup$


    I am working on a highly imbalanced dataset for a competition.



    The training data shape is : (166573, 14)



    train['outcome'].value_counts()

    0 159730
    1 6843


    I am using XGBClassifier for building model and the only parameter I manually set is scale_pos_weight : 23.34 (0 value counts / 1 value counts)



    and it's giving around 82% under AUC metric.



    I guess I can get much accuracy if I hypertune all other parameters.



    XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,
    colsample_bytree=1, gamma=0, learning_rate=0.1, max_delta_step=0,
    max_depth=3, min_child_weight=1, missing=None, n_estimators=100,
    n_jobs=1, nthread=None, objective='binary:logistic', random_state=0,
    reg_alpha=0, reg_lambda=1, scale_pos_weight=23.4, seed=None,
    silent=True, subsample=1)


    I tried GridSearchCV but it's taking a lot of time to complete on my local machine and I am not able to get any result back.



    clf = XGBClassifier()
    grid = GridSearchCV(clf,
    params, n_jobs=-1,
    scoring="roc_auc",
    cv=3)

    grid.fit(X_train, y_train)
    print("Best: %f using %s" % (grid.best_score_, grid.best_params_))


    What others parameters should I target to tune considering higly imbalanced dataset and how to run it so that I can actually get some results back?









    share







    New contributor




    Praveenks is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$














      0












      0








      0





      $begingroup$


      I am working on a highly imbalanced dataset for a competition.



      The training data shape is : (166573, 14)



      train['outcome'].value_counts()

      0 159730
      1 6843


      I am using XGBClassifier for building model and the only parameter I manually set is scale_pos_weight : 23.34 (0 value counts / 1 value counts)



      and it's giving around 82% under AUC metric.



      I guess I can get much accuracy if I hypertune all other parameters.



      XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,
      colsample_bytree=1, gamma=0, learning_rate=0.1, max_delta_step=0,
      max_depth=3, min_child_weight=1, missing=None, n_estimators=100,
      n_jobs=1, nthread=None, objective='binary:logistic', random_state=0,
      reg_alpha=0, reg_lambda=1, scale_pos_weight=23.4, seed=None,
      silent=True, subsample=1)


      I tried GridSearchCV but it's taking a lot of time to complete on my local machine and I am not able to get any result back.



      clf = XGBClassifier()
      grid = GridSearchCV(clf,
      params, n_jobs=-1,
      scoring="roc_auc",
      cv=3)

      grid.fit(X_train, y_train)
      print("Best: %f using %s" % (grid.best_score_, grid.best_params_))


      What others parameters should I target to tune considering higly imbalanced dataset and how to run it so that I can actually get some results back?









      share







      New contributor




      Praveenks is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      I am working on a highly imbalanced dataset for a competition.



      The training data shape is : (166573, 14)



      train['outcome'].value_counts()

      0 159730
      1 6843


      I am using XGBClassifier for building model and the only parameter I manually set is scale_pos_weight : 23.34 (0 value counts / 1 value counts)



      and it's giving around 82% under AUC metric.



      I guess I can get much accuracy if I hypertune all other parameters.



      XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,
      colsample_bytree=1, gamma=0, learning_rate=0.1, max_delta_step=0,
      max_depth=3, min_child_weight=1, missing=None, n_estimators=100,
      n_jobs=1, nthread=None, objective='binary:logistic', random_state=0,
      reg_alpha=0, reg_lambda=1, scale_pos_weight=23.4, seed=None,
      silent=True, subsample=1)


      I tried GridSearchCV but it's taking a lot of time to complete on my local machine and I am not able to get any result back.



      clf = XGBClassifier()
      grid = GridSearchCV(clf,
      params, n_jobs=-1,
      scoring="roc_auc",
      cv=3)

      grid.fit(X_train, y_train)
      print("Best: %f using %s" % (grid.best_score_, grid.best_params_))


      What others parameters should I target to tune considering higly imbalanced dataset and how to run it so that I can actually get some results back?







      xgboost cross-validation hyperparameter-tuning





      share







      New contributor




      Praveenks is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.










      share







      New contributor




      Praveenks is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.








      share



      share






      New contributor




      Praveenks is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 6 mins ago









      PraveenksPraveenks

      1062




      1062




      New contributor




      Praveenks is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Praveenks is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Praveenks is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




















          0






          active

          oldest

          votes












          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "557"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );






          Praveenks is a new contributor. Be nice, and check out our Code of Conduct.









          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f49746%2fhyper-parameters-tuning-xgbclassifier%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          Praveenks is a new contributor. Be nice, and check out our Code of Conduct.









          draft saved

          draft discarded


















          Praveenks is a new contributor. Be nice, and check out our Code of Conduct.












          Praveenks is a new contributor. Be nice, and check out our Code of Conduct.











          Praveenks is a new contributor. Be nice, and check out our Code of Conduct.














          Thanks for contributing an answer to Data Science Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f49746%2fhyper-parameters-tuning-xgbclassifier%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Францішак Багушэвіч Змест Сям'я | Біяграфія | Творчасць | Мова Багушэвіча | Ацэнкі дзейнасці | Цікавыя факты | Спадчына | Выбраная бібліяграфія | Ушанаванне памяці | У філатэліі | Зноскі | Літаратура | Спасылкі | НавігацыяЛяхоўскі У. Рупіўся дзеля Бога і людзей: Жыццёвы шлях Лявона Вітан-Дубейкаўскага // Вольскі і Памідораў з песняй пра немца Адвакат, паэт, народны заступнік Ашмянскі веснікВ Минске появится площадь Богушевича и улица Сырокомли, Белорусская деловая газета, 19 июля 2001 г.Айцец беларускай нацыянальнай ідэі паўстаў у бронзе Сяргей Аляксандравіч Адашкевіч (1918, Мінск). 80-я гады. Бюст «Францішак Багушэвіч».Яўген Мікалаевіч Ціхановіч. «Партрэт Францішка Багушэвіча»Мікола Мікалаевіч Купава. «Партрэт зачынальніка новай беларускай літаратуры Францішка Багушэвіча»Уладзімір Іванавіч Мелехаў. На помніку «Змагарам за родную мову» Барэльеф «Францішак Багушэвіч»Памяць пра Багушэвіча на Віленшчыне Страчаная сталіца. Беларускія шыльды на вуліцах Вільні«Krynica». Ideologia i przywódcy białoruskiego katolicyzmuФранцішак БагушэвічТворы на knihi.comТворы Францішка Багушэвіча на bellib.byСодаль Уладзімір. Францішак Багушэвіч на Лідчыне;Луцкевіч Антон. Жыцьцё і творчасьць Фр. Багушэвіча ў успамінах ягоных сучасьнікаў // Запісы Беларускага Навуковага таварыства. Вільня, 1938. Сшытак 1. С. 16-34.Большая российская1188761710000 0000 5537 633Xn9209310021619551927869394п

          Partai Komunis Tiongkok Daftar isi Kepemimpinan | Pranala luar | Referensi | Menu navigasidiperiksa1 perubahan tertundacpc.people.com.cnSitus resmiSurat kabar resmi"Why the Communist Party is alive, well and flourishing in China"0307-1235"Full text of Constitution of Communist Party of China"smengembangkannyas

          ValueError: Expected n_neighbors <= n_samples, but n_samples = 1, n_neighbors = 6 (SMOTE) The 2019 Stack Overflow Developer Survey Results Are InCan SMOTE be applied over sequence of words (sentences)?ValueError when doing validation with random forestsSMOTE and multi class oversamplingLogic behind SMOTE-NC?ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)SmoteBoost: Should SMOTE be ran individually for each iteration/tree in the boosting?solving multi-class imbalance classification using smote and OSSUsing SMOTE for Synthetic Data generation to improve performance on unbalanced dataproblem of entry format for a simple model in KerasSVM SMOTE fit_resample() function runs forever with no result