LSTM equations with minibatches Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) 2019 Moderator Election Q&A - Questionnaire 2019 Community Moderator Election ResultsTensorFlow and Categorical variablesKeras LSTM: use weights from Keras model to replicate predictions using numpyValueError: Error when checking target: expected dense_2 to have shape (1,) but got array with shape (0,)Reshaping big dataset with MinMaxScaler giving errorHow to define the shape of hidden and meory state in Numpy, keras?What does GlobalMaxPooling1D() do to output of LSTM unit in Keras?Understanding LSTM input shape for kerasLSTM Long Term Dependencies KerasUnderstanding LSTM structure3 dimensional array as input with Embedding Layer and LSTM in Keras

How do I overlay a PNG over two videos (one video overlays another) in one command using FFmpeg?

Can I take recommendation from someone I met at a conference?

Is it OK if I do not take the receipt in Germany?

2 sample t test for sample sizes - 30,000 and 150,000

tabularx column has extra padding at right?

What's the difference between using dependency injection with a container and using a service locator?

/bin/ls sorts differently than just ls

How is an IPA symbol that lacks a name (e.g. ɲ) called?

Is Bran literally the world's memory?

Is there a verb for listening stealthily?

Would I be safe to drive a 23 year old truck for 7 hours / 450 miles?

"Destructive force" carried by a B-52?

How to create a command for the "strange m" symbol in latex?

lm and glm function in R

Do chord progressions usually move by fifths?

Lights are flickering on and off after accidentally bumping into light switch

Putting Ant-Man on house arrest

Who can become a wight?

Why not use the yoke to control yaw, as well as pitch and roll?

Can gravitational waves pass through a black hole?

Why did Bronn offer to be Tyrion Lannister's champion in trial by combat?

How to get a single big right brace?

Why aren't these two solutions equivalent? Combinatorics problem

“Since the train was delayed for more than an hour, passengers were given a full refund.” – Why is there no article before “passengers”?



LSTM equations with minibatches



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)
2019 Moderator Election Q&A - Questionnaire
2019 Community Moderator Election ResultsTensorFlow and Categorical variablesKeras LSTM: use weights from Keras model to replicate predictions using numpyValueError: Error when checking target: expected dense_2 to have shape (1,) but got array with shape (0,)Reshaping big dataset with MinMaxScaler giving errorHow to define the shape of hidden and meory state in Numpy, keras?What does GlobalMaxPooling1D() do to output of LSTM unit in Keras?Understanding LSTM input shape for kerasLSTM Long Term Dependencies KerasUnderstanding LSTM structure3 dimensional array as input with Embedding Layer and LSTM in Keras










0












$begingroup$


I'm looking at the code behind a Keras LSTM, and I noticed something I find odd.



Suppose we're feeding in input of size (batch_size, time_steps, input_dim)
where:




  • batch_size is the number of examples in the minibatch,


  • time_steps is the number of time steps to look back (i.e the window size)


  • input_dim is the number of input variables.

Suppose we want to input minibatches of size batch_size=5, time_steps=2, and input_dim=1.



That is, we have a univariate time series with five examples per minibatch and we use the previous two values of the time series to predict the next value.



Say we want to accomplish this using an LSTM with size 3 (that is, this is the number of hidden units and the number of output units). Call this size units.



In lines 1871-1995 of the code here, the LSTM is being built. The equation I'm confused about is on lines 1989-1990, which corresponds to the calculation of the input gate:



i = self.recurrent_activation(x_i + K.dot(h_tm1_i, self.recurrent_kernel_i))


The variable x_i is calculated as:



x_i = K.dot(inputs_i, self.kernel_i)


where




  • inputs_i = the input at time i, which has shape (batch_size, time_steps, input_dim), in our case would have shape (5, 2, 1)


  • self.kernel_i = the weight matrix that is multiplied by the current input at time t, and has shape (input_dim, units), in our case would have shape (1, 3)

I understand this dot product is accomplished via broadcasting, and the final shape is (batch_size, time_steps, units), which in our case is (5, 2, 3).



Now let's examine the dot product:



K.dot(h_tm1_i, self.recurrent_kernel_i))


where



  • h_tm1_i = the recurrent hidden state at time i, and has shape equal to (batch_size, units) according to line 295. In our case, that's (5, 3)


  • self.recurrent_kernel = the weight matrix that is multiplied by the previous hidden state, and has shape (units, units), which in our case would be (3, 3).


Somehow via the magic of broadcasting, the dot product gives something with shape (5, 3)



We're left with needing to add x_i and K.dot(h_tm1_i, self.recurrent_kernel_i)), which have shapes (5, 2, 3) and (5, 3) respectively. When I try to do that myself in tensorflow, I get an error:



ValueError: Dimensions must be equal, but are 2 and 5 for 'add_1' (op: 'Add') with input shapes: [5,2,3], [5,3].


Clearly I've done something wrong somewhere, but I can't see my logic error. Can anyone help?



EDIT: To reproduce the error:



>>> import tensorflow as tf
>>> import keras
>>> from keras import backend as K
>>> inputs_i = tf.ones([5, 2, 1])
>>> kernel_i = tf.ones([1,3])
>>> h_tm1_i = tf.ones([5,3])
>>> rec_i = tf.ones([3,3])
>>> x_i = K.dot(inputs_i, kernel_i)
>>> x_i
<tf.Tensor 'Reshape_9:0' shape=(5, 2, 3) dtype=float32>
>>> K.dot(h_tm1_i, rec_i)
<tf.Tensor 'MatMul_4:0' shape=(5, 3) dtype=float32>
>>> x_i + K.dot(h_tm1, rec_i) #Raises ValueError









share|improve this question











$endgroup$
















    0












    $begingroup$


    I'm looking at the code behind a Keras LSTM, and I noticed something I find odd.



    Suppose we're feeding in input of size (batch_size, time_steps, input_dim)
    where:




    • batch_size is the number of examples in the minibatch,


    • time_steps is the number of time steps to look back (i.e the window size)


    • input_dim is the number of input variables.

    Suppose we want to input minibatches of size batch_size=5, time_steps=2, and input_dim=1.



    That is, we have a univariate time series with five examples per minibatch and we use the previous two values of the time series to predict the next value.



    Say we want to accomplish this using an LSTM with size 3 (that is, this is the number of hidden units and the number of output units). Call this size units.



    In lines 1871-1995 of the code here, the LSTM is being built. The equation I'm confused about is on lines 1989-1990, which corresponds to the calculation of the input gate:



    i = self.recurrent_activation(x_i + K.dot(h_tm1_i, self.recurrent_kernel_i))


    The variable x_i is calculated as:



    x_i = K.dot(inputs_i, self.kernel_i)


    where




    • inputs_i = the input at time i, which has shape (batch_size, time_steps, input_dim), in our case would have shape (5, 2, 1)


    • self.kernel_i = the weight matrix that is multiplied by the current input at time t, and has shape (input_dim, units), in our case would have shape (1, 3)

    I understand this dot product is accomplished via broadcasting, and the final shape is (batch_size, time_steps, units), which in our case is (5, 2, 3).



    Now let's examine the dot product:



    K.dot(h_tm1_i, self.recurrent_kernel_i))


    where



    • h_tm1_i = the recurrent hidden state at time i, and has shape equal to (batch_size, units) according to line 295. In our case, that's (5, 3)


    • self.recurrent_kernel = the weight matrix that is multiplied by the previous hidden state, and has shape (units, units), which in our case would be (3, 3).


    Somehow via the magic of broadcasting, the dot product gives something with shape (5, 3)



    We're left with needing to add x_i and K.dot(h_tm1_i, self.recurrent_kernel_i)), which have shapes (5, 2, 3) and (5, 3) respectively. When I try to do that myself in tensorflow, I get an error:



    ValueError: Dimensions must be equal, but are 2 and 5 for 'add_1' (op: 'Add') with input shapes: [5,2,3], [5,3].


    Clearly I've done something wrong somewhere, but I can't see my logic error. Can anyone help?



    EDIT: To reproduce the error:



    >>> import tensorflow as tf
    >>> import keras
    >>> from keras import backend as K
    >>> inputs_i = tf.ones([5, 2, 1])
    >>> kernel_i = tf.ones([1,3])
    >>> h_tm1_i = tf.ones([5,3])
    >>> rec_i = tf.ones([3,3])
    >>> x_i = K.dot(inputs_i, kernel_i)
    >>> x_i
    <tf.Tensor 'Reshape_9:0' shape=(5, 2, 3) dtype=float32>
    >>> K.dot(h_tm1_i, rec_i)
    <tf.Tensor 'MatMul_4:0' shape=(5, 3) dtype=float32>
    >>> x_i + K.dot(h_tm1, rec_i) #Raises ValueError









    share|improve this question











    $endgroup$














      0












      0








      0





      $begingroup$


      I'm looking at the code behind a Keras LSTM, and I noticed something I find odd.



      Suppose we're feeding in input of size (batch_size, time_steps, input_dim)
      where:




      • batch_size is the number of examples in the minibatch,


      • time_steps is the number of time steps to look back (i.e the window size)


      • input_dim is the number of input variables.

      Suppose we want to input minibatches of size batch_size=5, time_steps=2, and input_dim=1.



      That is, we have a univariate time series with five examples per minibatch and we use the previous two values of the time series to predict the next value.



      Say we want to accomplish this using an LSTM with size 3 (that is, this is the number of hidden units and the number of output units). Call this size units.



      In lines 1871-1995 of the code here, the LSTM is being built. The equation I'm confused about is on lines 1989-1990, which corresponds to the calculation of the input gate:



      i = self.recurrent_activation(x_i + K.dot(h_tm1_i, self.recurrent_kernel_i))


      The variable x_i is calculated as:



      x_i = K.dot(inputs_i, self.kernel_i)


      where




      • inputs_i = the input at time i, which has shape (batch_size, time_steps, input_dim), in our case would have shape (5, 2, 1)


      • self.kernel_i = the weight matrix that is multiplied by the current input at time t, and has shape (input_dim, units), in our case would have shape (1, 3)

      I understand this dot product is accomplished via broadcasting, and the final shape is (batch_size, time_steps, units), which in our case is (5, 2, 3).



      Now let's examine the dot product:



      K.dot(h_tm1_i, self.recurrent_kernel_i))


      where



      • h_tm1_i = the recurrent hidden state at time i, and has shape equal to (batch_size, units) according to line 295. In our case, that's (5, 3)


      • self.recurrent_kernel = the weight matrix that is multiplied by the previous hidden state, and has shape (units, units), which in our case would be (3, 3).


      Somehow via the magic of broadcasting, the dot product gives something with shape (5, 3)



      We're left with needing to add x_i and K.dot(h_tm1_i, self.recurrent_kernel_i)), which have shapes (5, 2, 3) and (5, 3) respectively. When I try to do that myself in tensorflow, I get an error:



      ValueError: Dimensions must be equal, but are 2 and 5 for 'add_1' (op: 'Add') with input shapes: [5,2,3], [5,3].


      Clearly I've done something wrong somewhere, but I can't see my logic error. Can anyone help?



      EDIT: To reproduce the error:



      >>> import tensorflow as tf
      >>> import keras
      >>> from keras import backend as K
      >>> inputs_i = tf.ones([5, 2, 1])
      >>> kernel_i = tf.ones([1,3])
      >>> h_tm1_i = tf.ones([5,3])
      >>> rec_i = tf.ones([3,3])
      >>> x_i = K.dot(inputs_i, kernel_i)
      >>> x_i
      <tf.Tensor 'Reshape_9:0' shape=(5, 2, 3) dtype=float32>
      >>> K.dot(h_tm1_i, rec_i)
      <tf.Tensor 'MatMul_4:0' shape=(5, 3) dtype=float32>
      >>> x_i + K.dot(h_tm1, rec_i) #Raises ValueError









      share|improve this question











      $endgroup$




      I'm looking at the code behind a Keras LSTM, and I noticed something I find odd.



      Suppose we're feeding in input of size (batch_size, time_steps, input_dim)
      where:




      • batch_size is the number of examples in the minibatch,


      • time_steps is the number of time steps to look back (i.e the window size)


      • input_dim is the number of input variables.

      Suppose we want to input minibatches of size batch_size=5, time_steps=2, and input_dim=1.



      That is, we have a univariate time series with five examples per minibatch and we use the previous two values of the time series to predict the next value.



      Say we want to accomplish this using an LSTM with size 3 (that is, this is the number of hidden units and the number of output units). Call this size units.



      In lines 1871-1995 of the code here, the LSTM is being built. The equation I'm confused about is on lines 1989-1990, which corresponds to the calculation of the input gate:



      i = self.recurrent_activation(x_i + K.dot(h_tm1_i, self.recurrent_kernel_i))


      The variable x_i is calculated as:



      x_i = K.dot(inputs_i, self.kernel_i)


      where




      • inputs_i = the input at time i, which has shape (batch_size, time_steps, input_dim), in our case would have shape (5, 2, 1)


      • self.kernel_i = the weight matrix that is multiplied by the current input at time t, and has shape (input_dim, units), in our case would have shape (1, 3)

      I understand this dot product is accomplished via broadcasting, and the final shape is (batch_size, time_steps, units), which in our case is (5, 2, 3).



      Now let's examine the dot product:



      K.dot(h_tm1_i, self.recurrent_kernel_i))


      where



      • h_tm1_i = the recurrent hidden state at time i, and has shape equal to (batch_size, units) according to line 295. In our case, that's (5, 3)


      • self.recurrent_kernel = the weight matrix that is multiplied by the previous hidden state, and has shape (units, units), which in our case would be (3, 3).


      Somehow via the magic of broadcasting, the dot product gives something with shape (5, 3)



      We're left with needing to add x_i and K.dot(h_tm1_i, self.recurrent_kernel_i)), which have shapes (5, 2, 3) and (5, 3) respectively. When I try to do that myself in tensorflow, I get an error:



      ValueError: Dimensions must be equal, but are 2 and 5 for 'add_1' (op: 'Add') with input shapes: [5,2,3], [5,3].


      Clearly I've done something wrong somewhere, but I can't see my logic error. Can anyone help?



      EDIT: To reproduce the error:



      >>> import tensorflow as tf
      >>> import keras
      >>> from keras import backend as K
      >>> inputs_i = tf.ones([5, 2, 1])
      >>> kernel_i = tf.ones([1,3])
      >>> h_tm1_i = tf.ones([5,3])
      >>> rec_i = tf.ones([3,3])
      >>> x_i = K.dot(inputs_i, kernel_i)
      >>> x_i
      <tf.Tensor 'Reshape_9:0' shape=(5, 2, 3) dtype=float32>
      >>> K.dot(h_tm1_i, rec_i)
      <tf.Tensor 'MatMul_4:0' shape=(5, 3) dtype=float32>
      >>> x_i + K.dot(h_tm1, rec_i) #Raises ValueError






      python neural-network deep-learning tensorflow lstm






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited 1 hour ago







      StatsSorceress

















      asked 1 hour ago









      StatsSorceressStatsSorceress

      1,1473824




      1,1473824




















          0






          active

          oldest

          votes












          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "557"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f49741%2flstm-equations-with-minibatches%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Data Science Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f49741%2flstm-equations-with-minibatches%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Францішак Багушэвіч Змест Сям'я | Біяграфія | Творчасць | Мова Багушэвіча | Ацэнкі дзейнасці | Цікавыя факты | Спадчына | Выбраная бібліяграфія | Ушанаванне памяці | У філатэліі | Зноскі | Літаратура | Спасылкі | НавігацыяЛяхоўскі У. Рупіўся дзеля Бога і людзей: Жыццёвы шлях Лявона Вітан-Дубейкаўскага // Вольскі і Памідораў з песняй пра немца Адвакат, паэт, народны заступнік Ашмянскі веснікВ Минске появится площадь Богушевича и улица Сырокомли, Белорусская деловая газета, 19 июля 2001 г.Айцец беларускай нацыянальнай ідэі паўстаў у бронзе Сяргей Аляксандравіч Адашкевіч (1918, Мінск). 80-я гады. Бюст «Францішак Багушэвіч».Яўген Мікалаевіч Ціхановіч. «Партрэт Францішка Багушэвіча»Мікола Мікалаевіч Купава. «Партрэт зачынальніка новай беларускай літаратуры Францішка Багушэвіча»Уладзімір Іванавіч Мелехаў. На помніку «Змагарам за родную мову» Барэльеф «Францішак Багушэвіч»Памяць пра Багушэвіча на Віленшчыне Страчаная сталіца. Беларускія шыльды на вуліцах Вільні«Krynica». Ideologia i przywódcy białoruskiego katolicyzmuФранцішак БагушэвічТворы на knihi.comТворы Францішка Багушэвіча на bellib.byСодаль Уладзімір. Францішак Багушэвіч на Лідчыне;Луцкевіч Антон. Жыцьцё і творчасьць Фр. Багушэвіча ў успамінах ягоных сучасьнікаў // Запісы Беларускага Навуковага таварыства. Вільня, 1938. Сшытак 1. С. 16-34.Большая российская1188761710000 0000 5537 633Xn9209310021619551927869394п

          Беларусь Змест Назва Гісторыя Геаграфія Сімволіка Дзяржаўны лад Палітычныя партыі Міжнароднае становішча і знешняя палітыка Адміністрацыйны падзел Насельніцтва Эканоміка Культура і грамадства Сацыяльная сфера Узброеныя сілы Заўвагі Літаратура Спасылкі НавігацыяHGЯOiТоп-2011 г. (па версіі ej.by)Топ-2013 г. (па версіі ej.by)Топ-2016 г. (па версіі ej.by)Топ-2017 г. (па версіі ej.by)Нацыянальны статыстычны камітэт Рэспублікі БеларусьШчыльнасць насельніцтва па краінахhttp://naviny.by/rubrics/society/2011/09/16/ic_articles_116_175144/А. Калечыц, У. Ксяндзоў. Спробы засялення краю неандэртальскім чалавекам.І ў Менску былі мамантыА. Калечыц, У. Ксяндзоў. Старажытны каменны век (палеаліт). Першапачатковае засяленне тэрыторыіГ. Штыхаў. Балты і славяне ў VI—VIII стст.М. Клімаў. Полацкае княства ў IX—XI стст.Г. Штыхаў, В. Ляўко. Палітычная гісторыя Полацкай зямліГ. Штыхаў. Дзяржаўны лад у землях-княствахГ. Штыхаў. Дзяржаўны лад у землях-княствахБеларускія землі ў складзе Вялікага Княства ЛітоўскагаЛюблінская унія 1569 г."The Early Stages of Independence"Zapomniane prawdy25 гадоў таму было аб'яўлена, што Язэп Пілсудскі — беларус (фота)Наша вадаДакументы ЧАЭС: Забруджванне тэрыторыі Беларусі « ЧАЭС Зона адчужэнняСведения о политических партиях, зарегистрированных в Республике Беларусь // Министерство юстиции Республики БеларусьСтатыстычны бюлетэнь „Полаўзроставая структура насельніцтва Рэспублікі Беларусь на 1 студзеня 2012 года і сярэднегадовая колькасць насельніцтва за 2011 год“Индекс человеческого развития Беларуси — не было бы нижеБеларусь занимает первое место в СНГ по индексу развития с учетом гендерного факцёраНацыянальны статыстычны камітэт Рэспублікі БеларусьКанстытуцыя РБ. Артыкул 17Трансфармацыйныя задачы БеларусіВыйсце з крызісу — далейшае рэфармаванне Беларускі рубель — сусветны лідар па дэвальвацыяхПра змену коштаў у кастрычніку 2011 г.Бядней за беларусаў у СНД толькі таджыкіСярэдні заробак у верасні дасягнуў 2,26 мільёна рублёўЭканомікаГаласуем за ТОП-100 беларускай прозыСучасныя беларускія мастакіАрхитектура Беларуси BELARUS.BYА. Каханоўскі. Культура Беларусі ўсярэдзіне XVII—XVIII ст.Анталогія беларускай народнай песні, гуказапісы спеваўБеларускія Музычныя IнструментыБеларускі рок, які мы страцілі. Топ-10 гуртоў«Мясцовы час» — нязгаслая легенда беларускай рок-музыкіСЯРГЕЙ БУДКІН. МЫ НЯ ЗНАЕМ СВАЁЙ МУЗЫКІМ. А. Каладзінскі. НАРОДНЫ ТЭАТРМагнацкія культурныя цэнтрыПублічная дыскусія «Беларуская новая пьеса: без беларускай мовы ці беларуская?»Беларускія драматургі па-ранейшаму лепш ставяцца за мяжой, чым на радзіме«Працэс незалежнага кіно пайшоў, і дзяржаву турбуе яго непадкантрольнасць»Беларускія філосафы ў пошуках прасторыВсе идём в библиотекуАрхіваванаАб Нацыянальнай праграме даследавання і выкарыстання касмічнай прасторы ў мірных мэтах на 2008—2012 гадыУ космас — разам.У суседнім з Барысаўскім раёне пабудуюць Камандна-вымяральны пунктСвяты і абрады беларусаў«Мірныя бульбашы з малой краіны» — 5 непраўдзівых стэрэатыпаў пра БеларусьМ. Раманюк. Беларускае народнае адзеннеУ Беларусі скарачаецца колькасць злачынстваўЛукашэнка незадаволены мінскімі ўладамі Крадзяжы складаюць у Мінску каля 70% злачынстваў Узровень злачыннасці ў Мінскай вобласці — адзін з самых высокіх у краіне Генпракуратура аналізуе стан са злачыннасцю ў Беларусі па каэфіцыенце злачыннасці У Беларусі стабілізавалася крымінагеннае становішча, лічыць генпракурорЗамежнікі сталі здзяйсняць у Беларусі больш злачынстваўМУС Беларусі турбуе рост рэцыдыўнай злачыннасціЯ з ЖЭСа. Дазволіце вас абкрасці! Рэйтынг усіх службаў і падраздзяленняў ГУУС Мінгарвыканкама вырасАб КДБ РБГісторыя Аператыўна-аналітычнага цэнтра РБГісторыя ДКФРТаможняagentura.ruБеларусьBelarus.by — Афіцыйны сайт Рэспублікі БеларусьСайт урада БеларусіRadzima.org — Збор архітэктурных помнікаў, гісторыя Беларусі«Глобус Беларуси»Гербы и флаги БеларусиАсаблівасці каменнага веку на БеларусіА. Калечыц, У. Ксяндзоў. Старажытны каменны век (палеаліт). Першапачатковае засяленне тэрыторыіУ. Ксяндзоў. Сярэдні каменны век (мезаліт). Засяленне краю плямёнамі паляўнічых, рыбакоў і збіральнікаўА. Калечыц, М. Чарняўскі. Плямёны на тэрыторыі Беларусі ў новым каменным веку (неаліце)А. Калечыц, У. Ксяндзоў, М. Чарняўскі. Гаспадарчыя заняткі ў каменным векуЭ. Зайкоўскі. Духоўная культура ў каменным векуАсаблівасці бронзавага веку на БеларусіФарміраванне супольнасцей ранняга перыяду бронзавага векуФотографии БеларусиРоля беларускіх зямель ва ўтварэнні і ўмацаванні ВКЛВ. Фадзеева. З гісторыі развіцця беларускай народнай вышыўкіDMOZGran catalanaБольшая российскаяBritannica (анлайн)Швейцарскі гістарычны15325917611952699xDA123282154079143-90000 0001 2171 2080n9112870100577502ge128882171858027501086026362074122714179пппппп

          ValueError: Expected n_neighbors <= n_samples, but n_samples = 1, n_neighbors = 6 (SMOTE) The 2019 Stack Overflow Developer Survey Results Are InCan SMOTE be applied over sequence of words (sentences)?ValueError when doing validation with random forestsSMOTE and multi class oversamplingLogic behind SMOTE-NC?ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)SmoteBoost: Should SMOTE be ran individually for each iteration/tree in the boosting?solving multi-class imbalance classification using smote and OSSUsing SMOTE for Synthetic Data generation to improve performance on unbalanced dataproblem of entry format for a simple model in KerasSVM SMOTE fit_resample() function runs forever with no result