How to compute a Jacobian using polar coordinates?How do I convert a vector field in Cartesian coordinates to spherical coordinates?gradient in polar coordinate by changing gradient in Cartesian coordinateJacobian of the change of variablesJacobian Determinant of Polar-Coordinate TransformationPolar coordinates and Jacobian of $frac12 r $Elementary JacobianPartial derivative in polar coordinatesHow do I prove this identity involving polar coordinates and $nabla$?What is the Jacobian in this transformationDoubt about differentia operatorl in polar coordinates

How to begin with a paragraph in latex

When does Bran Stark remember Jamie pushing him?

Is a self contained air-bullet cartridge feasible?

Why would the Overseers waste their stock of slaves on the Game?

Raising a bilingual kid. When should we introduce the majority language?

"Working on a knee"

Where to find documentation for `whois` command options?

Israeli soda type drink

Why is arima in R one time step off?

Why aren't road bicycle wheels tiny?

Is there a way to fake a method response using Mock or Stubs?

What is /etc/mtab in Linux?

Is it appropriate to mention a relatable company blog post when you're asked about the company?

Why did Israel vote against lifting the American embargo on Cuba?

Why I cannot instantiate a class whose constructor is private in a friend class?

What to do with someone that cheated their way though university and a PhD program?

What were wait-states, and why was it only an issue for PCs?

Bright yellow or light yellow?

What is a 'Key' in computer science?

RIP Packet Format

Why did Europeans not widely domesticate foxes?

In search of the origins of term censor, I hit a dead end stuck with the greek term, to censor, λογοκρίνω

Can gravitational waves pass through a black hole?

Is there a possibility to generate a list dynamically in Latex?



How to compute a Jacobian using polar coordinates?


How do I convert a vector field in Cartesian coordinates to spherical coordinates?gradient in polar coordinate by changing gradient in Cartesian coordinateJacobian of the change of variablesJacobian Determinant of Polar-Coordinate TransformationPolar coordinates and Jacobian of $frac12 r $Elementary JacobianPartial derivative in polar coordinatesHow do I prove this identity involving polar coordinates and $nabla$?What is the Jacobian in this transformationDoubt about differentia operatorl in polar coordinates













5












$begingroup$


Consider the transformation $F$ of $mathbb R^2setminus(0,0)$ onto itself defined as
$$
F(x, y):=left( fracxx^2+y^2, fracyx^2+y^2right).$$

Its Jacobian matrix is
$$tag1
beginbmatrix fracy^2-x^2(x^2+y^2)^2 & -frac2xy(x^2+y^2)^2 \ -frac2xy(x^2+y^2)^2 & fracx^2-y^2(x^2+y^2)^2 endbmatrix,quad textand its determinant equals frac-1(x^2+y^2)^2.$$

The following alternative computation is wrong at (!) and (!!), and I cannot see why.




Let $phicolon (0, infty)times (-pi, pi)to mathbb R^2$ be the map $$phi(r, theta) =(rcos theta, rsin theta).$$ Let moreover $$tag2tildeF:=phi^-1circ Fcirc phi;$$ then, by an easy direct computation, $$tildeF(r, theta)=left( frac1r, thetaright).$$The Jacobian matrix of $tildeF$ is, thus, $$tag!beginbmatrix frac-1r^2 & 0 \ 0 & 1endbmatrix , quad textand its determinant equals frac-1r^2.$$On the other hand, by (2) and by the chain rule, the Jacobian determinants of $F$ and $tildeF$ are equal. We conclude that the Jacobian determinant of $F$ is $$tag!! frac-1r^2=frac-1x^2+y^2.$$




The result (!!) is off by a factor of $r^-2$ from the correct one, which is given in (1). Equation (!) must also be wrong. Indeed, computing the Jacobian matrix from (2) using the chain rule I obtain the result
$$
beginbmatrix fracxsqrtx^2+y^2 & fracysqrtx^2+y^2 \ -fracyx^2+y^2 & fracxx^2+y^2endbmatrix beginbmatrix fracy^2-x^2(x^2+y^2)^2 & -frac2xy(x^2+y^2)^2 \ -frac2xy(x^2+y^2)^2 & fracx^2-y^2(x^2+y^2)^2 endbmatrixbeginbmatrix costheta & -rsintheta \ sin theta & rcos thetaendbmatrix = beginbmatrix -frac1r^2 & 0 \ 0 & frac1r^2endbmatrix,$$

which is different from the matrix in (!), and which gives the correct determinant of $-1/r^4$, as it should be.




Can you help me spot the mistake?











share|cite











$endgroup$
















    5












    $begingroup$


    Consider the transformation $F$ of $mathbb R^2setminus(0,0)$ onto itself defined as
    $$
    F(x, y):=left( fracxx^2+y^2, fracyx^2+y^2right).$$

    Its Jacobian matrix is
    $$tag1
    beginbmatrix fracy^2-x^2(x^2+y^2)^2 & -frac2xy(x^2+y^2)^2 \ -frac2xy(x^2+y^2)^2 & fracx^2-y^2(x^2+y^2)^2 endbmatrix,quad textand its determinant equals frac-1(x^2+y^2)^2.$$

    The following alternative computation is wrong at (!) and (!!), and I cannot see why.




    Let $phicolon (0, infty)times (-pi, pi)to mathbb R^2$ be the map $$phi(r, theta) =(rcos theta, rsin theta).$$ Let moreover $$tag2tildeF:=phi^-1circ Fcirc phi;$$ then, by an easy direct computation, $$tildeF(r, theta)=left( frac1r, thetaright).$$The Jacobian matrix of $tildeF$ is, thus, $$tag!beginbmatrix frac-1r^2 & 0 \ 0 & 1endbmatrix , quad textand its determinant equals frac-1r^2.$$On the other hand, by (2) and by the chain rule, the Jacobian determinants of $F$ and $tildeF$ are equal. We conclude that the Jacobian determinant of $F$ is $$tag!! frac-1r^2=frac-1x^2+y^2.$$




    The result (!!) is off by a factor of $r^-2$ from the correct one, which is given in (1). Equation (!) must also be wrong. Indeed, computing the Jacobian matrix from (2) using the chain rule I obtain the result
    $$
    beginbmatrix fracxsqrtx^2+y^2 & fracysqrtx^2+y^2 \ -fracyx^2+y^2 & fracxx^2+y^2endbmatrix beginbmatrix fracy^2-x^2(x^2+y^2)^2 & -frac2xy(x^2+y^2)^2 \ -frac2xy(x^2+y^2)^2 & fracx^2-y^2(x^2+y^2)^2 endbmatrixbeginbmatrix costheta & -rsintheta \ sin theta & rcos thetaendbmatrix = beginbmatrix -frac1r^2 & 0 \ 0 & frac1r^2endbmatrix,$$

    which is different from the matrix in (!), and which gives the correct determinant of $-1/r^4$, as it should be.




    Can you help me spot the mistake?











    share|cite











    $endgroup$














      5












      5








      5


      2



      $begingroup$


      Consider the transformation $F$ of $mathbb R^2setminus(0,0)$ onto itself defined as
      $$
      F(x, y):=left( fracxx^2+y^2, fracyx^2+y^2right).$$

      Its Jacobian matrix is
      $$tag1
      beginbmatrix fracy^2-x^2(x^2+y^2)^2 & -frac2xy(x^2+y^2)^2 \ -frac2xy(x^2+y^2)^2 & fracx^2-y^2(x^2+y^2)^2 endbmatrix,quad textand its determinant equals frac-1(x^2+y^2)^2.$$

      The following alternative computation is wrong at (!) and (!!), and I cannot see why.




      Let $phicolon (0, infty)times (-pi, pi)to mathbb R^2$ be the map $$phi(r, theta) =(rcos theta, rsin theta).$$ Let moreover $$tag2tildeF:=phi^-1circ Fcirc phi;$$ then, by an easy direct computation, $$tildeF(r, theta)=left( frac1r, thetaright).$$The Jacobian matrix of $tildeF$ is, thus, $$tag!beginbmatrix frac-1r^2 & 0 \ 0 & 1endbmatrix , quad textand its determinant equals frac-1r^2.$$On the other hand, by (2) and by the chain rule, the Jacobian determinants of $F$ and $tildeF$ are equal. We conclude that the Jacobian determinant of $F$ is $$tag!! frac-1r^2=frac-1x^2+y^2.$$




      The result (!!) is off by a factor of $r^-2$ from the correct one, which is given in (1). Equation (!) must also be wrong. Indeed, computing the Jacobian matrix from (2) using the chain rule I obtain the result
      $$
      beginbmatrix fracxsqrtx^2+y^2 & fracysqrtx^2+y^2 \ -fracyx^2+y^2 & fracxx^2+y^2endbmatrix beginbmatrix fracy^2-x^2(x^2+y^2)^2 & -frac2xy(x^2+y^2)^2 \ -frac2xy(x^2+y^2)^2 & fracx^2-y^2(x^2+y^2)^2 endbmatrixbeginbmatrix costheta & -rsintheta \ sin theta & rcos thetaendbmatrix = beginbmatrix -frac1r^2 & 0 \ 0 & frac1r^2endbmatrix,$$

      which is different from the matrix in (!), and which gives the correct determinant of $-1/r^4$, as it should be.




      Can you help me spot the mistake?











      share|cite











      $endgroup$




      Consider the transformation $F$ of $mathbb R^2setminus(0,0)$ onto itself defined as
      $$
      F(x, y):=left( fracxx^2+y^2, fracyx^2+y^2right).$$

      Its Jacobian matrix is
      $$tag1
      beginbmatrix fracy^2-x^2(x^2+y^2)^2 & -frac2xy(x^2+y^2)^2 \ -frac2xy(x^2+y^2)^2 & fracx^2-y^2(x^2+y^2)^2 endbmatrix,quad textand its determinant equals frac-1(x^2+y^2)^2.$$

      The following alternative computation is wrong at (!) and (!!), and I cannot see why.




      Let $phicolon (0, infty)times (-pi, pi)to mathbb R^2$ be the map $$phi(r, theta) =(rcos theta, rsin theta).$$ Let moreover $$tag2tildeF:=phi^-1circ Fcirc phi;$$ then, by an easy direct computation, $$tildeF(r, theta)=left( frac1r, thetaright).$$The Jacobian matrix of $tildeF$ is, thus, $$tag!beginbmatrix frac-1r^2 & 0 \ 0 & 1endbmatrix , quad textand its determinant equals frac-1r^2.$$On the other hand, by (2) and by the chain rule, the Jacobian determinants of $F$ and $tildeF$ are equal. We conclude that the Jacobian determinant of $F$ is $$tag!! frac-1r^2=frac-1x^2+y^2.$$




      The result (!!) is off by a factor of $r^-2$ from the correct one, which is given in (1). Equation (!) must also be wrong. Indeed, computing the Jacobian matrix from (2) using the chain rule I obtain the result
      $$
      beginbmatrix fracxsqrtx^2+y^2 & fracysqrtx^2+y^2 \ -fracyx^2+y^2 & fracxx^2+y^2endbmatrix beginbmatrix fracy^2-x^2(x^2+y^2)^2 & -frac2xy(x^2+y^2)^2 \ -frac2xy(x^2+y^2)^2 & fracx^2-y^2(x^2+y^2)^2 endbmatrixbeginbmatrix costheta & -rsintheta \ sin theta & rcos thetaendbmatrix = beginbmatrix -frac1r^2 & 0 \ 0 & frac1r^2endbmatrix,$$

      which is different from the matrix in (!), and which gives the correct determinant of $-1/r^4$, as it should be.




      Can you help me spot the mistake?








      calculus multivariable-calculus differential-geometry






      share|cite















      share|cite













      share|cite




      share|cite








      edited 3 hours ago









      Tengu

      2,68411021




      2,68411021










      asked 4 hours ago









      Giuseppe NegroGiuseppe Negro

      17.7k332128




      17.7k332128




















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$

          The Jacobians of the two functions aren't equal by the chain rule.



          In actual fact, $D(phi(frac1r, costheta)) × DtildeF(r, theta)= DF times D(phi(r, theta))$






          share|cite









          $endgroup$




















            2












            $begingroup$

            I don't think there is any contradiction here.



            Consider the volume form
            $$ omega_rm Cart = dx wedge dy.$$
            Your first calculation shows that the pullback $F^star(omega_rm Cart)$ is given by
            $$ F^star(omega_rm Cart) = - frac1(x^2+y^2)^2omega_rm Cart.$$



            Now consider the volume form
            $$ omega_rm Polar = dr wedge dtheta.$$
            Your second calculation shows that



            $$ F^star(omega_rm Polar)=-frac 1 r^2 omega_rm Polar. $$



            We can use this to recompute $F^star(omega_rm Cart)$. In view of the fact that
            $$ omega_rm Cart = r omega_rm Polar,$$
            we have:
            beginalign
            F^star(omega_rm Cart) &= F^star(romega_rm Polar) \ &= F^star(r) F^star(omega_rm Polar) \ &= frac 1 r left( - frac 1 r^2omega_rm Polar right) \ &= - frac1r^4 left(romega_rm Polar right) \ &= - frac 1 r^4 omega_rm Cart
            endalign

            which is consistent with the first calculation!




            As for the application of the chain rule, we have:
            $$ (Dbar F)|_(r, theta) = D(phi^-1)|_Fcirc phi(r, theta) (DF)|_phi(r, theta) (Dphi)|_(r, theta)$$



            The key point is that you must evaluate $D(phi^-1)$ at the point $left(frac x (x^2 +y^2), frac y (x^2 + y^2)right)$, not at the point $(x, y)$.



            This is equal to



            $$ D(phi^-1)|_Fcirc phi(r, theta) = beginbmatrix fracfracxx^2 + y^2sqrtleft(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 & fracfracyx^2 + y^2sqrtleft(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 \ -fracfracyx^2 + y^2left(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 & fracfracxx^2 + y^2left(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2endbmatrix = beginbmatrixcostheta & sin theta \ - rsin theta & rcostheta endbmatrix$$
            which is not the inverse of $(Dphi)|_(r, theta)$.






            share|cite











            $endgroup$












            • $begingroup$
              I couldn't expect a better answer. You nailed it completely. Also, thank you for suggesting the viewpoint of volume forms; that makes for much slicker computations.
              $endgroup$
              – Giuseppe Negro
              2 hours ago


















            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            The Jacobians of the two functions aren't equal by the chain rule.



            In actual fact, $D(phi(frac1r, costheta)) × DtildeF(r, theta)= DF times D(phi(r, theta))$






            share|cite









            $endgroup$

















              2












              $begingroup$

              The Jacobians of the two functions aren't equal by the chain rule.



              In actual fact, $D(phi(frac1r, costheta)) × DtildeF(r, theta)= DF times D(phi(r, theta))$






              share|cite









              $endgroup$















                2












                2








                2





                $begingroup$

                The Jacobians of the two functions aren't equal by the chain rule.



                In actual fact, $D(phi(frac1r, costheta)) × DtildeF(r, theta)= DF times D(phi(r, theta))$






                share|cite









                $endgroup$



                The Jacobians of the two functions aren't equal by the chain rule.



                In actual fact, $D(phi(frac1r, costheta)) × DtildeF(r, theta)= DF times D(phi(r, theta))$







                share|cite












                share|cite



                share|cite










                answered 3 hours ago









                George DewhirstGeorge Dewhirst

                1,72515




                1,72515





















                    2












                    $begingroup$

                    I don't think there is any contradiction here.



                    Consider the volume form
                    $$ omega_rm Cart = dx wedge dy.$$
                    Your first calculation shows that the pullback $F^star(omega_rm Cart)$ is given by
                    $$ F^star(omega_rm Cart) = - frac1(x^2+y^2)^2omega_rm Cart.$$



                    Now consider the volume form
                    $$ omega_rm Polar = dr wedge dtheta.$$
                    Your second calculation shows that



                    $$ F^star(omega_rm Polar)=-frac 1 r^2 omega_rm Polar. $$



                    We can use this to recompute $F^star(omega_rm Cart)$. In view of the fact that
                    $$ omega_rm Cart = r omega_rm Polar,$$
                    we have:
                    beginalign
                    F^star(omega_rm Cart) &= F^star(romega_rm Polar) \ &= F^star(r) F^star(omega_rm Polar) \ &= frac 1 r left( - frac 1 r^2omega_rm Polar right) \ &= - frac1r^4 left(romega_rm Polar right) \ &= - frac 1 r^4 omega_rm Cart
                    endalign

                    which is consistent with the first calculation!




                    As for the application of the chain rule, we have:
                    $$ (Dbar F)|_(r, theta) = D(phi^-1)|_Fcirc phi(r, theta) (DF)|_phi(r, theta) (Dphi)|_(r, theta)$$



                    The key point is that you must evaluate $D(phi^-1)$ at the point $left(frac x (x^2 +y^2), frac y (x^2 + y^2)right)$, not at the point $(x, y)$.



                    This is equal to



                    $$ D(phi^-1)|_Fcirc phi(r, theta) = beginbmatrix fracfracxx^2 + y^2sqrtleft(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 & fracfracyx^2 + y^2sqrtleft(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 \ -fracfracyx^2 + y^2left(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 & fracfracxx^2 + y^2left(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2endbmatrix = beginbmatrixcostheta & sin theta \ - rsin theta & rcostheta endbmatrix$$
                    which is not the inverse of $(Dphi)|_(r, theta)$.






                    share|cite











                    $endgroup$












                    • $begingroup$
                      I couldn't expect a better answer. You nailed it completely. Also, thank you for suggesting the viewpoint of volume forms; that makes for much slicker computations.
                      $endgroup$
                      – Giuseppe Negro
                      2 hours ago















                    2












                    $begingroup$

                    I don't think there is any contradiction here.



                    Consider the volume form
                    $$ omega_rm Cart = dx wedge dy.$$
                    Your first calculation shows that the pullback $F^star(omega_rm Cart)$ is given by
                    $$ F^star(omega_rm Cart) = - frac1(x^2+y^2)^2omega_rm Cart.$$



                    Now consider the volume form
                    $$ omega_rm Polar = dr wedge dtheta.$$
                    Your second calculation shows that



                    $$ F^star(omega_rm Polar)=-frac 1 r^2 omega_rm Polar. $$



                    We can use this to recompute $F^star(omega_rm Cart)$. In view of the fact that
                    $$ omega_rm Cart = r omega_rm Polar,$$
                    we have:
                    beginalign
                    F^star(omega_rm Cart) &= F^star(romega_rm Polar) \ &= F^star(r) F^star(omega_rm Polar) \ &= frac 1 r left( - frac 1 r^2omega_rm Polar right) \ &= - frac1r^4 left(romega_rm Polar right) \ &= - frac 1 r^4 omega_rm Cart
                    endalign

                    which is consistent with the first calculation!




                    As for the application of the chain rule, we have:
                    $$ (Dbar F)|_(r, theta) = D(phi^-1)|_Fcirc phi(r, theta) (DF)|_phi(r, theta) (Dphi)|_(r, theta)$$



                    The key point is that you must evaluate $D(phi^-1)$ at the point $left(frac x (x^2 +y^2), frac y (x^2 + y^2)right)$, not at the point $(x, y)$.



                    This is equal to



                    $$ D(phi^-1)|_Fcirc phi(r, theta) = beginbmatrix fracfracxx^2 + y^2sqrtleft(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 & fracfracyx^2 + y^2sqrtleft(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 \ -fracfracyx^2 + y^2left(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 & fracfracxx^2 + y^2left(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2endbmatrix = beginbmatrixcostheta & sin theta \ - rsin theta & rcostheta endbmatrix$$
                    which is not the inverse of $(Dphi)|_(r, theta)$.






                    share|cite











                    $endgroup$












                    • $begingroup$
                      I couldn't expect a better answer. You nailed it completely. Also, thank you for suggesting the viewpoint of volume forms; that makes for much slicker computations.
                      $endgroup$
                      – Giuseppe Negro
                      2 hours ago













                    2












                    2








                    2





                    $begingroup$

                    I don't think there is any contradiction here.



                    Consider the volume form
                    $$ omega_rm Cart = dx wedge dy.$$
                    Your first calculation shows that the pullback $F^star(omega_rm Cart)$ is given by
                    $$ F^star(omega_rm Cart) = - frac1(x^2+y^2)^2omega_rm Cart.$$



                    Now consider the volume form
                    $$ omega_rm Polar = dr wedge dtheta.$$
                    Your second calculation shows that



                    $$ F^star(omega_rm Polar)=-frac 1 r^2 omega_rm Polar. $$



                    We can use this to recompute $F^star(omega_rm Cart)$. In view of the fact that
                    $$ omega_rm Cart = r omega_rm Polar,$$
                    we have:
                    beginalign
                    F^star(omega_rm Cart) &= F^star(romega_rm Polar) \ &= F^star(r) F^star(omega_rm Polar) \ &= frac 1 r left( - frac 1 r^2omega_rm Polar right) \ &= - frac1r^4 left(romega_rm Polar right) \ &= - frac 1 r^4 omega_rm Cart
                    endalign

                    which is consistent with the first calculation!




                    As for the application of the chain rule, we have:
                    $$ (Dbar F)|_(r, theta) = D(phi^-1)|_Fcirc phi(r, theta) (DF)|_phi(r, theta) (Dphi)|_(r, theta)$$



                    The key point is that you must evaluate $D(phi^-1)$ at the point $left(frac x (x^2 +y^2), frac y (x^2 + y^2)right)$, not at the point $(x, y)$.



                    This is equal to



                    $$ D(phi^-1)|_Fcirc phi(r, theta) = beginbmatrix fracfracxx^2 + y^2sqrtleft(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 & fracfracyx^2 + y^2sqrtleft(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 \ -fracfracyx^2 + y^2left(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 & fracfracxx^2 + y^2left(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2endbmatrix = beginbmatrixcostheta & sin theta \ - rsin theta & rcostheta endbmatrix$$
                    which is not the inverse of $(Dphi)|_(r, theta)$.






                    share|cite











                    $endgroup$



                    I don't think there is any contradiction here.



                    Consider the volume form
                    $$ omega_rm Cart = dx wedge dy.$$
                    Your first calculation shows that the pullback $F^star(omega_rm Cart)$ is given by
                    $$ F^star(omega_rm Cart) = - frac1(x^2+y^2)^2omega_rm Cart.$$



                    Now consider the volume form
                    $$ omega_rm Polar = dr wedge dtheta.$$
                    Your second calculation shows that



                    $$ F^star(omega_rm Polar)=-frac 1 r^2 omega_rm Polar. $$



                    We can use this to recompute $F^star(omega_rm Cart)$. In view of the fact that
                    $$ omega_rm Cart = r omega_rm Polar,$$
                    we have:
                    beginalign
                    F^star(omega_rm Cart) &= F^star(romega_rm Polar) \ &= F^star(r) F^star(omega_rm Polar) \ &= frac 1 r left( - frac 1 r^2omega_rm Polar right) \ &= - frac1r^4 left(romega_rm Polar right) \ &= - frac 1 r^4 omega_rm Cart
                    endalign

                    which is consistent with the first calculation!




                    As for the application of the chain rule, we have:
                    $$ (Dbar F)|_(r, theta) = D(phi^-1)|_Fcirc phi(r, theta) (DF)|_phi(r, theta) (Dphi)|_(r, theta)$$



                    The key point is that you must evaluate $D(phi^-1)$ at the point $left(frac x (x^2 +y^2), frac y (x^2 + y^2)right)$, not at the point $(x, y)$.



                    This is equal to



                    $$ D(phi^-1)|_Fcirc phi(r, theta) = beginbmatrix fracfracxx^2 + y^2sqrtleft(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 & fracfracyx^2 + y^2sqrtleft(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 \ -fracfracyx^2 + y^2left(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 & fracfracxx^2 + y^2left(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2endbmatrix = beginbmatrixcostheta & sin theta \ - rsin theta & rcostheta endbmatrix$$
                    which is not the inverse of $(Dphi)|_(r, theta)$.







                    share|cite














                    share|cite



                    share|cite








                    edited 3 hours ago

























                    answered 3 hours ago









                    Kenny WongKenny Wong

                    20.1k21442




                    20.1k21442











                    • $begingroup$
                      I couldn't expect a better answer. You nailed it completely. Also, thank you for suggesting the viewpoint of volume forms; that makes for much slicker computations.
                      $endgroup$
                      – Giuseppe Negro
                      2 hours ago
















                    • $begingroup$
                      I couldn't expect a better answer. You nailed it completely. Also, thank you for suggesting the viewpoint of volume forms; that makes for much slicker computations.
                      $endgroup$
                      – Giuseppe Negro
                      2 hours ago















                    $begingroup$
                    I couldn't expect a better answer. You nailed it completely. Also, thank you for suggesting the viewpoint of volume forms; that makes for much slicker computations.
                    $endgroup$
                    – Giuseppe Negro
                    2 hours ago




                    $begingroup$
                    I couldn't expect a better answer. You nailed it completely. Also, thank you for suggesting the viewpoint of volume forms; that makes for much slicker computations.
                    $endgroup$
                    – Giuseppe Negro
                    2 hours ago



                    Popular posts from this blog

                    Францішак Багушэвіч Змест Сям'я | Біяграфія | Творчасць | Мова Багушэвіча | Ацэнкі дзейнасці | Цікавыя факты | Спадчына | Выбраная бібліяграфія | Ушанаванне памяці | У філатэліі | Зноскі | Літаратура | Спасылкі | НавігацыяЛяхоўскі У. Рупіўся дзеля Бога і людзей: Жыццёвы шлях Лявона Вітан-Дубейкаўскага // Вольскі і Памідораў з песняй пра немца Адвакат, паэт, народны заступнік Ашмянскі веснікВ Минске появится площадь Богушевича и улица Сырокомли, Белорусская деловая газета, 19 июля 2001 г.Айцец беларускай нацыянальнай ідэі паўстаў у бронзе Сяргей Аляксандравіч Адашкевіч (1918, Мінск). 80-я гады. Бюст «Францішак Багушэвіч».Яўген Мікалаевіч Ціхановіч. «Партрэт Францішка Багушэвіча»Мікола Мікалаевіч Купава. «Партрэт зачынальніка новай беларускай літаратуры Францішка Багушэвіча»Уладзімір Іванавіч Мелехаў. На помніку «Змагарам за родную мову» Барэльеф «Францішак Багушэвіч»Памяць пра Багушэвіча на Віленшчыне Страчаная сталіца. Беларускія шыльды на вуліцах Вільні«Krynica». Ideologia i przywódcy białoruskiego katolicyzmuФранцішак БагушэвічТворы на knihi.comТворы Францішка Багушэвіча на bellib.byСодаль Уладзімір. Францішак Багушэвіч на Лідчыне;Луцкевіч Антон. Жыцьцё і творчасьць Фр. Багушэвіча ў успамінах ягоных сучасьнікаў // Запісы Беларускага Навуковага таварыства. Вільня, 1938. Сшытак 1. С. 16-34.Большая российская1188761710000 0000 5537 633Xn9209310021619551927869394п

                    Partai Komunis Tiongkok Daftar isi Kepemimpinan | Pranala luar | Referensi | Menu navigasidiperiksa1 perubahan tertundacpc.people.com.cnSitus resmiSurat kabar resmi"Why the Communist Party is alive, well and flourishing in China"0307-1235"Full text of Constitution of Communist Party of China"smengembangkannyas

                    ValueError: Expected n_neighbors <= n_samples, but n_samples = 1, n_neighbors = 6 (SMOTE) The 2019 Stack Overflow Developer Survey Results Are InCan SMOTE be applied over sequence of words (sentences)?ValueError when doing validation with random forestsSMOTE and multi class oversamplingLogic behind SMOTE-NC?ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)SmoteBoost: Should SMOTE be ran individually for each iteration/tree in the boosting?solving multi-class imbalance classification using smote and OSSUsing SMOTE for Synthetic Data generation to improve performance on unbalanced dataproblem of entry format for a simple model in KerasSVM SMOTE fit_resample() function runs forever with no result