Closest Supporting Hyperplane to Pointslocal minima vs saddle points in deep learningWhy are optimization algorithms slower at critical points?

Is there any pythonic way to find average of specific tuple elements in array?

What does a straight horizontal line above a few notes, after a changed tempo mean?

Find a stone which is not the lightest one

How to have a sharp product image?

Apply a different color ramp to subset of categorized symbols in QGIS?

Why is the underscore command _ useful?

"The cow" OR "a cow" OR "cows" in this context

Is it acceptable to use working hours to read general interest books?

What was Apollo 13's "Little Jolt" after MECO?

What is the best way to deal with NPC-NPC combat?

Can someone publish a story that happened to you?

How do I deal with a coworker that keeps asking to make small superficial changes to a report, and it is seriously triggering my anxiety?

What to do with someone that cheated their way through university and a PhD program?

How much cash can I safely carry into the USA and avoid civil forfeiture?

Will I lose my paid in full property

How important is it that $TERM is correct?

What makes accurate emulation of old systems a difficult task?

Retract an already submitted recommendation letter (written for an undergrad student)

Why didn't the Space Shuttle bounce back into space as many times as possible so as to lose a lot of kinetic energy up there?

Co-worker works way more than he should

How to pronounce 'c++' in Spanish

Double-nominative constructions and “von”

Multiple options vs single option UI

A Paper Record is What I Hamper



Closest Supporting Hyperplane to Points


local minima vs saddle points in deep learningWhy are optimization algorithms slower at critical points?













0












$begingroup$


How do I find the hyperplane (line) that touches a cloud of 2D points from one side? I used $w^Tx+b=0$ based line definition and implemented a gradient-descent based routine that would start the support line from a certain side of points, away from them. The loss function is $w^Tx_i+b$ for all points, then I take log sum. The use of hyperplanes is similar as in SVM but in this case there are no -1 or +1 labels, there are only points I am trying to approach as close as possible. I am hoping to do this from 4 sides of a point cloud to get 4 approximate / defining lines of this point cloud.



My solution was fine for some carefully selected step sizes, and iteration numbers, but the procedure can overshoot, trying to find another minima.



I am curious if there is a better way of defining this loss function. My implementation based on automatic differentiation package autograd, seen below:



import pandas as pd

def plot_sep(w):
Q = np.array([[0, -1],[1, 0]])
x = np.linspace(-20,20,3000)
w2 = np.dot(Q,w[:2])
m = w2[1]/w2[0]
y = m*x + (-w[2]/w[1])
plt.plot(x,y,'.')

df = pd.read_csv('in.csv')
df['1'] = 1.
df2 = np.array(df)

#w1_init = np.array([0.,1.,-6.]);eta = 1e-3;iters = 30 # good
w1_init = np.array([0.,1.,-30.]);eta = 1e-2;iters = 40 # bad

plt.plot(df2[:,0],df2[:,1],'.')
plot_sep(w1_init)
plt.xlim(0,15);plt.ylim(-10,40)
plt.savefig('out1.png')

import autograd.numpy as np
from autograd import elementwise_grad
from autograd import grad

def compute_loss(w1):
tmp = np.dot(df2,w1)
tmp2 = np.log(np.dot(tmp,tmp))
return tmp2

gradient = grad(compute_loss)

w1 = np.copy(w1_init)

for i in range(iters):
loss = compute_loss(w1)
print "iteration %d: loss %f" % (i, loss)
dw1 = gradient(w1)
w1 += -eta*dw1
print "iteration %d: loss %f" % (i, loss)
print w1

plt.figure()
plt.plot(df2[:,0],df2[:,1],'.')
plot_sep(w1)
plt.xlim(0,15);plt.ylim(-10,40)
plt.savefig('out2.png')


Data



x,y
6.85483870968,11.875
8.06451612903,12.3958333333
7.37903225806,12.34375
8.18548387097,12.34375
8.83064516129,12.6041666667
9.43548387097,12.96875
10.0,13.0729166667
10.5241935484,13.1770833333
11.0483870968,13.2291666667
6.97580645161,10.9895833333
6.97580645161,10.4166666667
8.46774193548,10.15625
7.98387096774,10.15625
9.1935483871,10.15625
9.79838709677,10.15625
10.6048387097,10.0
11.1290322581,10.1041666667
11.1290322581,10.5208333333
10.9274193548,11.0416666667
10.9274193548,11.40625
10.9274193548,11.7708333333
10.8870967742,12.4479166667
10.0,12.7083333333
9.07258064516,11.9270833333
8.75,11.9270833333
7.86290322581,11.8229166667
7.33870967742,11.09375
7.9435483871,11.3541666667
9.15322580645,11.5104166667
9.39516129032,11.5104166667
8.50806451613,10.8854166667
9.47580645161,10.78125
9.91935483871,10.78125
10.1612903226,10.8333333333
10.1612903226,11.9270833333
9.91935483871,12.03125
9.83870967742,12.03125
9.63709677419,11.9270833333
10.564516129,11.3020833333
10.564516129,10.6770833333
9.11290322581,10.5208333333
8.02419354839,10.625









share|improve this question











$endgroup$




bumped to the homepage by Community 1 min ago


This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.



















    0












    $begingroup$


    How do I find the hyperplane (line) that touches a cloud of 2D points from one side? I used $w^Tx+b=0$ based line definition and implemented a gradient-descent based routine that would start the support line from a certain side of points, away from them. The loss function is $w^Tx_i+b$ for all points, then I take log sum. The use of hyperplanes is similar as in SVM but in this case there are no -1 or +1 labels, there are only points I am trying to approach as close as possible. I am hoping to do this from 4 sides of a point cloud to get 4 approximate / defining lines of this point cloud.



    My solution was fine for some carefully selected step sizes, and iteration numbers, but the procedure can overshoot, trying to find another minima.



    I am curious if there is a better way of defining this loss function. My implementation based on automatic differentiation package autograd, seen below:



    import pandas as pd

    def plot_sep(w):
    Q = np.array([[0, -1],[1, 0]])
    x = np.linspace(-20,20,3000)
    w2 = np.dot(Q,w[:2])
    m = w2[1]/w2[0]
    y = m*x + (-w[2]/w[1])
    plt.plot(x,y,'.')

    df = pd.read_csv('in.csv')
    df['1'] = 1.
    df2 = np.array(df)

    #w1_init = np.array([0.,1.,-6.]);eta = 1e-3;iters = 30 # good
    w1_init = np.array([0.,1.,-30.]);eta = 1e-2;iters = 40 # bad

    plt.plot(df2[:,0],df2[:,1],'.')
    plot_sep(w1_init)
    plt.xlim(0,15);plt.ylim(-10,40)
    plt.savefig('out1.png')

    import autograd.numpy as np
    from autograd import elementwise_grad
    from autograd import grad

    def compute_loss(w1):
    tmp = np.dot(df2,w1)
    tmp2 = np.log(np.dot(tmp,tmp))
    return tmp2

    gradient = grad(compute_loss)

    w1 = np.copy(w1_init)

    for i in range(iters):
    loss = compute_loss(w1)
    print "iteration %d: loss %f" % (i, loss)
    dw1 = gradient(w1)
    w1 += -eta*dw1
    print "iteration %d: loss %f" % (i, loss)
    print w1

    plt.figure()
    plt.plot(df2[:,0],df2[:,1],'.')
    plot_sep(w1)
    plt.xlim(0,15);plt.ylim(-10,40)
    plt.savefig('out2.png')


    Data



    x,y
    6.85483870968,11.875
    8.06451612903,12.3958333333
    7.37903225806,12.34375
    8.18548387097,12.34375
    8.83064516129,12.6041666667
    9.43548387097,12.96875
    10.0,13.0729166667
    10.5241935484,13.1770833333
    11.0483870968,13.2291666667
    6.97580645161,10.9895833333
    6.97580645161,10.4166666667
    8.46774193548,10.15625
    7.98387096774,10.15625
    9.1935483871,10.15625
    9.79838709677,10.15625
    10.6048387097,10.0
    11.1290322581,10.1041666667
    11.1290322581,10.5208333333
    10.9274193548,11.0416666667
    10.9274193548,11.40625
    10.9274193548,11.7708333333
    10.8870967742,12.4479166667
    10.0,12.7083333333
    9.07258064516,11.9270833333
    8.75,11.9270833333
    7.86290322581,11.8229166667
    7.33870967742,11.09375
    7.9435483871,11.3541666667
    9.15322580645,11.5104166667
    9.39516129032,11.5104166667
    8.50806451613,10.8854166667
    9.47580645161,10.78125
    9.91935483871,10.78125
    10.1612903226,10.8333333333
    10.1612903226,11.9270833333
    9.91935483871,12.03125
    9.83870967742,12.03125
    9.63709677419,11.9270833333
    10.564516129,11.3020833333
    10.564516129,10.6770833333
    9.11290322581,10.5208333333
    8.02419354839,10.625









    share|improve this question











    $endgroup$




    bumped to the homepage by Community 1 min ago


    This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.

















      0












      0








      0





      $begingroup$


      How do I find the hyperplane (line) that touches a cloud of 2D points from one side? I used $w^Tx+b=0$ based line definition and implemented a gradient-descent based routine that would start the support line from a certain side of points, away from them. The loss function is $w^Tx_i+b$ for all points, then I take log sum. The use of hyperplanes is similar as in SVM but in this case there are no -1 or +1 labels, there are only points I am trying to approach as close as possible. I am hoping to do this from 4 sides of a point cloud to get 4 approximate / defining lines of this point cloud.



      My solution was fine for some carefully selected step sizes, and iteration numbers, but the procedure can overshoot, trying to find another minima.



      I am curious if there is a better way of defining this loss function. My implementation based on automatic differentiation package autograd, seen below:



      import pandas as pd

      def plot_sep(w):
      Q = np.array([[0, -1],[1, 0]])
      x = np.linspace(-20,20,3000)
      w2 = np.dot(Q,w[:2])
      m = w2[1]/w2[0]
      y = m*x + (-w[2]/w[1])
      plt.plot(x,y,'.')

      df = pd.read_csv('in.csv')
      df['1'] = 1.
      df2 = np.array(df)

      #w1_init = np.array([0.,1.,-6.]);eta = 1e-3;iters = 30 # good
      w1_init = np.array([0.,1.,-30.]);eta = 1e-2;iters = 40 # bad

      plt.plot(df2[:,0],df2[:,1],'.')
      plot_sep(w1_init)
      plt.xlim(0,15);plt.ylim(-10,40)
      plt.savefig('out1.png')

      import autograd.numpy as np
      from autograd import elementwise_grad
      from autograd import grad

      def compute_loss(w1):
      tmp = np.dot(df2,w1)
      tmp2 = np.log(np.dot(tmp,tmp))
      return tmp2

      gradient = grad(compute_loss)

      w1 = np.copy(w1_init)

      for i in range(iters):
      loss = compute_loss(w1)
      print "iteration %d: loss %f" % (i, loss)
      dw1 = gradient(w1)
      w1 += -eta*dw1
      print "iteration %d: loss %f" % (i, loss)
      print w1

      plt.figure()
      plt.plot(df2[:,0],df2[:,1],'.')
      plot_sep(w1)
      plt.xlim(0,15);plt.ylim(-10,40)
      plt.savefig('out2.png')


      Data



      x,y
      6.85483870968,11.875
      8.06451612903,12.3958333333
      7.37903225806,12.34375
      8.18548387097,12.34375
      8.83064516129,12.6041666667
      9.43548387097,12.96875
      10.0,13.0729166667
      10.5241935484,13.1770833333
      11.0483870968,13.2291666667
      6.97580645161,10.9895833333
      6.97580645161,10.4166666667
      8.46774193548,10.15625
      7.98387096774,10.15625
      9.1935483871,10.15625
      9.79838709677,10.15625
      10.6048387097,10.0
      11.1290322581,10.1041666667
      11.1290322581,10.5208333333
      10.9274193548,11.0416666667
      10.9274193548,11.40625
      10.9274193548,11.7708333333
      10.8870967742,12.4479166667
      10.0,12.7083333333
      9.07258064516,11.9270833333
      8.75,11.9270833333
      7.86290322581,11.8229166667
      7.33870967742,11.09375
      7.9435483871,11.3541666667
      9.15322580645,11.5104166667
      9.39516129032,11.5104166667
      8.50806451613,10.8854166667
      9.47580645161,10.78125
      9.91935483871,10.78125
      10.1612903226,10.8333333333
      10.1612903226,11.9270833333
      9.91935483871,12.03125
      9.83870967742,12.03125
      9.63709677419,11.9270833333
      10.564516129,11.3020833333
      10.564516129,10.6770833333
      9.11290322581,10.5208333333
      8.02419354839,10.625









      share|improve this question











      $endgroup$




      How do I find the hyperplane (line) that touches a cloud of 2D points from one side? I used $w^Tx+b=0$ based line definition and implemented a gradient-descent based routine that would start the support line from a certain side of points, away from them. The loss function is $w^Tx_i+b$ for all points, then I take log sum. The use of hyperplanes is similar as in SVM but in this case there are no -1 or +1 labels, there are only points I am trying to approach as close as possible. I am hoping to do this from 4 sides of a point cloud to get 4 approximate / defining lines of this point cloud.



      My solution was fine for some carefully selected step sizes, and iteration numbers, but the procedure can overshoot, trying to find another minima.



      I am curious if there is a better way of defining this loss function. My implementation based on automatic differentiation package autograd, seen below:



      import pandas as pd

      def plot_sep(w):
      Q = np.array([[0, -1],[1, 0]])
      x = np.linspace(-20,20,3000)
      w2 = np.dot(Q,w[:2])
      m = w2[1]/w2[0]
      y = m*x + (-w[2]/w[1])
      plt.plot(x,y,'.')

      df = pd.read_csv('in.csv')
      df['1'] = 1.
      df2 = np.array(df)

      #w1_init = np.array([0.,1.,-6.]);eta = 1e-3;iters = 30 # good
      w1_init = np.array([0.,1.,-30.]);eta = 1e-2;iters = 40 # bad

      plt.plot(df2[:,0],df2[:,1],'.')
      plot_sep(w1_init)
      plt.xlim(0,15);plt.ylim(-10,40)
      plt.savefig('out1.png')

      import autograd.numpy as np
      from autograd import elementwise_grad
      from autograd import grad

      def compute_loss(w1):
      tmp = np.dot(df2,w1)
      tmp2 = np.log(np.dot(tmp,tmp))
      return tmp2

      gradient = grad(compute_loss)

      w1 = np.copy(w1_init)

      for i in range(iters):
      loss = compute_loss(w1)
      print "iteration %d: loss %f" % (i, loss)
      dw1 = gradient(w1)
      w1 += -eta*dw1
      print "iteration %d: loss %f" % (i, loss)
      print w1

      plt.figure()
      plt.plot(df2[:,0],df2[:,1],'.')
      plot_sep(w1)
      plt.xlim(0,15);plt.ylim(-10,40)
      plt.savefig('out2.png')


      Data



      x,y
      6.85483870968,11.875
      8.06451612903,12.3958333333
      7.37903225806,12.34375
      8.18548387097,12.34375
      8.83064516129,12.6041666667
      9.43548387097,12.96875
      10.0,13.0729166667
      10.5241935484,13.1770833333
      11.0483870968,13.2291666667
      6.97580645161,10.9895833333
      6.97580645161,10.4166666667
      8.46774193548,10.15625
      7.98387096774,10.15625
      9.1935483871,10.15625
      9.79838709677,10.15625
      10.6048387097,10.0
      11.1290322581,10.1041666667
      11.1290322581,10.5208333333
      10.9274193548,11.0416666667
      10.9274193548,11.40625
      10.9274193548,11.7708333333
      10.8870967742,12.4479166667
      10.0,12.7083333333
      9.07258064516,11.9270833333
      8.75,11.9270833333
      7.86290322581,11.8229166667
      7.33870967742,11.09375
      7.9435483871,11.3541666667
      9.15322580645,11.5104166667
      9.39516129032,11.5104166667
      8.50806451613,10.8854166667
      9.47580645161,10.78125
      9.91935483871,10.78125
      10.1612903226,10.8333333333
      10.1612903226,11.9270833333
      9.91935483871,12.03125
      9.83870967742,12.03125
      9.63709677419,11.9270833333
      10.564516129,11.3020833333
      10.564516129,10.6770833333
      9.11290322581,10.5208333333
      8.02419354839,10.625






      optimization gradient-descent






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Feb 10 '17 at 11:23







      user423805

















      asked Feb 10 '17 at 11:10









      user423805user423805

      1041




      1041





      bumped to the homepage by Community 1 min ago


      This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.







      bumped to the homepage by Community 1 min ago


      This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          I pondered this question a little more, there might not be an optimal loss function.. But here is an idea which could utilize SVMs hyperplane seperation ability.



          I take the point cloud, if I need an approximating line from the bottom, copy points below with user defined gap, and I flip the points, as in mirror image along the x-axis. I give both point groups opposing labels, then feed the whole thing to SVM. Ideally I should get something like this:



          enter image description here



          The top line is the line I am looking for.



          Code



          import pandas as pd
          points1 = np.array(pd.read_csv('quadri.csv'))
          plt.plot(points1[:,0], points1[:,1], 'o')
          points2 = np.copy(points1)
          points2[:,1] -= 7.
          xmin = np.min(points2[:,0]); xmax = np.max(points2[:,0])
          points2[:,0] = (xmax-points2[:,0])+xmin
          points = np.vstack((points1,points2))
          plt.plot(points[:,0], points[:,1], 'o')
          plt.xlim(4,14); plt.ylim(0,15)





          share|improve this answer









          $endgroup$













            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "557"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f16873%2fclosest-supporting-hyperplane-to-points%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            I pondered this question a little more, there might not be an optimal loss function.. But here is an idea which could utilize SVMs hyperplane seperation ability.



            I take the point cloud, if I need an approximating line from the bottom, copy points below with user defined gap, and I flip the points, as in mirror image along the x-axis. I give both point groups opposing labels, then feed the whole thing to SVM. Ideally I should get something like this:



            enter image description here



            The top line is the line I am looking for.



            Code



            import pandas as pd
            points1 = np.array(pd.read_csv('quadri.csv'))
            plt.plot(points1[:,0], points1[:,1], 'o')
            points2 = np.copy(points1)
            points2[:,1] -= 7.
            xmin = np.min(points2[:,0]); xmax = np.max(points2[:,0])
            points2[:,0] = (xmax-points2[:,0])+xmin
            points = np.vstack((points1,points2))
            plt.plot(points[:,0], points[:,1], 'o')
            plt.xlim(4,14); plt.ylim(0,15)





            share|improve this answer









            $endgroup$

















              0












              $begingroup$

              I pondered this question a little more, there might not be an optimal loss function.. But here is an idea which could utilize SVMs hyperplane seperation ability.



              I take the point cloud, if I need an approximating line from the bottom, copy points below with user defined gap, and I flip the points, as in mirror image along the x-axis. I give both point groups opposing labels, then feed the whole thing to SVM. Ideally I should get something like this:



              enter image description here



              The top line is the line I am looking for.



              Code



              import pandas as pd
              points1 = np.array(pd.read_csv('quadri.csv'))
              plt.plot(points1[:,0], points1[:,1], 'o')
              points2 = np.copy(points1)
              points2[:,1] -= 7.
              xmin = np.min(points2[:,0]); xmax = np.max(points2[:,0])
              points2[:,0] = (xmax-points2[:,0])+xmin
              points = np.vstack((points1,points2))
              plt.plot(points[:,0], points[:,1], 'o')
              plt.xlim(4,14); plt.ylim(0,15)





              share|improve this answer









              $endgroup$















                0












                0








                0





                $begingroup$

                I pondered this question a little more, there might not be an optimal loss function.. But here is an idea which could utilize SVMs hyperplane seperation ability.



                I take the point cloud, if I need an approximating line from the bottom, copy points below with user defined gap, and I flip the points, as in mirror image along the x-axis. I give both point groups opposing labels, then feed the whole thing to SVM. Ideally I should get something like this:



                enter image description here



                The top line is the line I am looking for.



                Code



                import pandas as pd
                points1 = np.array(pd.read_csv('quadri.csv'))
                plt.plot(points1[:,0], points1[:,1], 'o')
                points2 = np.copy(points1)
                points2[:,1] -= 7.
                xmin = np.min(points2[:,0]); xmax = np.max(points2[:,0])
                points2[:,0] = (xmax-points2[:,0])+xmin
                points = np.vstack((points1,points2))
                plt.plot(points[:,0], points[:,1], 'o')
                plt.xlim(4,14); plt.ylim(0,15)





                share|improve this answer









                $endgroup$



                I pondered this question a little more, there might not be an optimal loss function.. But here is an idea which could utilize SVMs hyperplane seperation ability.



                I take the point cloud, if I need an approximating line from the bottom, copy points below with user defined gap, and I flip the points, as in mirror image along the x-axis. I give both point groups opposing labels, then feed the whole thing to SVM. Ideally I should get something like this:



                enter image description here



                The top line is the line I am looking for.



                Code



                import pandas as pd
                points1 = np.array(pd.read_csv('quadri.csv'))
                plt.plot(points1[:,0], points1[:,1], 'o')
                points2 = np.copy(points1)
                points2[:,1] -= 7.
                xmin = np.min(points2[:,0]); xmax = np.max(points2[:,0])
                points2[:,0] = (xmax-points2[:,0])+xmin
                points = np.vstack((points1,points2))
                plt.plot(points[:,0], points[:,1], 'o')
                plt.xlim(4,14); plt.ylim(0,15)






                share|improve this answer












                share|improve this answer



                share|improve this answer










                answered Feb 10 '17 at 12:35









                user423805user423805

                1041




                1041



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Data Science Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f16873%2fclosest-supporting-hyperplane-to-points%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Францішак Багушэвіч Змест Сям'я | Біяграфія | Творчасць | Мова Багушэвіча | Ацэнкі дзейнасці | Цікавыя факты | Спадчына | Выбраная бібліяграфія | Ушанаванне памяці | У філатэліі | Зноскі | Літаратура | Спасылкі | НавігацыяЛяхоўскі У. Рупіўся дзеля Бога і людзей: Жыццёвы шлях Лявона Вітан-Дубейкаўскага // Вольскі і Памідораў з песняй пра немца Адвакат, паэт, народны заступнік Ашмянскі веснікВ Минске появится площадь Богушевича и улица Сырокомли, Белорусская деловая газета, 19 июля 2001 г.Айцец беларускай нацыянальнай ідэі паўстаў у бронзе Сяргей Аляксандравіч Адашкевіч (1918, Мінск). 80-я гады. Бюст «Францішак Багушэвіч».Яўген Мікалаевіч Ціхановіч. «Партрэт Францішка Багушэвіча»Мікола Мікалаевіч Купава. «Партрэт зачынальніка новай беларускай літаратуры Францішка Багушэвіча»Уладзімір Іванавіч Мелехаў. На помніку «Змагарам за родную мову» Барэльеф «Францішак Багушэвіч»Памяць пра Багушэвіча на Віленшчыне Страчаная сталіца. Беларускія шыльды на вуліцах Вільні«Krynica». Ideologia i przywódcy białoruskiego katolicyzmuФранцішак БагушэвічТворы на knihi.comТворы Францішка Багушэвіча на bellib.byСодаль Уладзімір. Францішак Багушэвіч на Лідчыне;Луцкевіч Антон. Жыцьцё і творчасьць Фр. Багушэвіча ў успамінах ягоных сучасьнікаў // Запісы Беларускага Навуковага таварыства. Вільня, 1938. Сшытак 1. С. 16-34.Большая российская1188761710000 0000 5537 633Xn9209310021619551927869394п

                    Partai Komunis Tiongkok Daftar isi Kepemimpinan | Pranala luar | Referensi | Menu navigasidiperiksa1 perubahan tertundacpc.people.com.cnSitus resmiSurat kabar resmi"Why the Communist Party is alive, well and flourishing in China"0307-1235"Full text of Constitution of Communist Party of China"smengembangkannyas

                    ValueError: Expected n_neighbors <= n_samples, but n_samples = 1, n_neighbors = 6 (SMOTE) The 2019 Stack Overflow Developer Survey Results Are InCan SMOTE be applied over sequence of words (sentences)?ValueError when doing validation with random forestsSMOTE and multi class oversamplingLogic behind SMOTE-NC?ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)SmoteBoost: Should SMOTE be ran individually for each iteration/tree in the boosting?solving multi-class imbalance classification using smote and OSSUsing SMOTE for Synthetic Data generation to improve performance on unbalanced dataproblem of entry format for a simple model in KerasSVM SMOTE fit_resample() function runs forever with no result