A way to Identify tuning parameters and their possible rangeModel parameters & Hyper parameters of Neural Network & their tuning in training & validation stageMethods for string classificationsInterpretation of tuning parameters (shrinkage and nrounds) in XGBoostHyper parameters and ValidationSetHow much neural network theory required to design one?When to perform feature selection, how, and how does data affect choosing the predictive model?Tuning svm and cart hyperparametersWhy Gradient methods work in finding the parameters in Neural Networks?Data model and algorithm for recommending “related” interestsWhich is first ? Tuning the parameters or selecting the model

Drawing a german abacus as in the books of Adam Ries

A faster way to compute the largest prime factor

Prove that the countable union of countable sets is also countable

Nails holding drywall

Can a level 2 Warlock take one level in rogue, then continue advancing as a warlock?

As an international instructor, should I openly talk about my accent?

How to run Arduino codes in Java netbeans?

Contradiction proof for inequality of P and NP?

How does the mezzoloth's teleportation work?

Will I lose my paid in full property

std::unique_ptr of base class holding reference of derived class does not show warning in gcc compiler while naked pointer shows it. Why?

Can you stand up from being prone using Skirmisher outside of your turn?

Air bladders in bat-like skin wings for better lift?

Co-worker works way more than he should

Retract an already submitted recommendation letter (written for an undergrad student)

"My boss was furious with me and I have been fired" vs. "My boss was furious with me and I was fired"

What is the most expensive material in the world that could be used to create pun-pun's lute?

How to find the stem of any word?

Why does Arg'[1. + I] return -0.5?

Help with my training data

How exactly does Hawking radiation decrease the mass of black holes?

What makes accurate emulation of old systems a difficult task?

Why doesn't the standard consider a template constructor as a copy constructor?

How to find if a column is referenced in a computed column?



A way to Identify tuning parameters and their possible range


Model parameters & Hyper parameters of Neural Network & their tuning in training & validation stageMethods for string classificationsInterpretation of tuning parameters (shrinkage and nrounds) in XGBoostHyper parameters and ValidationSetHow much neural network theory required to design one?When to perform feature selection, how, and how does data affect choosing the predictive model?Tuning svm and cart hyperparametersWhy Gradient methods work in finding the parameters in Neural Networks?Data model and algorithm for recommending “related” interestsWhich is first ? Tuning the parameters or selecting the model













1












$begingroup$


I am a novice in Machine Learning. But when I started learning, I figure out that all the methods have some tuning parameters and those parameters take a range of possible values. By grid searching, we identify a set of these parameters that optimize some function. But is there any way to find the possible domain of the tuning parameters? This would definitely save my time and the computer's job. In addition, some methods such as xgboost have loads of tuning parameters. Is there any way to know which one to tune and which one to leave as it is. I have been using sklearn python library.










share|improve this question









$endgroup$




bumped to the homepage by Community 40 mins ago


This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.










  • 2




    $begingroup$
    This is where domain knowledge comes in, if you know something about your data beforehand you can use this to decrease model selection time.
    $endgroup$
    – user2974951
    Sep 25 '18 at 13:23















1












$begingroup$


I am a novice in Machine Learning. But when I started learning, I figure out that all the methods have some tuning parameters and those parameters take a range of possible values. By grid searching, we identify a set of these parameters that optimize some function. But is there any way to find the possible domain of the tuning parameters? This would definitely save my time and the computer's job. In addition, some methods such as xgboost have loads of tuning parameters. Is there any way to know which one to tune and which one to leave as it is. I have been using sklearn python library.










share|improve this question









$endgroup$




bumped to the homepage by Community 40 mins ago


This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.










  • 2




    $begingroup$
    This is where domain knowledge comes in, if you know something about your data beforehand you can use this to decrease model selection time.
    $endgroup$
    – user2974951
    Sep 25 '18 at 13:23













1












1








1





$begingroup$


I am a novice in Machine Learning. But when I started learning, I figure out that all the methods have some tuning parameters and those parameters take a range of possible values. By grid searching, we identify a set of these parameters that optimize some function. But is there any way to find the possible domain of the tuning parameters? This would definitely save my time and the computer's job. In addition, some methods such as xgboost have loads of tuning parameters. Is there any way to know which one to tune and which one to leave as it is. I have been using sklearn python library.










share|improve this question









$endgroup$




I am a novice in Machine Learning. But when I started learning, I figure out that all the methods have some tuning parameters and those parameters take a range of possible values. By grid searching, we identify a set of these parameters that optimize some function. But is there any way to find the possible domain of the tuning parameters? This would definitely save my time and the computer's job. In addition, some methods such as xgboost have loads of tuning parameters. Is there any way to know which one to tune and which one to leave as it is. I have been using sklearn python library.







machine-learning hyperparameter-tuning






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked Sep 25 '18 at 12:45









TheRimalayaTheRimalaya

1062




1062





bumped to the homepage by Community 40 mins ago


This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.







bumped to the homepage by Community 40 mins ago


This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.









  • 2




    $begingroup$
    This is where domain knowledge comes in, if you know something about your data beforehand you can use this to decrease model selection time.
    $endgroup$
    – user2974951
    Sep 25 '18 at 13:23












  • 2




    $begingroup$
    This is where domain knowledge comes in, if you know something about your data beforehand you can use this to decrease model selection time.
    $endgroup$
    – user2974951
    Sep 25 '18 at 13:23







2




2




$begingroup$
This is where domain knowledge comes in, if you know something about your data beforehand you can use this to decrease model selection time.
$endgroup$
– user2974951
Sep 25 '18 at 13:23




$begingroup$
This is where domain knowledge comes in, if you know something about your data beforehand you can use this to decrease model selection time.
$endgroup$
– user2974951
Sep 25 '18 at 13:23










2 Answers
2






active

oldest

votes


















1












$begingroup$

Not a complete answer, but was too long for a comment.



I always first try to see how the default parameters perform. Then from the documentation or some reading, you can see what is each parameter global influence (by influence I mean maybe increasing parameter X means complexifying the model, or parameter Y means increasing the convergence speed towards a solution). Depending on the first result you get, pick up one parameter, the one that seem to have the most influence on the model, and make it vary a bit in the way that make sense from your first results. If things improve on the validation set, keep moving the value this way, if not do the opposite. Often times you get good results without tuning every single parameter.



This is a method by hand, it is not optimal. But as you precise that you are a beginner in machine learning, I believe it is the best way to learn to "feel" what usually impact the performance of an algorithm as Xgboost and what impacts less and that therefore can be overlooked for a primary coarse tuning.



https://xgboost.readthedocs.io/en/latest/parameter.html has some nice pieces of information about what parameter impacts what. Don't hesitate to ask more precise questions about some specific parameters if you need :)






share|improve this answer









$endgroup$




















    0












    $begingroup$

    I agree with the previous comment on domain knowledge, that will certainly help. As you build experience, you will also get a "feel" for what works. Some parameters work better for NLP, other parameters are more nuanced towards image processing. That's stuff that you're only going to learn after being "in the trenches" for a while.



    To build that experience, you could try to build your code in such a way so that you try multiple models, each with their own unique parameters. When I am working with a new dataset, I might create multiple loops and/or threads that each build their own model and I'll compare accuracy and loss rates across all models and then narrow down which parameters I want to adjust. That creates a little more work on your part to create this approach and then track the results, but it is a good way for you to learn about what-does-what and it will help you make better decisions in the future.






    share|improve this answer









    $endgroup$













      Your Answer








      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "557"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: false,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: null,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f38766%2fa-way-to-identify-tuning-parameters-and-their-possible-range%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      1












      $begingroup$

      Not a complete answer, but was too long for a comment.



      I always first try to see how the default parameters perform. Then from the documentation or some reading, you can see what is each parameter global influence (by influence I mean maybe increasing parameter X means complexifying the model, or parameter Y means increasing the convergence speed towards a solution). Depending on the first result you get, pick up one parameter, the one that seem to have the most influence on the model, and make it vary a bit in the way that make sense from your first results. If things improve on the validation set, keep moving the value this way, if not do the opposite. Often times you get good results without tuning every single parameter.



      This is a method by hand, it is not optimal. But as you precise that you are a beginner in machine learning, I believe it is the best way to learn to "feel" what usually impact the performance of an algorithm as Xgboost and what impacts less and that therefore can be overlooked for a primary coarse tuning.



      https://xgboost.readthedocs.io/en/latest/parameter.html has some nice pieces of information about what parameter impacts what. Don't hesitate to ask more precise questions about some specific parameters if you need :)






      share|improve this answer









      $endgroup$

















        1












        $begingroup$

        Not a complete answer, but was too long for a comment.



        I always first try to see how the default parameters perform. Then from the documentation or some reading, you can see what is each parameter global influence (by influence I mean maybe increasing parameter X means complexifying the model, or parameter Y means increasing the convergence speed towards a solution). Depending on the first result you get, pick up one parameter, the one that seem to have the most influence on the model, and make it vary a bit in the way that make sense from your first results. If things improve on the validation set, keep moving the value this way, if not do the opposite. Often times you get good results without tuning every single parameter.



        This is a method by hand, it is not optimal. But as you precise that you are a beginner in machine learning, I believe it is the best way to learn to "feel" what usually impact the performance of an algorithm as Xgboost and what impacts less and that therefore can be overlooked for a primary coarse tuning.



        https://xgboost.readthedocs.io/en/latest/parameter.html has some nice pieces of information about what parameter impacts what. Don't hesitate to ask more precise questions about some specific parameters if you need :)






        share|improve this answer









        $endgroup$















          1












          1








          1





          $begingroup$

          Not a complete answer, but was too long for a comment.



          I always first try to see how the default parameters perform. Then from the documentation or some reading, you can see what is each parameter global influence (by influence I mean maybe increasing parameter X means complexifying the model, or parameter Y means increasing the convergence speed towards a solution). Depending on the first result you get, pick up one parameter, the one that seem to have the most influence on the model, and make it vary a bit in the way that make sense from your first results. If things improve on the validation set, keep moving the value this way, if not do the opposite. Often times you get good results without tuning every single parameter.



          This is a method by hand, it is not optimal. But as you precise that you are a beginner in machine learning, I believe it is the best way to learn to "feel" what usually impact the performance of an algorithm as Xgboost and what impacts less and that therefore can be overlooked for a primary coarse tuning.



          https://xgboost.readthedocs.io/en/latest/parameter.html has some nice pieces of information about what parameter impacts what. Don't hesitate to ask more precise questions about some specific parameters if you need :)






          share|improve this answer









          $endgroup$



          Not a complete answer, but was too long for a comment.



          I always first try to see how the default parameters perform. Then from the documentation or some reading, you can see what is each parameter global influence (by influence I mean maybe increasing parameter X means complexifying the model, or parameter Y means increasing the convergence speed towards a solution). Depending on the first result you get, pick up one parameter, the one that seem to have the most influence on the model, and make it vary a bit in the way that make sense from your first results. If things improve on the validation set, keep moving the value this way, if not do the opposite. Often times you get good results without tuning every single parameter.



          This is a method by hand, it is not optimal. But as you precise that you are a beginner in machine learning, I believe it is the best way to learn to "feel" what usually impact the performance of an algorithm as Xgboost and what impacts less and that therefore can be overlooked for a primary coarse tuning.



          https://xgboost.readthedocs.io/en/latest/parameter.html has some nice pieces of information about what parameter impacts what. Don't hesitate to ask more precise questions about some specific parameters if you need :)







          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered Sep 25 '18 at 13:03









          EskappEskapp

          376318




          376318





















              0












              $begingroup$

              I agree with the previous comment on domain knowledge, that will certainly help. As you build experience, you will also get a "feel" for what works. Some parameters work better for NLP, other parameters are more nuanced towards image processing. That's stuff that you're only going to learn after being "in the trenches" for a while.



              To build that experience, you could try to build your code in such a way so that you try multiple models, each with their own unique parameters. When I am working with a new dataset, I might create multiple loops and/or threads that each build their own model and I'll compare accuracy and loss rates across all models and then narrow down which parameters I want to adjust. That creates a little more work on your part to create this approach and then track the results, but it is a good way for you to learn about what-does-what and it will help you make better decisions in the future.






              share|improve this answer









              $endgroup$

















                0












                $begingroup$

                I agree with the previous comment on domain knowledge, that will certainly help. As you build experience, you will also get a "feel" for what works. Some parameters work better for NLP, other parameters are more nuanced towards image processing. That's stuff that you're only going to learn after being "in the trenches" for a while.



                To build that experience, you could try to build your code in such a way so that you try multiple models, each with their own unique parameters. When I am working with a new dataset, I might create multiple loops and/or threads that each build their own model and I'll compare accuracy and loss rates across all models and then narrow down which parameters I want to adjust. That creates a little more work on your part to create this approach and then track the results, but it is a good way for you to learn about what-does-what and it will help you make better decisions in the future.






                share|improve this answer









                $endgroup$















                  0












                  0








                  0





                  $begingroup$

                  I agree with the previous comment on domain knowledge, that will certainly help. As you build experience, you will also get a "feel" for what works. Some parameters work better for NLP, other parameters are more nuanced towards image processing. That's stuff that you're only going to learn after being "in the trenches" for a while.



                  To build that experience, you could try to build your code in such a way so that you try multiple models, each with their own unique parameters. When I am working with a new dataset, I might create multiple loops and/or threads that each build their own model and I'll compare accuracy and loss rates across all models and then narrow down which parameters I want to adjust. That creates a little more work on your part to create this approach and then track the results, but it is a good way for you to learn about what-does-what and it will help you make better decisions in the future.






                  share|improve this answer









                  $endgroup$



                  I agree with the previous comment on domain knowledge, that will certainly help. As you build experience, you will also get a "feel" for what works. Some parameters work better for NLP, other parameters are more nuanced towards image processing. That's stuff that you're only going to learn after being "in the trenches" for a while.



                  To build that experience, you could try to build your code in such a way so that you try multiple models, each with their own unique parameters. When I am working with a new dataset, I might create multiple loops and/or threads that each build their own model and I'll compare accuracy and loss rates across all models and then narrow down which parameters I want to adjust. That creates a little more work on your part to create this approach and then track the results, but it is a good way for you to learn about what-does-what and it will help you make better decisions in the future.







                  share|improve this answer












                  share|improve this answer



                  share|improve this answer










                  answered Oct 25 '18 at 17:38









                  I_Play_With_DataI_Play_With_Data

                  1,2521833




                  1,2521833



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Data Science Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f38766%2fa-way-to-identify-tuning-parameters-and-their-possible-range%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Францішак Багушэвіч Змест Сям'я | Біяграфія | Творчасць | Мова Багушэвіча | Ацэнкі дзейнасці | Цікавыя факты | Спадчына | Выбраная бібліяграфія | Ушанаванне памяці | У філатэліі | Зноскі | Літаратура | Спасылкі | НавігацыяЛяхоўскі У. Рупіўся дзеля Бога і людзей: Жыццёвы шлях Лявона Вітан-Дубейкаўскага // Вольскі і Памідораў з песняй пра немца Адвакат, паэт, народны заступнік Ашмянскі веснікВ Минске появится площадь Богушевича и улица Сырокомли, Белорусская деловая газета, 19 июля 2001 г.Айцец беларускай нацыянальнай ідэі паўстаў у бронзе Сяргей Аляксандравіч Адашкевіч (1918, Мінск). 80-я гады. Бюст «Францішак Багушэвіч».Яўген Мікалаевіч Ціхановіч. «Партрэт Францішка Багушэвіча»Мікола Мікалаевіч Купава. «Партрэт зачынальніка новай беларускай літаратуры Францішка Багушэвіча»Уладзімір Іванавіч Мелехаў. На помніку «Змагарам за родную мову» Барэльеф «Францішак Багушэвіч»Памяць пра Багушэвіча на Віленшчыне Страчаная сталіца. Беларускія шыльды на вуліцах Вільні«Krynica». Ideologia i przywódcy białoruskiego katolicyzmuФранцішак БагушэвічТворы на knihi.comТворы Францішка Багушэвіча на bellib.byСодаль Уладзімір. Францішак Багушэвіч на Лідчыне;Луцкевіч Антон. Жыцьцё і творчасьць Фр. Багушэвіча ў успамінах ягоных сучасьнікаў // Запісы Беларускага Навуковага таварыства. Вільня, 1938. Сшытак 1. С. 16-34.Большая российская1188761710000 0000 5537 633Xn9209310021619551927869394п

                      Беларусь Змест Назва Гісторыя Геаграфія Сімволіка Дзяржаўны лад Палітычныя партыі Міжнароднае становішча і знешняя палітыка Адміністрацыйны падзел Насельніцтва Эканоміка Культура і грамадства Сацыяльная сфера Узброеныя сілы Заўвагі Літаратура Спасылкі НавігацыяHGЯOiТоп-2011 г. (па версіі ej.by)Топ-2013 г. (па версіі ej.by)Топ-2016 г. (па версіі ej.by)Топ-2017 г. (па версіі ej.by)Нацыянальны статыстычны камітэт Рэспублікі БеларусьШчыльнасць насельніцтва па краінахhttp://naviny.by/rubrics/society/2011/09/16/ic_articles_116_175144/А. Калечыц, У. Ксяндзоў. Спробы засялення краю неандэртальскім чалавекам.І ў Менску былі мамантыА. Калечыц, У. Ксяндзоў. Старажытны каменны век (палеаліт). Першапачатковае засяленне тэрыторыіГ. Штыхаў. Балты і славяне ў VI—VIII стст.М. Клімаў. Полацкае княства ў IX—XI стст.Г. Штыхаў, В. Ляўко. Палітычная гісторыя Полацкай зямліГ. Штыхаў. Дзяржаўны лад у землях-княствахГ. Штыхаў. Дзяржаўны лад у землях-княствахБеларускія землі ў складзе Вялікага Княства ЛітоўскагаЛюблінская унія 1569 г."The Early Stages of Independence"Zapomniane prawdy25 гадоў таму было аб'яўлена, што Язэп Пілсудскі — беларус (фота)Наша вадаДакументы ЧАЭС: Забруджванне тэрыторыі Беларусі « ЧАЭС Зона адчужэнняСведения о политических партиях, зарегистрированных в Республике Беларусь // Министерство юстиции Республики БеларусьСтатыстычны бюлетэнь „Полаўзроставая структура насельніцтва Рэспублікі Беларусь на 1 студзеня 2012 года і сярэднегадовая колькасць насельніцтва за 2011 год“Индекс человеческого развития Беларуси — не было бы нижеБеларусь занимает первое место в СНГ по индексу развития с учетом гендерного факцёраНацыянальны статыстычны камітэт Рэспублікі БеларусьКанстытуцыя РБ. Артыкул 17Трансфармацыйныя задачы БеларусіВыйсце з крызісу — далейшае рэфармаванне Беларускі рубель — сусветны лідар па дэвальвацыяхПра змену коштаў у кастрычніку 2011 г.Бядней за беларусаў у СНД толькі таджыкіСярэдні заробак у верасні дасягнуў 2,26 мільёна рублёўЭканомікаГаласуем за ТОП-100 беларускай прозыСучасныя беларускія мастакіАрхитектура Беларуси BELARUS.BYА. Каханоўскі. Культура Беларусі ўсярэдзіне XVII—XVIII ст.Анталогія беларускай народнай песні, гуказапісы спеваўБеларускія Музычныя IнструментыБеларускі рок, які мы страцілі. Топ-10 гуртоў«Мясцовы час» — нязгаслая легенда беларускай рок-музыкіСЯРГЕЙ БУДКІН. МЫ НЯ ЗНАЕМ СВАЁЙ МУЗЫКІМ. А. Каладзінскі. НАРОДНЫ ТЭАТРМагнацкія культурныя цэнтрыПублічная дыскусія «Беларуская новая пьеса: без беларускай мовы ці беларуская?»Беларускія драматургі па-ранейшаму лепш ставяцца за мяжой, чым на радзіме«Працэс незалежнага кіно пайшоў, і дзяржаву турбуе яго непадкантрольнасць»Беларускія філосафы ў пошуках прасторыВсе идём в библиотекуАрхіваванаАб Нацыянальнай праграме даследавання і выкарыстання касмічнай прасторы ў мірных мэтах на 2008—2012 гадыУ космас — разам.У суседнім з Барысаўскім раёне пабудуюць Камандна-вымяральны пунктСвяты і абрады беларусаў«Мірныя бульбашы з малой краіны» — 5 непраўдзівых стэрэатыпаў пра БеларусьМ. Раманюк. Беларускае народнае адзеннеУ Беларусі скарачаецца колькасць злачынстваўЛукашэнка незадаволены мінскімі ўладамі Крадзяжы складаюць у Мінску каля 70% злачынстваў Узровень злачыннасці ў Мінскай вобласці — адзін з самых высокіх у краіне Генпракуратура аналізуе стан са злачыннасцю ў Беларусі па каэфіцыенце злачыннасці У Беларусі стабілізавалася крымінагеннае становішча, лічыць генпракурорЗамежнікі сталі здзяйсняць у Беларусі больш злачынстваўМУС Беларусі турбуе рост рэцыдыўнай злачыннасціЯ з ЖЭСа. Дазволіце вас абкрасці! Рэйтынг усіх службаў і падраздзяленняў ГУУС Мінгарвыканкама вырасАб КДБ РБГісторыя Аператыўна-аналітычнага цэнтра РБГісторыя ДКФРТаможняagentura.ruБеларусьBelarus.by — Афіцыйны сайт Рэспублікі БеларусьСайт урада БеларусіRadzima.org — Збор архітэктурных помнікаў, гісторыя Беларусі«Глобус Беларуси»Гербы и флаги БеларусиАсаблівасці каменнага веку на БеларусіА. Калечыц, У. Ксяндзоў. Старажытны каменны век (палеаліт). Першапачатковае засяленне тэрыторыіУ. Ксяндзоў. Сярэдні каменны век (мезаліт). Засяленне краю плямёнамі паляўнічых, рыбакоў і збіральнікаўА. Калечыц, М. Чарняўскі. Плямёны на тэрыторыі Беларусі ў новым каменным веку (неаліце)А. Калечыц, У. Ксяндзоў, М. Чарняўскі. Гаспадарчыя заняткі ў каменным векуЭ. Зайкоўскі. Духоўная культура ў каменным векуАсаблівасці бронзавага веку на БеларусіФарміраванне супольнасцей ранняга перыяду бронзавага векуФотографии БеларусиРоля беларускіх зямель ва ўтварэнні і ўмацаванні ВКЛВ. Фадзеева. З гісторыі развіцця беларускай народнай вышыўкіDMOZGran catalanaБольшая российскаяBritannica (анлайн)Швейцарскі гістарычны15325917611952699xDA123282154079143-90000 0001 2171 2080n9112870100577502ge128882171858027501086026362074122714179пппппп

                      ValueError: Expected n_neighbors <= n_samples, but n_samples = 1, n_neighbors = 6 (SMOTE) The 2019 Stack Overflow Developer Survey Results Are InCan SMOTE be applied over sequence of words (sentences)?ValueError when doing validation with random forestsSMOTE and multi class oversamplingLogic behind SMOTE-NC?ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)SmoteBoost: Should SMOTE be ran individually for each iteration/tree in the boosting?solving multi-class imbalance classification using smote and OSSUsing SMOTE for Synthetic Data generation to improve performance on unbalanced dataproblem of entry format for a simple model in KerasSVM SMOTE fit_resample() function runs forever with no result