If A is dense in Q, then it must be dense in R.Defining dense subsets of $mathbbR$Why aren't all dense subsets of $mathbbR$ uncountable?Show that $mathbbQ$ is dense in the real numbers. (Using Supremum)Characterization of dense open subsets of the real numbersProof of the infinitude of rational and irrational numbersMust a comeager set be dense?countable dense subset of R^kGiven that the rationals are countable and the denseness of $mathbbQ$ in $mathbbR$ how can $mathbbR$ be uncountable?Proof technique for between any two real numbers is an irrational numberprove that $mathbbQ^n$is dense subset of $mathbbR^n$

Given this phrasing in the lease, when should I pay my rent?

Adjusting bounding box of PlotLegends in TimelinePlot

Why didn't Voldemort know what Grindelwald looked like?

Grepping string, but include all non-blank lines following each grep match

Should I assume I have passed probation?

Why can't the Brexit deadlock in the UK parliament be solved with a plurality vote?

Animation: customize bounce interpolation

Do you waste sorcery points if you try to apply metamagic to a spell from a scroll but fail to cast it?

Ways of geometrical multiplication

Cumulative Sum using Java 8 stream API

Adding up numbers in Portuguese is strange

Why would five hundred and five be same as one?

How do I tell my boss that I'm quitting in 15 days (a colleague left this week)

Determining multivariate least squares with constraint

Why is participating in the European Parliamentary elections used as a threat?

Why does a 97 / 92 key piano exist by Bösendorfer?

When and why was runway 07/25 at Kai Tak removed?

Storage of electrolytic capacitors - how long?

Difference between shutdown options

How would a solely written language work mechanically

Can I say "fingers" when referring to toes?

Mimic lecturing on blackboard, facing audience

Unable to disable Microsoft Store in domain environment

Make a border of symbols in Gimp



If A is dense in Q, then it must be dense in R.


Defining dense subsets of $mathbbR$Why aren't all dense subsets of $mathbbR$ uncountable?Show that $mathbbQ$ is dense in the real numbers. (Using Supremum)Characterization of dense open subsets of the real numbersProof of the infinitude of rational and irrational numbersMust a comeager set be dense?countable dense subset of R^kGiven that the rationals are countable and the denseness of $mathbbQ$ in $mathbbR$ how can $mathbbR$ be uncountable?Proof technique for between any two real numbers is an irrational numberprove that $mathbbQ^n$is dense subset of $mathbbR^n$













5












$begingroup$


I have $A$ is a subset of $mathbbR$. If $A$ is dense in $mathbbQ$, then it must be dense in $mathbbR$. I am confused because $A$ is dense in $mathbbQ$. Does that imply that between any two rational numbers, there exists a real number? I understand for anything to be dense in R, there must exist something that lies between any two real numbers. However, how does knowing something is dense in $mathbbQ$ prove that it must be dense in the reals? Any help is appreciated.










share|cite|improve this question









New contributor




Priti D is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    Not a proof, but it may help you to understand what's going on. For any pair of distinct real numbers, and any $a$ in-between, there is always a pair of rational numbers that also straddles $a$ and is also in-between the pair of real numbers. In fact there are infinitely many.
    $endgroup$
    – user334732
    5 hours ago










  • $begingroup$
    And yes, there is always an irrational real number between any pair of rational numbers. In fact there is an uncountable infinity of them.
    $endgroup$
    – user334732
    4 hours ago
















5












$begingroup$


I have $A$ is a subset of $mathbbR$. If $A$ is dense in $mathbbQ$, then it must be dense in $mathbbR$. I am confused because $A$ is dense in $mathbbQ$. Does that imply that between any two rational numbers, there exists a real number? I understand for anything to be dense in R, there must exist something that lies between any two real numbers. However, how does knowing something is dense in $mathbbQ$ prove that it must be dense in the reals? Any help is appreciated.










share|cite|improve this question









New contributor




Priti D is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    Not a proof, but it may help you to understand what's going on. For any pair of distinct real numbers, and any $a$ in-between, there is always a pair of rational numbers that also straddles $a$ and is also in-between the pair of real numbers. In fact there are infinitely many.
    $endgroup$
    – user334732
    5 hours ago










  • $begingroup$
    And yes, there is always an irrational real number between any pair of rational numbers. In fact there is an uncountable infinity of them.
    $endgroup$
    – user334732
    4 hours ago














5












5








5


1



$begingroup$


I have $A$ is a subset of $mathbbR$. If $A$ is dense in $mathbbQ$, then it must be dense in $mathbbR$. I am confused because $A$ is dense in $mathbbQ$. Does that imply that between any two rational numbers, there exists a real number? I understand for anything to be dense in R, there must exist something that lies between any two real numbers. However, how does knowing something is dense in $mathbbQ$ prove that it must be dense in the reals? Any help is appreciated.










share|cite|improve this question









New contributor




Priti D is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




I have $A$ is a subset of $mathbbR$. If $A$ is dense in $mathbbQ$, then it must be dense in $mathbbR$. I am confused because $A$ is dense in $mathbbQ$. Does that imply that between any two rational numbers, there exists a real number? I understand for anything to be dense in R, there must exist something that lies between any two real numbers. However, how does knowing something is dense in $mathbbQ$ prove that it must be dense in the reals? Any help is appreciated.







real-analysis real-numbers






share|cite|improve this question









New contributor




Priti D is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




Priti D is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited 5 hours ago









Floris Claassens

1,04016




1,04016






New contributor




Priti D is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 5 hours ago









Priti DPriti D

262




262




New contributor




Priti D is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Priti D is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Priti D is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











  • $begingroup$
    Not a proof, but it may help you to understand what's going on. For any pair of distinct real numbers, and any $a$ in-between, there is always a pair of rational numbers that also straddles $a$ and is also in-between the pair of real numbers. In fact there are infinitely many.
    $endgroup$
    – user334732
    5 hours ago










  • $begingroup$
    And yes, there is always an irrational real number between any pair of rational numbers. In fact there is an uncountable infinity of them.
    $endgroup$
    – user334732
    4 hours ago

















  • $begingroup$
    Not a proof, but it may help you to understand what's going on. For any pair of distinct real numbers, and any $a$ in-between, there is always a pair of rational numbers that also straddles $a$ and is also in-between the pair of real numbers. In fact there are infinitely many.
    $endgroup$
    – user334732
    5 hours ago










  • $begingroup$
    And yes, there is always an irrational real number between any pair of rational numbers. In fact there is an uncountable infinity of them.
    $endgroup$
    – user334732
    4 hours ago
















$begingroup$
Not a proof, but it may help you to understand what's going on. For any pair of distinct real numbers, and any $a$ in-between, there is always a pair of rational numbers that also straddles $a$ and is also in-between the pair of real numbers. In fact there are infinitely many.
$endgroup$
– user334732
5 hours ago




$begingroup$
Not a proof, but it may help you to understand what's going on. For any pair of distinct real numbers, and any $a$ in-between, there is always a pair of rational numbers that also straddles $a$ and is also in-between the pair of real numbers. In fact there are infinitely many.
$endgroup$
– user334732
5 hours ago












$begingroup$
And yes, there is always an irrational real number between any pair of rational numbers. In fact there is an uncountable infinity of them.
$endgroup$
– user334732
4 hours ago





$begingroup$
And yes, there is always an irrational real number between any pair of rational numbers. In fact there is an uncountable infinity of them.
$endgroup$
– user334732
4 hours ago











2 Answers
2






active

oldest

votes


















4












$begingroup$

Since $A$ is dense in $Bbb Q$ so $overline A cap Bbb Q = Bbb Q subseteq overline A.$ So $Bbb R = overline Bbb Q subseteq overline A subseteq Bbb R.$ Therefore $overline A = Bbb R.$ This shows that $A$ is dense in $Bbb R.$






share|cite|improve this answer









$endgroup$








  • 1




    $begingroup$
    Looks good to me. I would add the line: Where $A$ overbar refers to the closure of a set. It's unclear to me whether the OP is familiar with this expression so maybe a link to? mathworld.wolfram.com/SetClosure.html. +1
    $endgroup$
    – Mason
    5 hours ago











  • $begingroup$
    This is true for any arbitrary metric space @Mason. Let $(X,d)$ be a metric space. Let $Y$ be metric subspace of $X.$ Let $A subseteq X.$ Then the closure of $A$ in $Y$ say $overline A^Y = overline A cap Y,$ where $overline A$ is the closure of $A$ in $X.$
    $endgroup$
    – Dbchatto67
    4 hours ago



















4












$begingroup$

$A$ is dense in $mathbbQ$ if for any two rationals $q_1 < q_2$ there is some $ain A cap mathbbQ$ such that $q_1<a<q_2$. The dyadic rationals would be an example. Here is the way to think about the puzzle of nested dense sets. If you give me two reals $r_1$ and $r_2$ can I find a $q_1$ in between them? Yes. Why? because $mathbbQ$ is dense is $mathbbR$. Can I find two values? $q_1$ and $q_2$ in between $r_1$ and $r_2$? Because if I could find two... then I could exploit the density of $mathbbQ$ to finish the job.



We are given two reals and then we find $q_1,q_2$ inbetween the reals and then we find some $ain A$ inbetween these rationals. All told we have the following inequality: $$r_1<q_1<a<q_2<r_2$$






share|cite|improve this answer











$endgroup$








  • 1




    $begingroup$
    Isn't it 'for any two $q_1, q_2 in mathbb Q$ there exists $ain Acolorredcapmathbb Q$ such that $q_1 < a < q_2$' ...? (Plus, of course, an assumption of $q_1<q_2.$)
    $endgroup$
    – CiaPan
    4 hours ago










  • $begingroup$
    @CiaPan. I think you are right. This was written hastily.
    $endgroup$
    – Mason
    4 hours ago










  • $begingroup$
    :) I'm not familiar with the definition, but I thought about irrationals – they are certainly dense in reals, but I would hesitate to accept they are dense in rationals, which would fit your former formulation. Hence the red part.
    $endgroup$
    – CiaPan
    4 hours ago










  • $begingroup$
    I don't think that it would have fit because I defined it as a subset. So it would read "the irrational reals are dense in the rationals if (1) they are a subset of the rationals and (2) there is an irrational between any two rationals." So it wouldn't meet the (1)st criteria. So we might be dancing around equivalent or similar variations on the same concept.
    $endgroup$
    – Mason
    4 hours ago











Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);






Priti D is a new contributor. Be nice, and check out our Code of Conduct.









draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3155595%2fif-a-is-dense-in-q-then-it-must-be-dense-in-r%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









4












$begingroup$

Since $A$ is dense in $Bbb Q$ so $overline A cap Bbb Q = Bbb Q subseteq overline A.$ So $Bbb R = overline Bbb Q subseteq overline A subseteq Bbb R.$ Therefore $overline A = Bbb R.$ This shows that $A$ is dense in $Bbb R.$






share|cite|improve this answer









$endgroup$








  • 1




    $begingroup$
    Looks good to me. I would add the line: Where $A$ overbar refers to the closure of a set. It's unclear to me whether the OP is familiar with this expression so maybe a link to? mathworld.wolfram.com/SetClosure.html. +1
    $endgroup$
    – Mason
    5 hours ago











  • $begingroup$
    This is true for any arbitrary metric space @Mason. Let $(X,d)$ be a metric space. Let $Y$ be metric subspace of $X.$ Let $A subseteq X.$ Then the closure of $A$ in $Y$ say $overline A^Y = overline A cap Y,$ where $overline A$ is the closure of $A$ in $X.$
    $endgroup$
    – Dbchatto67
    4 hours ago
















4












$begingroup$

Since $A$ is dense in $Bbb Q$ so $overline A cap Bbb Q = Bbb Q subseteq overline A.$ So $Bbb R = overline Bbb Q subseteq overline A subseteq Bbb R.$ Therefore $overline A = Bbb R.$ This shows that $A$ is dense in $Bbb R.$






share|cite|improve this answer









$endgroup$








  • 1




    $begingroup$
    Looks good to me. I would add the line: Where $A$ overbar refers to the closure of a set. It's unclear to me whether the OP is familiar with this expression so maybe a link to? mathworld.wolfram.com/SetClosure.html. +1
    $endgroup$
    – Mason
    5 hours ago











  • $begingroup$
    This is true for any arbitrary metric space @Mason. Let $(X,d)$ be a metric space. Let $Y$ be metric subspace of $X.$ Let $A subseteq X.$ Then the closure of $A$ in $Y$ say $overline A^Y = overline A cap Y,$ where $overline A$ is the closure of $A$ in $X.$
    $endgroup$
    – Dbchatto67
    4 hours ago














4












4








4





$begingroup$

Since $A$ is dense in $Bbb Q$ so $overline A cap Bbb Q = Bbb Q subseteq overline A.$ So $Bbb R = overline Bbb Q subseteq overline A subseteq Bbb R.$ Therefore $overline A = Bbb R.$ This shows that $A$ is dense in $Bbb R.$






share|cite|improve this answer









$endgroup$



Since $A$ is dense in $Bbb Q$ so $overline A cap Bbb Q = Bbb Q subseteq overline A.$ So $Bbb R = overline Bbb Q subseteq overline A subseteq Bbb R.$ Therefore $overline A = Bbb R.$ This shows that $A$ is dense in $Bbb R.$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered 5 hours ago









Dbchatto67Dbchatto67

1,975319




1,975319







  • 1




    $begingroup$
    Looks good to me. I would add the line: Where $A$ overbar refers to the closure of a set. It's unclear to me whether the OP is familiar with this expression so maybe a link to? mathworld.wolfram.com/SetClosure.html. +1
    $endgroup$
    – Mason
    5 hours ago











  • $begingroup$
    This is true for any arbitrary metric space @Mason. Let $(X,d)$ be a metric space. Let $Y$ be metric subspace of $X.$ Let $A subseteq X.$ Then the closure of $A$ in $Y$ say $overline A^Y = overline A cap Y,$ where $overline A$ is the closure of $A$ in $X.$
    $endgroup$
    – Dbchatto67
    4 hours ago













  • 1




    $begingroup$
    Looks good to me. I would add the line: Where $A$ overbar refers to the closure of a set. It's unclear to me whether the OP is familiar with this expression so maybe a link to? mathworld.wolfram.com/SetClosure.html. +1
    $endgroup$
    – Mason
    5 hours ago











  • $begingroup$
    This is true for any arbitrary metric space @Mason. Let $(X,d)$ be a metric space. Let $Y$ be metric subspace of $X.$ Let $A subseteq X.$ Then the closure of $A$ in $Y$ say $overline A^Y = overline A cap Y,$ where $overline A$ is the closure of $A$ in $X.$
    $endgroup$
    – Dbchatto67
    4 hours ago








1




1




$begingroup$
Looks good to me. I would add the line: Where $A$ overbar refers to the closure of a set. It's unclear to me whether the OP is familiar with this expression so maybe a link to? mathworld.wolfram.com/SetClosure.html. +1
$endgroup$
– Mason
5 hours ago





$begingroup$
Looks good to me. I would add the line: Where $A$ overbar refers to the closure of a set. It's unclear to me whether the OP is familiar with this expression so maybe a link to? mathworld.wolfram.com/SetClosure.html. +1
$endgroup$
– Mason
5 hours ago













$begingroup$
This is true for any arbitrary metric space @Mason. Let $(X,d)$ be a metric space. Let $Y$ be metric subspace of $X.$ Let $A subseteq X.$ Then the closure of $A$ in $Y$ say $overline A^Y = overline A cap Y,$ where $overline A$ is the closure of $A$ in $X.$
$endgroup$
– Dbchatto67
4 hours ago





$begingroup$
This is true for any arbitrary metric space @Mason. Let $(X,d)$ be a metric space. Let $Y$ be metric subspace of $X.$ Let $A subseteq X.$ Then the closure of $A$ in $Y$ say $overline A^Y = overline A cap Y,$ where $overline A$ is the closure of $A$ in $X.$
$endgroup$
– Dbchatto67
4 hours ago












4












$begingroup$

$A$ is dense in $mathbbQ$ if for any two rationals $q_1 < q_2$ there is some $ain A cap mathbbQ$ such that $q_1<a<q_2$. The dyadic rationals would be an example. Here is the way to think about the puzzle of nested dense sets. If you give me two reals $r_1$ and $r_2$ can I find a $q_1$ in between them? Yes. Why? because $mathbbQ$ is dense is $mathbbR$. Can I find two values? $q_1$ and $q_2$ in between $r_1$ and $r_2$? Because if I could find two... then I could exploit the density of $mathbbQ$ to finish the job.



We are given two reals and then we find $q_1,q_2$ inbetween the reals and then we find some $ain A$ inbetween these rationals. All told we have the following inequality: $$r_1<q_1<a<q_2<r_2$$






share|cite|improve this answer











$endgroup$








  • 1




    $begingroup$
    Isn't it 'for any two $q_1, q_2 in mathbb Q$ there exists $ain Acolorredcapmathbb Q$ such that $q_1 < a < q_2$' ...? (Plus, of course, an assumption of $q_1<q_2.$)
    $endgroup$
    – CiaPan
    4 hours ago










  • $begingroup$
    @CiaPan. I think you are right. This was written hastily.
    $endgroup$
    – Mason
    4 hours ago










  • $begingroup$
    :) I'm not familiar with the definition, but I thought about irrationals – they are certainly dense in reals, but I would hesitate to accept they are dense in rationals, which would fit your former formulation. Hence the red part.
    $endgroup$
    – CiaPan
    4 hours ago










  • $begingroup$
    I don't think that it would have fit because I defined it as a subset. So it would read "the irrational reals are dense in the rationals if (1) they are a subset of the rationals and (2) there is an irrational between any two rationals." So it wouldn't meet the (1)st criteria. So we might be dancing around equivalent or similar variations on the same concept.
    $endgroup$
    – Mason
    4 hours ago
















4












$begingroup$

$A$ is dense in $mathbbQ$ if for any two rationals $q_1 < q_2$ there is some $ain A cap mathbbQ$ such that $q_1<a<q_2$. The dyadic rationals would be an example. Here is the way to think about the puzzle of nested dense sets. If you give me two reals $r_1$ and $r_2$ can I find a $q_1$ in between them? Yes. Why? because $mathbbQ$ is dense is $mathbbR$. Can I find two values? $q_1$ and $q_2$ in between $r_1$ and $r_2$? Because if I could find two... then I could exploit the density of $mathbbQ$ to finish the job.



We are given two reals and then we find $q_1,q_2$ inbetween the reals and then we find some $ain A$ inbetween these rationals. All told we have the following inequality: $$r_1<q_1<a<q_2<r_2$$






share|cite|improve this answer











$endgroup$








  • 1




    $begingroup$
    Isn't it 'for any two $q_1, q_2 in mathbb Q$ there exists $ain Acolorredcapmathbb Q$ such that $q_1 < a < q_2$' ...? (Plus, of course, an assumption of $q_1<q_2.$)
    $endgroup$
    – CiaPan
    4 hours ago










  • $begingroup$
    @CiaPan. I think you are right. This was written hastily.
    $endgroup$
    – Mason
    4 hours ago










  • $begingroup$
    :) I'm not familiar with the definition, but I thought about irrationals – they are certainly dense in reals, but I would hesitate to accept they are dense in rationals, which would fit your former formulation. Hence the red part.
    $endgroup$
    – CiaPan
    4 hours ago










  • $begingroup$
    I don't think that it would have fit because I defined it as a subset. So it would read "the irrational reals are dense in the rationals if (1) they are a subset of the rationals and (2) there is an irrational between any two rationals." So it wouldn't meet the (1)st criteria. So we might be dancing around equivalent or similar variations on the same concept.
    $endgroup$
    – Mason
    4 hours ago














4












4








4





$begingroup$

$A$ is dense in $mathbbQ$ if for any two rationals $q_1 < q_2$ there is some $ain A cap mathbbQ$ such that $q_1<a<q_2$. The dyadic rationals would be an example. Here is the way to think about the puzzle of nested dense sets. If you give me two reals $r_1$ and $r_2$ can I find a $q_1$ in between them? Yes. Why? because $mathbbQ$ is dense is $mathbbR$. Can I find two values? $q_1$ and $q_2$ in between $r_1$ and $r_2$? Because if I could find two... then I could exploit the density of $mathbbQ$ to finish the job.



We are given two reals and then we find $q_1,q_2$ inbetween the reals and then we find some $ain A$ inbetween these rationals. All told we have the following inequality: $$r_1<q_1<a<q_2<r_2$$






share|cite|improve this answer











$endgroup$



$A$ is dense in $mathbbQ$ if for any two rationals $q_1 < q_2$ there is some $ain A cap mathbbQ$ such that $q_1<a<q_2$. The dyadic rationals would be an example. Here is the way to think about the puzzle of nested dense sets. If you give me two reals $r_1$ and $r_2$ can I find a $q_1$ in between them? Yes. Why? because $mathbbQ$ is dense is $mathbbR$. Can I find two values? $q_1$ and $q_2$ in between $r_1$ and $r_2$? Because if I could find two... then I could exploit the density of $mathbbQ$ to finish the job.



We are given two reals and then we find $q_1,q_2$ inbetween the reals and then we find some $ain A$ inbetween these rationals. All told we have the following inequality: $$r_1<q_1<a<q_2<r_2$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 4 hours ago

























answered 5 hours ago









MasonMason

1,7651630




1,7651630







  • 1




    $begingroup$
    Isn't it 'for any two $q_1, q_2 in mathbb Q$ there exists $ain Acolorredcapmathbb Q$ such that $q_1 < a < q_2$' ...? (Plus, of course, an assumption of $q_1<q_2.$)
    $endgroup$
    – CiaPan
    4 hours ago










  • $begingroup$
    @CiaPan. I think you are right. This was written hastily.
    $endgroup$
    – Mason
    4 hours ago










  • $begingroup$
    :) I'm not familiar with the definition, but I thought about irrationals – they are certainly dense in reals, but I would hesitate to accept they are dense in rationals, which would fit your former formulation. Hence the red part.
    $endgroup$
    – CiaPan
    4 hours ago










  • $begingroup$
    I don't think that it would have fit because I defined it as a subset. So it would read "the irrational reals are dense in the rationals if (1) they are a subset of the rationals and (2) there is an irrational between any two rationals." So it wouldn't meet the (1)st criteria. So we might be dancing around equivalent or similar variations on the same concept.
    $endgroup$
    – Mason
    4 hours ago













  • 1




    $begingroup$
    Isn't it 'for any two $q_1, q_2 in mathbb Q$ there exists $ain Acolorredcapmathbb Q$ such that $q_1 < a < q_2$' ...? (Plus, of course, an assumption of $q_1<q_2.$)
    $endgroup$
    – CiaPan
    4 hours ago










  • $begingroup$
    @CiaPan. I think you are right. This was written hastily.
    $endgroup$
    – Mason
    4 hours ago










  • $begingroup$
    :) I'm not familiar with the definition, but I thought about irrationals – they are certainly dense in reals, but I would hesitate to accept they are dense in rationals, which would fit your former formulation. Hence the red part.
    $endgroup$
    – CiaPan
    4 hours ago










  • $begingroup$
    I don't think that it would have fit because I defined it as a subset. So it would read "the irrational reals are dense in the rationals if (1) they are a subset of the rationals and (2) there is an irrational between any two rationals." So it wouldn't meet the (1)st criteria. So we might be dancing around equivalent or similar variations on the same concept.
    $endgroup$
    – Mason
    4 hours ago








1




1




$begingroup$
Isn't it 'for any two $q_1, q_2 in mathbb Q$ there exists $ain Acolorredcapmathbb Q$ such that $q_1 < a < q_2$' ...? (Plus, of course, an assumption of $q_1<q_2.$)
$endgroup$
– CiaPan
4 hours ago




$begingroup$
Isn't it 'for any two $q_1, q_2 in mathbb Q$ there exists $ain Acolorredcapmathbb Q$ such that $q_1 < a < q_2$' ...? (Plus, of course, an assumption of $q_1<q_2.$)
$endgroup$
– CiaPan
4 hours ago












$begingroup$
@CiaPan. I think you are right. This was written hastily.
$endgroup$
– Mason
4 hours ago




$begingroup$
@CiaPan. I think you are right. This was written hastily.
$endgroup$
– Mason
4 hours ago












$begingroup$
:) I'm not familiar with the definition, but I thought about irrationals – they are certainly dense in reals, but I would hesitate to accept they are dense in rationals, which would fit your former formulation. Hence the red part.
$endgroup$
– CiaPan
4 hours ago




$begingroup$
:) I'm not familiar with the definition, but I thought about irrationals – they are certainly dense in reals, but I would hesitate to accept they are dense in rationals, which would fit your former formulation. Hence the red part.
$endgroup$
– CiaPan
4 hours ago












$begingroup$
I don't think that it would have fit because I defined it as a subset. So it would read "the irrational reals are dense in the rationals if (1) they are a subset of the rationals and (2) there is an irrational between any two rationals." So it wouldn't meet the (1)st criteria. So we might be dancing around equivalent or similar variations on the same concept.
$endgroup$
– Mason
4 hours ago





$begingroup$
I don't think that it would have fit because I defined it as a subset. So it would read "the irrational reals are dense in the rationals if (1) they are a subset of the rationals and (2) there is an irrational between any two rationals." So it wouldn't meet the (1)st criteria. So we might be dancing around equivalent or similar variations on the same concept.
$endgroup$
– Mason
4 hours ago











Priti D is a new contributor. Be nice, and check out our Code of Conduct.









draft saved

draft discarded


















Priti D is a new contributor. Be nice, and check out our Code of Conduct.












Priti D is a new contributor. Be nice, and check out our Code of Conduct.











Priti D is a new contributor. Be nice, and check out our Code of Conduct.














Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3155595%2fif-a-is-dense-in-q-then-it-must-be-dense-in-r%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

На ростанях Змест Гісторыя напісання | Месца дзеяння | Час дзеяння | Назва | Праблематыка трылогіі | Аўтабіяграфічнасць | Трылогія ў тэатры і кіно | Пераклады | У культуры | Зноскі Літаратура | Спасылкі | НавігацыяДагледжаная версіяправерана1 зменаДагледжаная версіяправерана1 зменаАкадэмік МІЦКЕВІЧ Канстанцін Міхайлавіч (Якуб Колас) Прадмова М. І. Мушынскага, доктара філалагічных навук, члена-карэспандэнта Нацыянальнай акадэміі навук Рэспублікі Беларусь, прафесараНашаніўцы ў трылогіі Якуба Коласа «На ростанях»: вобразы і прататыпы125 лет Янке МавруКнижно-документальная выставка к 125-летию со дня рождения Якуба Коласа (1882—1956)Колас Якуб. Новая зямля (паэма), На ростанях (трылогія). Сулкоўскі Уладзімір. Радзіма Якуба Коласа (серыял жывапісных палотнаў)Вокладка кнігіІлюстрацыя М. С. БасалыгіНа ростаняхАўдыёверсія трылогііВ. Жолтак У Люсiнскай школе 1959

Францішак Багушэвіч Змест Сям'я | Біяграфія | Творчасць | Мова Багушэвіча | Ацэнкі дзейнасці | Цікавыя факты | Спадчына | Выбраная бібліяграфія | Ушанаванне памяці | У філатэліі | Зноскі | Літаратура | Спасылкі | НавігацыяЛяхоўскі У. Рупіўся дзеля Бога і людзей: Жыццёвы шлях Лявона Вітан-Дубейкаўскага // Вольскі і Памідораў з песняй пра немца Адвакат, паэт, народны заступнік Ашмянскі веснікВ Минске появится площадь Богушевича и улица Сырокомли, Белорусская деловая газета, 19 июля 2001 г.Айцец беларускай нацыянальнай ідэі паўстаў у бронзе Сяргей Аляксандравіч Адашкевіч (1918, Мінск). 80-я гады. Бюст «Францішак Багушэвіч».Яўген Мікалаевіч Ціхановіч. «Партрэт Францішка Багушэвіча»Мікола Мікалаевіч Купава. «Партрэт зачынальніка новай беларускай літаратуры Францішка Багушэвіча»Уладзімір Іванавіч Мелехаў. На помніку «Змагарам за родную мову» Барэльеф «Францішак Багушэвіч»Памяць пра Багушэвіча на Віленшчыне Страчаная сталіца. Беларускія шыльды на вуліцах Вільні«Krynica». Ideologia i przywódcy białoruskiego katolicyzmuФранцішак БагушэвічТворы на knihi.comТворы Францішка Багушэвіча на bellib.byСодаль Уладзімір. Францішак Багушэвіч на Лідчыне;Луцкевіч Антон. Жыцьцё і творчасьць Фр. Багушэвіча ў успамінах ягоных сучасьнікаў // Запісы Беларускага Навуковага таварыства. Вільня, 1938. Сшытак 1. С. 16-34.Большая российская1188761710000 0000 5537 633Xn9209310021619551927869394п

Беларусь Змест Назва Гісторыя Геаграфія Сімволіка Дзяржаўны лад Палітычныя партыі Міжнароднае становішча і знешняя палітыка Адміністрацыйны падзел Насельніцтва Эканоміка Культура і грамадства Сацыяльная сфера Узброеныя сілы Заўвагі Літаратура Спасылкі НавігацыяHGЯOiТоп-2011 г. (па версіі ej.by)Топ-2013 г. (па версіі ej.by)Топ-2016 г. (па версіі ej.by)Топ-2017 г. (па версіі ej.by)Нацыянальны статыстычны камітэт Рэспублікі БеларусьШчыльнасць насельніцтва па краінахhttp://naviny.by/rubrics/society/2011/09/16/ic_articles_116_175144/А. Калечыц, У. Ксяндзоў. Спробы засялення краю неандэртальскім чалавекам.І ў Менску былі мамантыА. Калечыц, У. Ксяндзоў. Старажытны каменны век (палеаліт). Першапачатковае засяленне тэрыторыіГ. Штыхаў. Балты і славяне ў VI—VIII стст.М. Клімаў. Полацкае княства ў IX—XI стст.Г. Штыхаў, В. Ляўко. Палітычная гісторыя Полацкай зямліГ. Штыхаў. Дзяржаўны лад у землях-княствахГ. Штыхаў. Дзяржаўны лад у землях-княствахБеларускія землі ў складзе Вялікага Княства ЛітоўскагаЛюблінская унія 1569 г."The Early Stages of Independence"Zapomniane prawdy25 гадоў таму было аб'яўлена, што Язэп Пілсудскі — беларус (фота)Наша вадаДакументы ЧАЭС: Забруджванне тэрыторыі Беларусі « ЧАЭС Зона адчужэнняСведения о политических партиях, зарегистрированных в Республике Беларусь // Министерство юстиции Республики БеларусьСтатыстычны бюлетэнь „Полаўзроставая структура насельніцтва Рэспублікі Беларусь на 1 студзеня 2012 года і сярэднегадовая колькасць насельніцтва за 2011 год“Индекс человеческого развития Беларуси — не было бы нижеБеларусь занимает первое место в СНГ по индексу развития с учетом гендерного факцёраНацыянальны статыстычны камітэт Рэспублікі БеларусьКанстытуцыя РБ. Артыкул 17Трансфармацыйныя задачы БеларусіВыйсце з крызісу — далейшае рэфармаванне Беларускі рубель — сусветны лідар па дэвальвацыяхПра змену коштаў у кастрычніку 2011 г.Бядней за беларусаў у СНД толькі таджыкіСярэдні заробак у верасні дасягнуў 2,26 мільёна рублёўЭканомікаГаласуем за ТОП-100 беларускай прозыСучасныя беларускія мастакіАрхитектура Беларуси BELARUS.BYА. Каханоўскі. Культура Беларусі ўсярэдзіне XVII—XVIII ст.Анталогія беларускай народнай песні, гуказапісы спеваўБеларускія Музычныя IнструментыБеларускі рок, які мы страцілі. Топ-10 гуртоў«Мясцовы час» — нязгаслая легенда беларускай рок-музыкіСЯРГЕЙ БУДКІН. МЫ НЯ ЗНАЕМ СВАЁЙ МУЗЫКІМ. А. Каладзінскі. НАРОДНЫ ТЭАТРМагнацкія культурныя цэнтрыПублічная дыскусія «Беларуская новая пьеса: без беларускай мовы ці беларуская?»Беларускія драматургі па-ранейшаму лепш ставяцца за мяжой, чым на радзіме«Працэс незалежнага кіно пайшоў, і дзяржаву турбуе яго непадкантрольнасць»Беларускія філосафы ў пошуках прасторыВсе идём в библиотекуАрхіваванаАб Нацыянальнай праграме даследавання і выкарыстання касмічнай прасторы ў мірных мэтах на 2008—2012 гадыУ космас — разам.У суседнім з Барысаўскім раёне пабудуюць Камандна-вымяральны пунктСвяты і абрады беларусаў«Мірныя бульбашы з малой краіны» — 5 непраўдзівых стэрэатыпаў пра БеларусьМ. Раманюк. Беларускае народнае адзеннеУ Беларусі скарачаецца колькасць злачынстваўЛукашэнка незадаволены мінскімі ўладамі Крадзяжы складаюць у Мінску каля 70% злачынстваў Узровень злачыннасці ў Мінскай вобласці — адзін з самых высокіх у краіне Генпракуратура аналізуе стан са злачыннасцю ў Беларусі па каэфіцыенце злачыннасці У Беларусі стабілізавалася крымінагеннае становішча, лічыць генпракурорЗамежнікі сталі здзяйсняць у Беларусі больш злачынстваўМУС Беларусі турбуе рост рэцыдыўнай злачыннасціЯ з ЖЭСа. Дазволіце вас абкрасці! Рэйтынг усіх службаў і падраздзяленняў ГУУС Мінгарвыканкама вырасАб КДБ РБГісторыя Аператыўна-аналітычнага цэнтра РБГісторыя ДКФРТаможняagentura.ruБеларусьBelarus.by — Афіцыйны сайт Рэспублікі БеларусьСайт урада БеларусіRadzima.org — Збор архітэктурных помнікаў, гісторыя Беларусі«Глобус Беларуси»Гербы и флаги БеларусиАсаблівасці каменнага веку на БеларусіА. Калечыц, У. Ксяндзоў. Старажытны каменны век (палеаліт). Першапачатковае засяленне тэрыторыіУ. Ксяндзоў. Сярэдні каменны век (мезаліт). Засяленне краю плямёнамі паляўнічых, рыбакоў і збіральнікаўА. Калечыц, М. Чарняўскі. Плямёны на тэрыторыі Беларусі ў новым каменным веку (неаліце)А. Калечыц, У. Ксяндзоў, М. Чарняўскі. Гаспадарчыя заняткі ў каменным векуЭ. Зайкоўскі. Духоўная культура ў каменным векуАсаблівасці бронзавага веку на БеларусіФарміраванне супольнасцей ранняга перыяду бронзавага векуФотографии БеларусиРоля беларускіх зямель ва ўтварэнні і ўмацаванні ВКЛВ. Фадзеева. З гісторыі развіцця беларускай народнай вышыўкіDMOZGran catalanaБольшая российскаяBritannica (анлайн)Швейцарскі гістарычны15325917611952699xDA123282154079143-90000 0001 2171 2080n9112870100577502ge128882171858027501086026362074122714179пппппп