What is special about square numbers here? The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)The final state of 1000 light bulbs switched on/off by 1000 people passing byWord Problem Proof? (just for fun, help)Enigma : of Wizards, Dwarves and HatsCoin Arrangement Puzzlecreating a more complex sudoku (69x6)Determining the favored penny on a chessboardHow many different ways can I add three numbers to get a certain sum?Board game - winning strategyDifference PuzzlesCould someone come up with a formula explaining the following?How many ways to place three distinguishable tokens on the white spaces of a $4$-by-$4$ chess board?

What's the point in a preamp?

Semisimplicity of the category of coherent sheaves?

Did the UK government pay "millions and millions of dollars" to try to snag Julian Assange?

How did the audience guess the pentatonic scale in Bobby McFerrin's presentation?

What aspect of planet Earth must be changed to prevent the industrial revolution?

Wall plug outlet change

Make it rain characters

Am I ethically obligated to go into work on an off day if the reason is sudden?

Can a 1st-level character have an ability score above 18?

If the empty set is a subset of every set, why write ... ∪ ∅?

How to politely respond to generic emails requesting a PhD/job in my lab? Without wasting too much time

Python - Fishing Simulator

Is every episode of "Where are my Pants?" identical?

Is above average number of years spent on PhD considered a red flag in future academia or industry positions?

Is it ok to offer lower paid work as a trial period before negotiating for a full-time job?

How should I replace vector<uint8_t>::const_iterator in an API?

What information about me do stores get via my credit card?

Would an alien lifeform be able to achieve space travel if lacking in vision?

Why does the Event Horizon Telescope (EHT) not include telescopes from Africa, Asia or Australia?

The variadic template constructor of my class cannot modify my class members, why is that so?

Problems with Ubuntu mount /tmp

Why can't wing-mounted spoilers be used to steepen approaches?

Does the AirPods case need to be around while listening via an iOS Device?

Arduino Pro Micro - switch off LEDs



What is special about square numbers here?



The 2019 Stack Overflow Developer Survey Results Are In
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)The final state of 1000 light bulbs switched on/off by 1000 people passing byWord Problem Proof? (just for fun, help)Enigma : of Wizards, Dwarves and HatsCoin Arrangement Puzzlecreating a more complex sudoku (69x6)Determining the favored penny on a chessboardHow many different ways can I add three numbers to get a certain sum?Board game - winning strategyDifference PuzzlesCould someone come up with a formula explaining the following?How many ways to place three distinguishable tokens on the white spaces of a $4$-by-$4$ chess board?










5












$begingroup$


I'm not not schooled in math. I'm 50 years old and I only have about a grade 8 level. But I do enjoy math and heard a question in the show "Growing Pains of a Teenage Genius" that interested me. So please forgive me. I do not speak "math."



The question has been posted here already, but I don't think the correct answer was given, and since I'm new, I haven't earned the points to be able to comment on that post. So I've started my own post.



The question is, if you have 1000 pennies lined up in a row, all heads up, and you turn over every second penny, then every third penny, then every fourth penny, etc. all the way until you turn over the thousandth and last penny, which ones will be heads up?



I've figured out that the answer is that the square numbers will be heads up. It is only the square numbers that will be flipped an even number of times to land them in the position they started out in. But I don't know why that is.



What is it about square numbers that they are the only ones that get flipped an even number of times through the process of flipping every 2nd, 3rd, 4th,...etc, penny?



I thought it must have something to do with factoring since the primes will only get flipped once, but the widening gap between each succession of flips is a bit complicated to visualize, and I don't know how to work that with factoring square numbers.



Is there something special about factoring square numbers that's applicable here?



How do you visualize this problem mathematically?










share|cite|improve this question







New contributor




DeeH is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 1




    $begingroup$
    You may find this of interest: math.stackexchange.com/questions/11223/…
    $endgroup$
    – Minus One-Twelfth
    2 hours ago
















5












$begingroup$


I'm not not schooled in math. I'm 50 years old and I only have about a grade 8 level. But I do enjoy math and heard a question in the show "Growing Pains of a Teenage Genius" that interested me. So please forgive me. I do not speak "math."



The question has been posted here already, but I don't think the correct answer was given, and since I'm new, I haven't earned the points to be able to comment on that post. So I've started my own post.



The question is, if you have 1000 pennies lined up in a row, all heads up, and you turn over every second penny, then every third penny, then every fourth penny, etc. all the way until you turn over the thousandth and last penny, which ones will be heads up?



I've figured out that the answer is that the square numbers will be heads up. It is only the square numbers that will be flipped an even number of times to land them in the position they started out in. But I don't know why that is.



What is it about square numbers that they are the only ones that get flipped an even number of times through the process of flipping every 2nd, 3rd, 4th,...etc, penny?



I thought it must have something to do with factoring since the primes will only get flipped once, but the widening gap between each succession of flips is a bit complicated to visualize, and I don't know how to work that with factoring square numbers.



Is there something special about factoring square numbers that's applicable here?



How do you visualize this problem mathematically?










share|cite|improve this question







New contributor




DeeH is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 1




    $begingroup$
    You may find this of interest: math.stackexchange.com/questions/11223/…
    $endgroup$
    – Minus One-Twelfth
    2 hours ago














5












5








5





$begingroup$


I'm not not schooled in math. I'm 50 years old and I only have about a grade 8 level. But I do enjoy math and heard a question in the show "Growing Pains of a Teenage Genius" that interested me. So please forgive me. I do not speak "math."



The question has been posted here already, but I don't think the correct answer was given, and since I'm new, I haven't earned the points to be able to comment on that post. So I've started my own post.



The question is, if you have 1000 pennies lined up in a row, all heads up, and you turn over every second penny, then every third penny, then every fourth penny, etc. all the way until you turn over the thousandth and last penny, which ones will be heads up?



I've figured out that the answer is that the square numbers will be heads up. It is only the square numbers that will be flipped an even number of times to land them in the position they started out in. But I don't know why that is.



What is it about square numbers that they are the only ones that get flipped an even number of times through the process of flipping every 2nd, 3rd, 4th,...etc, penny?



I thought it must have something to do with factoring since the primes will only get flipped once, but the widening gap between each succession of flips is a bit complicated to visualize, and I don't know how to work that with factoring square numbers.



Is there something special about factoring square numbers that's applicable here?



How do you visualize this problem mathematically?










share|cite|improve this question







New contributor




DeeH is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




I'm not not schooled in math. I'm 50 years old and I only have about a grade 8 level. But I do enjoy math and heard a question in the show "Growing Pains of a Teenage Genius" that interested me. So please forgive me. I do not speak "math."



The question has been posted here already, but I don't think the correct answer was given, and since I'm new, I haven't earned the points to be able to comment on that post. So I've started my own post.



The question is, if you have 1000 pennies lined up in a row, all heads up, and you turn over every second penny, then every third penny, then every fourth penny, etc. all the way until you turn over the thousandth and last penny, which ones will be heads up?



I've figured out that the answer is that the square numbers will be heads up. It is only the square numbers that will be flipped an even number of times to land them in the position they started out in. But I don't know why that is.



What is it about square numbers that they are the only ones that get flipped an even number of times through the process of flipping every 2nd, 3rd, 4th,...etc, penny?



I thought it must have something to do with factoring since the primes will only get flipped once, but the widening gap between each succession of flips is a bit complicated to visualize, and I don't know how to work that with factoring square numbers.



Is there something special about factoring square numbers that's applicable here?



How do you visualize this problem mathematically?







puzzle






share|cite|improve this question







New contributor




DeeH is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question







New contributor




DeeH is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question






New contributor




DeeH is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 2 hours ago









DeeHDeeH

262




262




New contributor




DeeH is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





DeeH is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






DeeH is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







  • 1




    $begingroup$
    You may find this of interest: math.stackexchange.com/questions/11223/…
    $endgroup$
    – Minus One-Twelfth
    2 hours ago













  • 1




    $begingroup$
    You may find this of interest: math.stackexchange.com/questions/11223/…
    $endgroup$
    – Minus One-Twelfth
    2 hours ago








1




1




$begingroup$
You may find this of interest: math.stackexchange.com/questions/11223/…
$endgroup$
– Minus One-Twelfth
2 hours ago





$begingroup$
You may find this of interest: math.stackexchange.com/questions/11223/…
$endgroup$
– Minus One-Twelfth
2 hours ago











1 Answer
1






active

oldest

votes


















7












$begingroup$

Each penny will be flipped a number of times equal to the number of divisors it has (including or not including $1$ based on the specific wording of the problem).



Supposing that $d$ is a divisor of $n$, i.e. that there is some $k$ such that $n = dtimes k$, then $k$ is also a divisor. In the event that $k$ is different than $d$ then it will be counted separately than $d$ when counting the total number of divisors. In this way, every single divisor $d$ of $n$ that we wish to count will have a corresponding different divisor $k=fracnd$.



All except the circumstance where $n$ happens to be a square number $n=r^2$ in which case you have $r$ is a divisor and the corresponding paired divisor $fracnr$ is again equal to $r$ and so is not distinct and need not be counted a second time.



Let's look at $12$ for an example.



$12$ has the divisors $colorred1,colorblue2,colorpurple3,colorpurple4,colorblue6,colorred12$. Note how the numbers with matching colors are paired together and multiply together to give $12$.



Now, let's look at a square number as an example like $16$.



$16$ has the divisors $colorred1,colorblue2,colorpurple4,colorblue8,colorred16$. Notice here again we have the numbers with matching color multiply together to get $16$. However, in the center since $16$ is square you only have one number of that color, not two, again because the corresponding divisor associated with it happens to be the same number. This pattern continues for all numbers. Every square number has an odd number of divisors and every non-square number has an even number of divisors and it is for this reason that the only pennies left turned heads up will be the ones at the square number positions.






share|cite|improve this answer









$endgroup$













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );






    DeeH is a new contributor. Be nice, and check out our Code of Conduct.









    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3186800%2fwhat-is-special-about-square-numbers-here%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    7












    $begingroup$

    Each penny will be flipped a number of times equal to the number of divisors it has (including or not including $1$ based on the specific wording of the problem).



    Supposing that $d$ is a divisor of $n$, i.e. that there is some $k$ such that $n = dtimes k$, then $k$ is also a divisor. In the event that $k$ is different than $d$ then it will be counted separately than $d$ when counting the total number of divisors. In this way, every single divisor $d$ of $n$ that we wish to count will have a corresponding different divisor $k=fracnd$.



    All except the circumstance where $n$ happens to be a square number $n=r^2$ in which case you have $r$ is a divisor and the corresponding paired divisor $fracnr$ is again equal to $r$ and so is not distinct and need not be counted a second time.



    Let's look at $12$ for an example.



    $12$ has the divisors $colorred1,colorblue2,colorpurple3,colorpurple4,colorblue6,colorred12$. Note how the numbers with matching colors are paired together and multiply together to give $12$.



    Now, let's look at a square number as an example like $16$.



    $16$ has the divisors $colorred1,colorblue2,colorpurple4,colorblue8,colorred16$. Notice here again we have the numbers with matching color multiply together to get $16$. However, in the center since $16$ is square you only have one number of that color, not two, again because the corresponding divisor associated with it happens to be the same number. This pattern continues for all numbers. Every square number has an odd number of divisors and every non-square number has an even number of divisors and it is for this reason that the only pennies left turned heads up will be the ones at the square number positions.






    share|cite|improve this answer









    $endgroup$

















      7












      $begingroup$

      Each penny will be flipped a number of times equal to the number of divisors it has (including or not including $1$ based on the specific wording of the problem).



      Supposing that $d$ is a divisor of $n$, i.e. that there is some $k$ such that $n = dtimes k$, then $k$ is also a divisor. In the event that $k$ is different than $d$ then it will be counted separately than $d$ when counting the total number of divisors. In this way, every single divisor $d$ of $n$ that we wish to count will have a corresponding different divisor $k=fracnd$.



      All except the circumstance where $n$ happens to be a square number $n=r^2$ in which case you have $r$ is a divisor and the corresponding paired divisor $fracnr$ is again equal to $r$ and so is not distinct and need not be counted a second time.



      Let's look at $12$ for an example.



      $12$ has the divisors $colorred1,colorblue2,colorpurple3,colorpurple4,colorblue6,colorred12$. Note how the numbers with matching colors are paired together and multiply together to give $12$.



      Now, let's look at a square number as an example like $16$.



      $16$ has the divisors $colorred1,colorblue2,colorpurple4,colorblue8,colorred16$. Notice here again we have the numbers with matching color multiply together to get $16$. However, in the center since $16$ is square you only have one number of that color, not two, again because the corresponding divisor associated with it happens to be the same number. This pattern continues for all numbers. Every square number has an odd number of divisors and every non-square number has an even number of divisors and it is for this reason that the only pennies left turned heads up will be the ones at the square number positions.






      share|cite|improve this answer









      $endgroup$















        7












        7








        7





        $begingroup$

        Each penny will be flipped a number of times equal to the number of divisors it has (including or not including $1$ based on the specific wording of the problem).



        Supposing that $d$ is a divisor of $n$, i.e. that there is some $k$ such that $n = dtimes k$, then $k$ is also a divisor. In the event that $k$ is different than $d$ then it will be counted separately than $d$ when counting the total number of divisors. In this way, every single divisor $d$ of $n$ that we wish to count will have a corresponding different divisor $k=fracnd$.



        All except the circumstance where $n$ happens to be a square number $n=r^2$ in which case you have $r$ is a divisor and the corresponding paired divisor $fracnr$ is again equal to $r$ and so is not distinct and need not be counted a second time.



        Let's look at $12$ for an example.



        $12$ has the divisors $colorred1,colorblue2,colorpurple3,colorpurple4,colorblue6,colorred12$. Note how the numbers with matching colors are paired together and multiply together to give $12$.



        Now, let's look at a square number as an example like $16$.



        $16$ has the divisors $colorred1,colorblue2,colorpurple4,colorblue8,colorred16$. Notice here again we have the numbers with matching color multiply together to get $16$. However, in the center since $16$ is square you only have one number of that color, not two, again because the corresponding divisor associated with it happens to be the same number. This pattern continues for all numbers. Every square number has an odd number of divisors and every non-square number has an even number of divisors and it is for this reason that the only pennies left turned heads up will be the ones at the square number positions.






        share|cite|improve this answer









        $endgroup$



        Each penny will be flipped a number of times equal to the number of divisors it has (including or not including $1$ based on the specific wording of the problem).



        Supposing that $d$ is a divisor of $n$, i.e. that there is some $k$ such that $n = dtimes k$, then $k$ is also a divisor. In the event that $k$ is different than $d$ then it will be counted separately than $d$ when counting the total number of divisors. In this way, every single divisor $d$ of $n$ that we wish to count will have a corresponding different divisor $k=fracnd$.



        All except the circumstance where $n$ happens to be a square number $n=r^2$ in which case you have $r$ is a divisor and the corresponding paired divisor $fracnr$ is again equal to $r$ and so is not distinct and need not be counted a second time.



        Let's look at $12$ for an example.



        $12$ has the divisors $colorred1,colorblue2,colorpurple3,colorpurple4,colorblue6,colorred12$. Note how the numbers with matching colors are paired together and multiply together to give $12$.



        Now, let's look at a square number as an example like $16$.



        $16$ has the divisors $colorred1,colorblue2,colorpurple4,colorblue8,colorred16$. Notice here again we have the numbers with matching color multiply together to get $16$. However, in the center since $16$ is square you only have one number of that color, not two, again because the corresponding divisor associated with it happens to be the same number. This pattern continues for all numbers. Every square number has an odd number of divisors and every non-square number has an even number of divisors and it is for this reason that the only pennies left turned heads up will be the ones at the square number positions.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 2 hours ago









        JMoravitzJMoravitz

        49k43990




        49k43990




















            DeeH is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            DeeH is a new contributor. Be nice, and check out our Code of Conduct.












            DeeH is a new contributor. Be nice, and check out our Code of Conduct.











            DeeH is a new contributor. Be nice, and check out our Code of Conduct.














            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3186800%2fwhat-is-special-about-square-numbers-here%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            ValueError: Error when checking input: expected conv2d_13_input to have shape (3, 150, 150) but got array with shape (150, 150, 3)2019 Community Moderator ElectionError when checking : expected dense_1_input to have shape (None, 5) but got array with shape (200, 1)Error 'Expected 2D array, got 1D array instead:'ValueError: Error when checking input: expected lstm_41_input to have 3 dimensions, but got array with shape (40000,100)ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)ValueError: Error when checking target: expected dense_2 to have shape (1,) but got array with shape (0,)Keras exception: ValueError: Error when checking input: expected conv2d_1_input to have shape (150, 150, 3) but got array with shape (256, 256, 3)Steps taking too long to completewhen checking input: expected dense_1_input to have shape (13328,) but got array with shape (317,)ValueError: Error when checking target: expected dense_3 to have shape (None, 1) but got array with shape (7715, 40000)Keras exception: Error when checking input: expected dense_input to have shape (2,) but got array with shape (1,)

            Ружовы пелікан Змест Знешні выгляд | Пашырэнне | Асаблівасці біялогіі | Літаратура | НавігацыяДагледжаная версіяправерана1 зменаДагледжаная версіяправерана1 змена/ 22697590 Сістэматыкана ВіківідахВыявына Вікісховішчы174693363011049382

            Illegal assignment from SObject to ContactFetching String, Id from Map - Illegal Assignment Id to Field / ObjectError: Compile Error: Illegal assignment from String to BooleanError: List has no rows for assignment to SObjectError on Test Class - System.QueryException: List has no rows for assignment to SObjectRemote action problemDML requires SObject or SObject list type error“Illegal assignment from List to List”Test Class Fail: Batch Class: System.QueryException: List has no rows for assignment to SObjectMapping to a user'List has no rows for assignment to SObject' Mystery