Adding batch normalization layer to VGG16 network The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) 2019 Moderator Election Q&A - Questionnaire 2019 Community Moderator Election ResultsConvolutional neural network overfitting. Dropout not helpingNeural network for peak identification problem not training successfullyFinal layer of neural network responsible for overfittingHow to make output dimensions match input dimensions in CNN?Reshape output of convolutional layer to which dimensions?Visualizing ConvNet filters using my own fine-tuned network resulting in a “NoneType” when running: K.gradients(loss, model.input)[0]Custom loss function which is included gradient in KerasValue of loss and accuracy does not change over EpochsMultiple-input multiple-output CNN with custom loss functionUnderstanding LSTM structure

First use of “packing” as in carrying a gun

Am I ethically obligated to go into work on an off day if the reason is sudden?

Would it be possible to rearrange a dragon's flight muscle to somewhat circumvent the square-cube law?

What is special about square numbers here?

Create an outline of font

How do you keep chess fun when your opponent constantly beats you?

A pet rabbit called Belle

Does Parliament hold absolute power in the UK?

What aspect of planet Earth must be changed to prevent the industrial revolution?

Difference between "generating set" and free product?

How do I add random spotting to the same face in cycles?

Keeping a retro style to sci-fi spaceships?

Can the DM override racial traits?

Are my PIs rude or am I just being too sensitive?

Did the new image of black hole confirm the general theory of relativity?

How should I replace vector<uint8_t>::const_iterator in an API?

Can withdrawing asylum be illegal?

Can smartphones with the same camera sensor have different image quality?

Did God make two great lights or did He make the great light two?

Is it ethical to upload a automatically generated paper to a non peer-reviewed site as part of a larger research?

Relations between two reciprocal partial derivatives?

How to test the equality of two Pearson correlation coefficients computed from the same sample?

How are presidential pardons supposed to be used?

He got a vote 80% that of Emmanuel Macron’s



Adding batch normalization layer to VGG16 network



The 2019 Stack Overflow Developer Survey Results Are In
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)
2019 Moderator Election Q&A - Questionnaire
2019 Community Moderator Election ResultsConvolutional neural network overfitting. Dropout not helpingNeural network for peak identification problem not training successfullyFinal layer of neural network responsible for overfittingHow to make output dimensions match input dimensions in CNN?Reshape output of convolutional layer to which dimensions?Visualizing ConvNet filters using my own fine-tuned network resulting in a “NoneType” when running: K.gradients(loss, model.input)[0]Custom loss function which is included gradient in KerasValue of loss and accuracy does not change over EpochsMultiple-input multiple-output CNN with custom loss functionUnderstanding LSTM structure










1












$begingroup$


I want to use batch normalization layer to decrease overfitting in VGG16 CNN.



Where should the batch normalization layer be added to the network?



`_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) (None, 224, 224, 3) 0
_________________________________________________________________
block1_conv1 (Conv2D) (None, 224, 224, 64) 1792
_________________________________________________________________
block1_conv2 (Conv2D) (None, 224, 224, 64) 36928
_________________________________________________________________
block1_pool (MaxPooling2D) (None, 112, 112, 64) 0
_________________________________________________________________
block2_conv1 (Conv2D) (None, 112, 112, 128) 73856
_________________________________________________________________
block2_conv2 (Conv2D) (None, 112, 112, 128) 147584
_________________________________________________________________
block2_pool (MaxPooling2D) (None, 56, 56, 128) 0
_________________________________________________________________
block3_conv1 (Conv2D) (None, 56, 56, 256) 295168
_________________________________________________________________
block3_conv2 (Conv2D) (None, 56, 56, 256) 590080
_________________________________________________________________
block3_conv3 (Conv2D) (None, 56, 56, 256) 590080
_________________________________________________________________
block3_pool (MaxPooling2D) (None, 28, 28, 256) 0
_________________________________________________________________
block4_conv1 (Conv2D) (None, 28, 28, 512) 1180160
_________________________________________________________________
block4_conv2 (Conv2D) (None, 28, 28, 512) 2359808
_________________________________________________________________
block4_conv3 (Conv2D) (None, 28, 28, 512) 2359808
_________________________________________________________________
block4_pool (MaxPooling2D) (None, 14, 14, 512) 0
_________________________________________________________________
block5_conv1 (Conv2D) (None, 14, 14, 512) 2359808
_________________________________________________________________
block5_conv2 (Conv2D) (None, 14, 14, 512) 2359808
_________________________________________________________________
block5_conv3 (Conv2D) (None, 14, 14, 512) 2359808
_________________________________________________________________
block5_pool (MaxPooling2D) (None, 7, 7, 512) 0
_________________________________________________________________
flatten (Flatten) (None, 25088) 0
_________________________________________________________________
fc1 (Dense) (None, 4096) 102764544
_________________________________________________________________
fc2 (Dense) (None, 4096) 16781312
_________________________________________________________________
predictions (Dense) (None, 1000) 4097000
=================================================================`









share|improve this question











$endgroup$




bumped to the homepage by Community 31 mins ago


This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.



















    1












    $begingroup$


    I want to use batch normalization layer to decrease overfitting in VGG16 CNN.



    Where should the batch normalization layer be added to the network?



    `_________________________________________________________________
    Layer (type) Output Shape Param #
    =================================================================
    input_1 (InputLayer) (None, 224, 224, 3) 0
    _________________________________________________________________
    block1_conv1 (Conv2D) (None, 224, 224, 64) 1792
    _________________________________________________________________
    block1_conv2 (Conv2D) (None, 224, 224, 64) 36928
    _________________________________________________________________
    block1_pool (MaxPooling2D) (None, 112, 112, 64) 0
    _________________________________________________________________
    block2_conv1 (Conv2D) (None, 112, 112, 128) 73856
    _________________________________________________________________
    block2_conv2 (Conv2D) (None, 112, 112, 128) 147584
    _________________________________________________________________
    block2_pool (MaxPooling2D) (None, 56, 56, 128) 0
    _________________________________________________________________
    block3_conv1 (Conv2D) (None, 56, 56, 256) 295168
    _________________________________________________________________
    block3_conv2 (Conv2D) (None, 56, 56, 256) 590080
    _________________________________________________________________
    block3_conv3 (Conv2D) (None, 56, 56, 256) 590080
    _________________________________________________________________
    block3_pool (MaxPooling2D) (None, 28, 28, 256) 0
    _________________________________________________________________
    block4_conv1 (Conv2D) (None, 28, 28, 512) 1180160
    _________________________________________________________________
    block4_conv2 (Conv2D) (None, 28, 28, 512) 2359808
    _________________________________________________________________
    block4_conv3 (Conv2D) (None, 28, 28, 512) 2359808
    _________________________________________________________________
    block4_pool (MaxPooling2D) (None, 14, 14, 512) 0
    _________________________________________________________________
    block5_conv1 (Conv2D) (None, 14, 14, 512) 2359808
    _________________________________________________________________
    block5_conv2 (Conv2D) (None, 14, 14, 512) 2359808
    _________________________________________________________________
    block5_conv3 (Conv2D) (None, 14, 14, 512) 2359808
    _________________________________________________________________
    block5_pool (MaxPooling2D) (None, 7, 7, 512) 0
    _________________________________________________________________
    flatten (Flatten) (None, 25088) 0
    _________________________________________________________________
    fc1 (Dense) (None, 4096) 102764544
    _________________________________________________________________
    fc2 (Dense) (None, 4096) 16781312
    _________________________________________________________________
    predictions (Dense) (None, 1000) 4097000
    =================================================================`









    share|improve this question











    $endgroup$




    bumped to the homepage by Community 31 mins ago


    This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.

















      1












      1








      1


      1



      $begingroup$


      I want to use batch normalization layer to decrease overfitting in VGG16 CNN.



      Where should the batch normalization layer be added to the network?



      `_________________________________________________________________
      Layer (type) Output Shape Param #
      =================================================================
      input_1 (InputLayer) (None, 224, 224, 3) 0
      _________________________________________________________________
      block1_conv1 (Conv2D) (None, 224, 224, 64) 1792
      _________________________________________________________________
      block1_conv2 (Conv2D) (None, 224, 224, 64) 36928
      _________________________________________________________________
      block1_pool (MaxPooling2D) (None, 112, 112, 64) 0
      _________________________________________________________________
      block2_conv1 (Conv2D) (None, 112, 112, 128) 73856
      _________________________________________________________________
      block2_conv2 (Conv2D) (None, 112, 112, 128) 147584
      _________________________________________________________________
      block2_pool (MaxPooling2D) (None, 56, 56, 128) 0
      _________________________________________________________________
      block3_conv1 (Conv2D) (None, 56, 56, 256) 295168
      _________________________________________________________________
      block3_conv2 (Conv2D) (None, 56, 56, 256) 590080
      _________________________________________________________________
      block3_conv3 (Conv2D) (None, 56, 56, 256) 590080
      _________________________________________________________________
      block3_pool (MaxPooling2D) (None, 28, 28, 256) 0
      _________________________________________________________________
      block4_conv1 (Conv2D) (None, 28, 28, 512) 1180160
      _________________________________________________________________
      block4_conv2 (Conv2D) (None, 28, 28, 512) 2359808
      _________________________________________________________________
      block4_conv3 (Conv2D) (None, 28, 28, 512) 2359808
      _________________________________________________________________
      block4_pool (MaxPooling2D) (None, 14, 14, 512) 0
      _________________________________________________________________
      block5_conv1 (Conv2D) (None, 14, 14, 512) 2359808
      _________________________________________________________________
      block5_conv2 (Conv2D) (None, 14, 14, 512) 2359808
      _________________________________________________________________
      block5_conv3 (Conv2D) (None, 14, 14, 512) 2359808
      _________________________________________________________________
      block5_pool (MaxPooling2D) (None, 7, 7, 512) 0
      _________________________________________________________________
      flatten (Flatten) (None, 25088) 0
      _________________________________________________________________
      fc1 (Dense) (None, 4096) 102764544
      _________________________________________________________________
      fc2 (Dense) (None, 4096) 16781312
      _________________________________________________________________
      predictions (Dense) (None, 1000) 4097000
      =================================================================`









      share|improve this question











      $endgroup$




      I want to use batch normalization layer to decrease overfitting in VGG16 CNN.



      Where should the batch normalization layer be added to the network?



      `_________________________________________________________________
      Layer (type) Output Shape Param #
      =================================================================
      input_1 (InputLayer) (None, 224, 224, 3) 0
      _________________________________________________________________
      block1_conv1 (Conv2D) (None, 224, 224, 64) 1792
      _________________________________________________________________
      block1_conv2 (Conv2D) (None, 224, 224, 64) 36928
      _________________________________________________________________
      block1_pool (MaxPooling2D) (None, 112, 112, 64) 0
      _________________________________________________________________
      block2_conv1 (Conv2D) (None, 112, 112, 128) 73856
      _________________________________________________________________
      block2_conv2 (Conv2D) (None, 112, 112, 128) 147584
      _________________________________________________________________
      block2_pool (MaxPooling2D) (None, 56, 56, 128) 0
      _________________________________________________________________
      block3_conv1 (Conv2D) (None, 56, 56, 256) 295168
      _________________________________________________________________
      block3_conv2 (Conv2D) (None, 56, 56, 256) 590080
      _________________________________________________________________
      block3_conv3 (Conv2D) (None, 56, 56, 256) 590080
      _________________________________________________________________
      block3_pool (MaxPooling2D) (None, 28, 28, 256) 0
      _________________________________________________________________
      block4_conv1 (Conv2D) (None, 28, 28, 512) 1180160
      _________________________________________________________________
      block4_conv2 (Conv2D) (None, 28, 28, 512) 2359808
      _________________________________________________________________
      block4_conv3 (Conv2D) (None, 28, 28, 512) 2359808
      _________________________________________________________________
      block4_pool (MaxPooling2D) (None, 14, 14, 512) 0
      _________________________________________________________________
      block5_conv1 (Conv2D) (None, 14, 14, 512) 2359808
      _________________________________________________________________
      block5_conv2 (Conv2D) (None, 14, 14, 512) 2359808
      _________________________________________________________________
      block5_conv3 (Conv2D) (None, 14, 14, 512) 2359808
      _________________________________________________________________
      block5_pool (MaxPooling2D) (None, 7, 7, 512) 0
      _________________________________________________________________
      flatten (Flatten) (None, 25088) 0
      _________________________________________________________________
      fc1 (Dense) (None, 4096) 102764544
      _________________________________________________________________
      fc2 (Dense) (None, 4096) 16781312
      _________________________________________________________________
      predictions (Dense) (None, 1000) 4097000
      =================================================================`






      machine-learning neural-network deep-learning keras cnn






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Sep 13 '18 at 15:38









      Vaalizaadeh

      7,58562263




      7,58562263










      asked Sep 6 '18 at 14:31









      N.ITN.IT

      473112




      473112





      bumped to the homepage by Community 31 mins ago


      This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.







      bumped to the homepage by Community 31 mins ago


      This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          The main purpose of batch normalisation is not for dealing with overfitting but if you have small batches while training it can have regularization effect. In the paper that it was introduced for dealing with covariat shift, it was mentioned that it should be used before activation function. Consequently, you can use it both in convolutional layers and dense layers, after employing weights and before activation functions. But I've seen people using that after activation function. It can also be used there.






          share|improve this answer









          $endgroup$













            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "557"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f37889%2fadding-batch-normalization-layer-to-vgg16-network%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            The main purpose of batch normalisation is not for dealing with overfitting but if you have small batches while training it can have regularization effect. In the paper that it was introduced for dealing with covariat shift, it was mentioned that it should be used before activation function. Consequently, you can use it both in convolutional layers and dense layers, after employing weights and before activation functions. But I've seen people using that after activation function. It can also be used there.






            share|improve this answer









            $endgroup$

















              0












              $begingroup$

              The main purpose of batch normalisation is not for dealing with overfitting but if you have small batches while training it can have regularization effect. In the paper that it was introduced for dealing with covariat shift, it was mentioned that it should be used before activation function. Consequently, you can use it both in convolutional layers and dense layers, after employing weights and before activation functions. But I've seen people using that after activation function. It can also be used there.






              share|improve this answer









              $endgroup$















                0












                0








                0





                $begingroup$

                The main purpose of batch normalisation is not for dealing with overfitting but if you have small batches while training it can have regularization effect. In the paper that it was introduced for dealing with covariat shift, it was mentioned that it should be used before activation function. Consequently, you can use it both in convolutional layers and dense layers, after employing weights and before activation functions. But I've seen people using that after activation function. It can also be used there.






                share|improve this answer









                $endgroup$



                The main purpose of batch normalisation is not for dealing with overfitting but if you have small batches while training it can have regularization effect. In the paper that it was introduced for dealing with covariat shift, it was mentioned that it should be used before activation function. Consequently, you can use it both in convolutional layers and dense layers, after employing weights and before activation functions. But I've seen people using that after activation function. It can also be used there.







                share|improve this answer












                share|improve this answer



                share|improve this answer










                answered Sep 13 '18 at 15:38









                VaalizaadehVaalizaadeh

                7,58562263




                7,58562263



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Data Science Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f37889%2fadding-batch-normalization-layer-to-vgg16-network%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Францішак Багушэвіч Змест Сям'я | Біяграфія | Творчасць | Мова Багушэвіча | Ацэнкі дзейнасці | Цікавыя факты | Спадчына | Выбраная бібліяграфія | Ушанаванне памяці | У філатэліі | Зноскі | Літаратура | Спасылкі | НавігацыяЛяхоўскі У. Рупіўся дзеля Бога і людзей: Жыццёвы шлях Лявона Вітан-Дубейкаўскага // Вольскі і Памідораў з песняй пра немца Адвакат, паэт, народны заступнік Ашмянскі веснікВ Минске появится площадь Богушевича и улица Сырокомли, Белорусская деловая газета, 19 июля 2001 г.Айцец беларускай нацыянальнай ідэі паўстаў у бронзе Сяргей Аляксандравіч Адашкевіч (1918, Мінск). 80-я гады. Бюст «Францішак Багушэвіч».Яўген Мікалаевіч Ціхановіч. «Партрэт Францішка Багушэвіча»Мікола Мікалаевіч Купава. «Партрэт зачынальніка новай беларускай літаратуры Францішка Багушэвіча»Уладзімір Іванавіч Мелехаў. На помніку «Змагарам за родную мову» Барэльеф «Францішак Багушэвіч»Памяць пра Багушэвіча на Віленшчыне Страчаная сталіца. Беларускія шыльды на вуліцах Вільні«Krynica». Ideologia i przywódcy białoruskiego katolicyzmuФранцішак БагушэвічТворы на knihi.comТворы Францішка Багушэвіча на bellib.byСодаль Уладзімір. Францішак Багушэвіч на Лідчыне;Луцкевіч Антон. Жыцьцё і творчасьць Фр. Багушэвіча ў успамінах ягоных сучасьнікаў // Запісы Беларускага Навуковага таварыства. Вільня, 1938. Сшытак 1. С. 16-34.Большая российская1188761710000 0000 5537 633Xn9209310021619551927869394п

                    Беларусь Змест Назва Гісторыя Геаграфія Сімволіка Дзяржаўны лад Палітычныя партыі Міжнароднае становішча і знешняя палітыка Адміністрацыйны падзел Насельніцтва Эканоміка Культура і грамадства Сацыяльная сфера Узброеныя сілы Заўвагі Літаратура Спасылкі НавігацыяHGЯOiТоп-2011 г. (па версіі ej.by)Топ-2013 г. (па версіі ej.by)Топ-2016 г. (па версіі ej.by)Топ-2017 г. (па версіі ej.by)Нацыянальны статыстычны камітэт Рэспублікі БеларусьШчыльнасць насельніцтва па краінахhttp://naviny.by/rubrics/society/2011/09/16/ic_articles_116_175144/А. Калечыц, У. Ксяндзоў. Спробы засялення краю неандэртальскім чалавекам.І ў Менску былі мамантыА. Калечыц, У. Ксяндзоў. Старажытны каменны век (палеаліт). Першапачатковае засяленне тэрыторыіГ. Штыхаў. Балты і славяне ў VI—VIII стст.М. Клімаў. Полацкае княства ў IX—XI стст.Г. Штыхаў, В. Ляўко. Палітычная гісторыя Полацкай зямліГ. Штыхаў. Дзяржаўны лад у землях-княствахГ. Штыхаў. Дзяржаўны лад у землях-княствахБеларускія землі ў складзе Вялікага Княства ЛітоўскагаЛюблінская унія 1569 г."The Early Stages of Independence"Zapomniane prawdy25 гадоў таму было аб'яўлена, што Язэп Пілсудскі — беларус (фота)Наша вадаДакументы ЧАЭС: Забруджванне тэрыторыі Беларусі « ЧАЭС Зона адчужэнняСведения о политических партиях, зарегистрированных в Республике Беларусь // Министерство юстиции Республики БеларусьСтатыстычны бюлетэнь „Полаўзроставая структура насельніцтва Рэспублікі Беларусь на 1 студзеня 2012 года і сярэднегадовая колькасць насельніцтва за 2011 год“Индекс человеческого развития Беларуси — не было бы нижеБеларусь занимает первое место в СНГ по индексу развития с учетом гендерного факцёраНацыянальны статыстычны камітэт Рэспублікі БеларусьКанстытуцыя РБ. Артыкул 17Трансфармацыйныя задачы БеларусіВыйсце з крызісу — далейшае рэфармаванне Беларускі рубель — сусветны лідар па дэвальвацыяхПра змену коштаў у кастрычніку 2011 г.Бядней за беларусаў у СНД толькі таджыкіСярэдні заробак у верасні дасягнуў 2,26 мільёна рублёўЭканомікаГаласуем за ТОП-100 беларускай прозыСучасныя беларускія мастакіАрхитектура Беларуси BELARUS.BYА. Каханоўскі. Культура Беларусі ўсярэдзіне XVII—XVIII ст.Анталогія беларускай народнай песні, гуказапісы спеваўБеларускія Музычныя IнструментыБеларускі рок, які мы страцілі. Топ-10 гуртоў«Мясцовы час» — нязгаслая легенда беларускай рок-музыкіСЯРГЕЙ БУДКІН. МЫ НЯ ЗНАЕМ СВАЁЙ МУЗЫКІМ. А. Каладзінскі. НАРОДНЫ ТЭАТРМагнацкія культурныя цэнтрыПублічная дыскусія «Беларуская новая пьеса: без беларускай мовы ці беларуская?»Беларускія драматургі па-ранейшаму лепш ставяцца за мяжой, чым на радзіме«Працэс незалежнага кіно пайшоў, і дзяржаву турбуе яго непадкантрольнасць»Беларускія філосафы ў пошуках прасторыВсе идём в библиотекуАрхіваванаАб Нацыянальнай праграме даследавання і выкарыстання касмічнай прасторы ў мірных мэтах на 2008—2012 гадыУ космас — разам.У суседнім з Барысаўскім раёне пабудуюць Камандна-вымяральны пунктСвяты і абрады беларусаў«Мірныя бульбашы з малой краіны» — 5 непраўдзівых стэрэатыпаў пра БеларусьМ. Раманюк. Беларускае народнае адзеннеУ Беларусі скарачаецца колькасць злачынстваўЛукашэнка незадаволены мінскімі ўладамі Крадзяжы складаюць у Мінску каля 70% злачынстваў Узровень злачыннасці ў Мінскай вобласці — адзін з самых высокіх у краіне Генпракуратура аналізуе стан са злачыннасцю ў Беларусі па каэфіцыенце злачыннасці У Беларусі стабілізавалася крымінагеннае становішча, лічыць генпракурорЗамежнікі сталі здзяйсняць у Беларусі больш злачынстваўМУС Беларусі турбуе рост рэцыдыўнай злачыннасціЯ з ЖЭСа. Дазволіце вас абкрасці! Рэйтынг усіх службаў і падраздзяленняў ГУУС Мінгарвыканкама вырасАб КДБ РБГісторыя Аператыўна-аналітычнага цэнтра РБГісторыя ДКФРТаможняagentura.ruБеларусьBelarus.by — Афіцыйны сайт Рэспублікі БеларусьСайт урада БеларусіRadzima.org — Збор архітэктурных помнікаў, гісторыя Беларусі«Глобус Беларуси»Гербы и флаги БеларусиАсаблівасці каменнага веку на БеларусіА. Калечыц, У. Ксяндзоў. Старажытны каменны век (палеаліт). Першапачатковае засяленне тэрыторыіУ. Ксяндзоў. Сярэдні каменны век (мезаліт). Засяленне краю плямёнамі паляўнічых, рыбакоў і збіральнікаўА. Калечыц, М. Чарняўскі. Плямёны на тэрыторыі Беларусі ў новым каменным веку (неаліце)А. Калечыц, У. Ксяндзоў, М. Чарняўскі. Гаспадарчыя заняткі ў каменным векуЭ. Зайкоўскі. Духоўная культура ў каменным векуАсаблівасці бронзавага веку на БеларусіФарміраванне супольнасцей ранняга перыяду бронзавага векуФотографии БеларусиРоля беларускіх зямель ва ўтварэнні і ўмацаванні ВКЛВ. Фадзеева. З гісторыі развіцця беларускай народнай вышыўкіDMOZGran catalanaБольшая российскаяBritannica (анлайн)Швейцарскі гістарычны15325917611952699xDA123282154079143-90000 0001 2171 2080n9112870100577502ge128882171858027501086026362074122714179пппппп

                    ValueError: Expected n_neighbors <= n_samples, but n_samples = 1, n_neighbors = 6 (SMOTE) The 2019 Stack Overflow Developer Survey Results Are InCan SMOTE be applied over sequence of words (sentences)?ValueError when doing validation with random forestsSMOTE and multi class oversamplingLogic behind SMOTE-NC?ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)SmoteBoost: Should SMOTE be ran individually for each iteration/tree in the boosting?solving multi-class imbalance classification using smote and OSSUsing SMOTE for Synthetic Data generation to improve performance on unbalanced dataproblem of entry format for a simple model in KerasSVM SMOTE fit_resample() function runs forever with no result