In SVM Algorithm, why vector w is orthogonal to the separating hyperplane? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) 2019 Moderator Election Q&A - Questionnaire 2019 Community Moderator Election ResultsUsing SVM as a binary classifier, is the label for a data point chosen by consensus?How are Hyperplane Heatmaps created and how should they be interpreted?why is SVM cost function the norm of the hyperplane parameters, and not the mean square error?Why do we use +1 and -1 for marginal decision boundaries in SVMSVM on sparse dataWhy does an SVM model store the support vectors, and not just the separating hyperplane?SVM - why does scaling the parameters w and b result in nothing meaningful?prediction for a linear sumHow regularization parameter in SVM affects hyperplane parametersSVM radial basis generate equation for hyperplane

Slither Like a Snake

Did the new image of black hole confirm the general theory of relativity?

Geometric mean and geometric standard deviation

Classification of bundles, Postnikov towers, obstruction theory, local coefficients

Two different pronunciation of "понял"

Unable to start mainnet node docker container

Stop battery usage [Ubuntu 18]

Simulating Exploding Dice

Unexpected result with right shift after bitwise negation

Can I throw a longsword at someone?

I'm having difficulty getting my players to do stuff in a sandbox campaign

Windows 10: How to Lock (not sleep) laptop on lid close?

What's the point in a preamp?

Estimated State payment too big --> money back; + 2018 Tax Reform

What did Darwin mean by 'squib' here?

What do you call a plan that's an alternative plan in case your initial plan fails?

Are my PIs rude or am I just being too sensitive?

Limit for e and 1/e

Stars Make Stars

Mortgage adviser recommends a longer term than necessary combined with overpayments

Why does this iterative way of solving of equation work?

How is simplicity better than precision and clarity in prose?

Complexity of many constant time steps with occasional logarithmic steps

What to do with post with dry rot?



In SVM Algorithm, why vector w is orthogonal to the separating hyperplane?



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)
2019 Moderator Election Q&A - Questionnaire
2019 Community Moderator Election ResultsUsing SVM as a binary classifier, is the label for a data point chosen by consensus?How are Hyperplane Heatmaps created and how should they be interpreted?why is SVM cost function the norm of the hyperplane parameters, and not the mean square error?Why do we use +1 and -1 for marginal decision boundaries in SVMSVM on sparse dataWhy does an SVM model store the support vectors, and not just the separating hyperplane?SVM - why does scaling the parameters w and b result in nothing meaningful?prediction for a linear sumHow regularization parameter in SVM affects hyperplane parametersSVM radial basis generate equation for hyperplane










8












$begingroup$


I am a beginner on Machine Learning.
In SVM, the separating hyperplane is defined as $y = w^T x + b$.
Why we say vector $w$ orthogonal to the separating hyperplane?










share|improve this question











$endgroup$







  • 2




    $begingroup$
    An answer to a similar question (for neural networks) is here.
    $endgroup$
    – bogatron
    Jun 9 '15 at 16:39










  • $begingroup$
    @bogatron - I agree with you completely. But my ones just a SVM specific answer.
    $endgroup$
    – untitledprogrammer
    Jun 10 '15 at 19:43






  • 2




    $begingroup$
    Except it isn't. Your answer is correct but there is nothing about it that is specific to SVMs (nor should there be). $w^Tx=b$ is simply a vector equation that defines a hyperplane.
    $endgroup$
    – bogatron
    Jun 10 '15 at 22:01















8












$begingroup$


I am a beginner on Machine Learning.
In SVM, the separating hyperplane is defined as $y = w^T x + b$.
Why we say vector $w$ orthogonal to the separating hyperplane?










share|improve this question











$endgroup$







  • 2




    $begingroup$
    An answer to a similar question (for neural networks) is here.
    $endgroup$
    – bogatron
    Jun 9 '15 at 16:39










  • $begingroup$
    @bogatron - I agree with you completely. But my ones just a SVM specific answer.
    $endgroup$
    – untitledprogrammer
    Jun 10 '15 at 19:43






  • 2




    $begingroup$
    Except it isn't. Your answer is correct but there is nothing about it that is specific to SVMs (nor should there be). $w^Tx=b$ is simply a vector equation that defines a hyperplane.
    $endgroup$
    – bogatron
    Jun 10 '15 at 22:01













8












8








8


2



$begingroup$


I am a beginner on Machine Learning.
In SVM, the separating hyperplane is defined as $y = w^T x + b$.
Why we say vector $w$ orthogonal to the separating hyperplane?










share|improve this question











$endgroup$




I am a beginner on Machine Learning.
In SVM, the separating hyperplane is defined as $y = w^T x + b$.
Why we say vector $w$ orthogonal to the separating hyperplane?







machine-learning svm






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Jun 10 '15 at 11:45









Nitesh

1,1451721




1,1451721










asked Jun 9 '15 at 14:39









Chong ZhengChong Zheng

4913




4913







  • 2




    $begingroup$
    An answer to a similar question (for neural networks) is here.
    $endgroup$
    – bogatron
    Jun 9 '15 at 16:39










  • $begingroup$
    @bogatron - I agree with you completely. But my ones just a SVM specific answer.
    $endgroup$
    – untitledprogrammer
    Jun 10 '15 at 19:43






  • 2




    $begingroup$
    Except it isn't. Your answer is correct but there is nothing about it that is specific to SVMs (nor should there be). $w^Tx=b$ is simply a vector equation that defines a hyperplane.
    $endgroup$
    – bogatron
    Jun 10 '15 at 22:01












  • 2




    $begingroup$
    An answer to a similar question (for neural networks) is here.
    $endgroup$
    – bogatron
    Jun 9 '15 at 16:39










  • $begingroup$
    @bogatron - I agree with you completely. But my ones just a SVM specific answer.
    $endgroup$
    – untitledprogrammer
    Jun 10 '15 at 19:43






  • 2




    $begingroup$
    Except it isn't. Your answer is correct but there is nothing about it that is specific to SVMs (nor should there be). $w^Tx=b$ is simply a vector equation that defines a hyperplane.
    $endgroup$
    – bogatron
    Jun 10 '15 at 22:01







2




2




$begingroup$
An answer to a similar question (for neural networks) is here.
$endgroup$
– bogatron
Jun 9 '15 at 16:39




$begingroup$
An answer to a similar question (for neural networks) is here.
$endgroup$
– bogatron
Jun 9 '15 at 16:39












$begingroup$
@bogatron - I agree with you completely. But my ones just a SVM specific answer.
$endgroup$
– untitledprogrammer
Jun 10 '15 at 19:43




$begingroup$
@bogatron - I agree with you completely. But my ones just a SVM specific answer.
$endgroup$
– untitledprogrammer
Jun 10 '15 at 19:43




2




2




$begingroup$
Except it isn't. Your answer is correct but there is nothing about it that is specific to SVMs (nor should there be). $w^Tx=b$ is simply a vector equation that defines a hyperplane.
$endgroup$
– bogatron
Jun 10 '15 at 22:01




$begingroup$
Except it isn't. Your answer is correct but there is nothing about it that is specific to SVMs (nor should there be). $w^Tx=b$ is simply a vector equation that defines a hyperplane.
$endgroup$
– bogatron
Jun 10 '15 at 22:01










4 Answers
4






active

oldest

votes


















9












$begingroup$

Geometrically, the vector w is directed orthogonal to the line defined by $w^T x = b$. This can be understood as follows:



First take $b = 0$. Now it is clear that all vectors, $x$, with vanishing inner product with $w$ satisfy this equation, i.e. all vectors orthogonal to w satisfy this equation.



Now translate the hyperplane away from the origin over a vector a. The equation for the plane now becomes: $(x − a)^T w = 0$, i.e. we find that for the offset $b = a^T w$, which is the projection of the vector $a$ onto the vector $w$.



Without loss of generality we may thus choose a perpendicular to the plane, in which case the length $vertvert a vertvert = vert b vert /vertvert wvertvert$ which represents the shortest, orthogonal distance between the origin and the hyperplane.



Hence the vector $w$ is said to be orthogonal to the separating hyperplane.






share|improve this answer











$endgroup$




















    1












    $begingroup$

    The reason why $w$ is normal to the hyper-plane is because we define it to be that way:



    Suppose that we have a (hyper)plane in 3d space. Let $P_0$ be a point on this plane i.e. $P_0 = x_0, y_0, z_0$. Therefore the vector from the origin $(0,0,0)$ to this point is just $<x_0,y_0,z_0>$. Suppose that we have an arbitrary point $P (x,y,z)$ on the plane. The vector joining $P$ and $P_0$ is then given by:
    $$ vecP - vecP_0 = <x-x_0, y-y_0, z-z_0>$$
    Note that this vector lies in the plane.



    Now let $hatn$ be the normal (orthogonal) vector to the plane. Therefore:
    $$ hatn bullet (vecP-vecP_0) = 0$$
    Therefore:
    $$hatn bullet vecP- hatn bullet vecP_0 = 0$$
    Note that $-hatn bullet vecP_0$ is just a number and is equal to $b$ in our case, whereas $hatn$ is just $w$ and $vecP$ is $x$. So by definition, $w$ is orthogonal to the hyperplane.






    share|improve this answer









    $endgroup$




















      0












      $begingroup$

      Using the algebraic definition of a vector being orthogonal to a hyperplane:



      $forall x_1, x_2$ on the separating hyperplane,



      $$ w^T(x_1-x_2)=(w^Tx_1 + b)-(w^Tx_2 + b)=0-0=0 smallBox.$$






      share|improve this answer









      $endgroup$




















        0












        $begingroup$

        Let the decision boundary be defined as $w^Tx + b = 0$. Consider the points $x_a$ and $x_b$, which lie on the decision boundary. This gives us two equations:



        beginequation
        w^Tx_a + b = 0 \
        w^Tx_b + b = 0
        endequation



        Subtracting these two equations gives us $w^T.(x_a - x_b) = 0$. Note that the vector $x_a - x_b$ lies on the decision boundary, and it is directed from $x_b$ to $x_a$. Since the dot product $w^T.(x_a - x_b)$ is zero, $w^T$ must be orthogonal to $x_a - x_b$, and in turn, to the decision boundary.






        share|improve this answer








        New contributor




        adityagaydhani is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.






        $endgroup$













          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "557"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f6054%2fin-svm-algorithm-why-vector-w-is-orthogonal-to-the-separating-hyperplane%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          4 Answers
          4






          active

          oldest

          votes








          4 Answers
          4






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          9












          $begingroup$

          Geometrically, the vector w is directed orthogonal to the line defined by $w^T x = b$. This can be understood as follows:



          First take $b = 0$. Now it is clear that all vectors, $x$, with vanishing inner product with $w$ satisfy this equation, i.e. all vectors orthogonal to w satisfy this equation.



          Now translate the hyperplane away from the origin over a vector a. The equation for the plane now becomes: $(x − a)^T w = 0$, i.e. we find that for the offset $b = a^T w$, which is the projection of the vector $a$ onto the vector $w$.



          Without loss of generality we may thus choose a perpendicular to the plane, in which case the length $vertvert a vertvert = vert b vert /vertvert wvertvert$ which represents the shortest, orthogonal distance between the origin and the hyperplane.



          Hence the vector $w$ is said to be orthogonal to the separating hyperplane.






          share|improve this answer











          $endgroup$

















            9












            $begingroup$

            Geometrically, the vector w is directed orthogonal to the line defined by $w^T x = b$. This can be understood as follows:



            First take $b = 0$. Now it is clear that all vectors, $x$, with vanishing inner product with $w$ satisfy this equation, i.e. all vectors orthogonal to w satisfy this equation.



            Now translate the hyperplane away from the origin over a vector a. The equation for the plane now becomes: $(x − a)^T w = 0$, i.e. we find that for the offset $b = a^T w$, which is the projection of the vector $a$ onto the vector $w$.



            Without loss of generality we may thus choose a perpendicular to the plane, in which case the length $vertvert a vertvert = vert b vert /vertvert wvertvert$ which represents the shortest, orthogonal distance between the origin and the hyperplane.



            Hence the vector $w$ is said to be orthogonal to the separating hyperplane.






            share|improve this answer











            $endgroup$















              9












              9








              9





              $begingroup$

              Geometrically, the vector w is directed orthogonal to the line defined by $w^T x = b$. This can be understood as follows:



              First take $b = 0$. Now it is clear that all vectors, $x$, with vanishing inner product with $w$ satisfy this equation, i.e. all vectors orthogonal to w satisfy this equation.



              Now translate the hyperplane away from the origin over a vector a. The equation for the plane now becomes: $(x − a)^T w = 0$, i.e. we find that for the offset $b = a^T w$, which is the projection of the vector $a$ onto the vector $w$.



              Without loss of generality we may thus choose a perpendicular to the plane, in which case the length $vertvert a vertvert = vert b vert /vertvert wvertvert$ which represents the shortest, orthogonal distance between the origin and the hyperplane.



              Hence the vector $w$ is said to be orthogonal to the separating hyperplane.






              share|improve this answer











              $endgroup$



              Geometrically, the vector w is directed orthogonal to the line defined by $w^T x = b$. This can be understood as follows:



              First take $b = 0$. Now it is clear that all vectors, $x$, with vanishing inner product with $w$ satisfy this equation, i.e. all vectors orthogonal to w satisfy this equation.



              Now translate the hyperplane away from the origin over a vector a. The equation for the plane now becomes: $(x − a)^T w = 0$, i.e. we find that for the offset $b = a^T w$, which is the projection of the vector $a$ onto the vector $w$.



              Without loss of generality we may thus choose a perpendicular to the plane, in which case the length $vertvert a vertvert = vert b vert /vertvert wvertvert$ which represents the shortest, orthogonal distance between the origin and the hyperplane.



              Hence the vector $w$ is said to be orthogonal to the separating hyperplane.







              share|improve this answer














              share|improve this answer



              share|improve this answer








              edited Jun 18 '18 at 21:32









              Community

              1




              1










              answered Jun 9 '15 at 15:12









              untitledprogrammeruntitledprogrammer

              581216




              581216





















                  1












                  $begingroup$

                  The reason why $w$ is normal to the hyper-plane is because we define it to be that way:



                  Suppose that we have a (hyper)plane in 3d space. Let $P_0$ be a point on this plane i.e. $P_0 = x_0, y_0, z_0$. Therefore the vector from the origin $(0,0,0)$ to this point is just $<x_0,y_0,z_0>$. Suppose that we have an arbitrary point $P (x,y,z)$ on the plane. The vector joining $P$ and $P_0$ is then given by:
                  $$ vecP - vecP_0 = <x-x_0, y-y_0, z-z_0>$$
                  Note that this vector lies in the plane.



                  Now let $hatn$ be the normal (orthogonal) vector to the plane. Therefore:
                  $$ hatn bullet (vecP-vecP_0) = 0$$
                  Therefore:
                  $$hatn bullet vecP- hatn bullet vecP_0 = 0$$
                  Note that $-hatn bullet vecP_0$ is just a number and is equal to $b$ in our case, whereas $hatn$ is just $w$ and $vecP$ is $x$. So by definition, $w$ is orthogonal to the hyperplane.






                  share|improve this answer









                  $endgroup$

















                    1












                    $begingroup$

                    The reason why $w$ is normal to the hyper-plane is because we define it to be that way:



                    Suppose that we have a (hyper)plane in 3d space. Let $P_0$ be a point on this plane i.e. $P_0 = x_0, y_0, z_0$. Therefore the vector from the origin $(0,0,0)$ to this point is just $<x_0,y_0,z_0>$. Suppose that we have an arbitrary point $P (x,y,z)$ on the plane. The vector joining $P$ and $P_0$ is then given by:
                    $$ vecP - vecP_0 = <x-x_0, y-y_0, z-z_0>$$
                    Note that this vector lies in the plane.



                    Now let $hatn$ be the normal (orthogonal) vector to the plane. Therefore:
                    $$ hatn bullet (vecP-vecP_0) = 0$$
                    Therefore:
                    $$hatn bullet vecP- hatn bullet vecP_0 = 0$$
                    Note that $-hatn bullet vecP_0$ is just a number and is equal to $b$ in our case, whereas $hatn$ is just $w$ and $vecP$ is $x$. So by definition, $w$ is orthogonal to the hyperplane.






                    share|improve this answer









                    $endgroup$















                      1












                      1








                      1





                      $begingroup$

                      The reason why $w$ is normal to the hyper-plane is because we define it to be that way:



                      Suppose that we have a (hyper)plane in 3d space. Let $P_0$ be a point on this plane i.e. $P_0 = x_0, y_0, z_0$. Therefore the vector from the origin $(0,0,0)$ to this point is just $<x_0,y_0,z_0>$. Suppose that we have an arbitrary point $P (x,y,z)$ on the plane. The vector joining $P$ and $P_0$ is then given by:
                      $$ vecP - vecP_0 = <x-x_0, y-y_0, z-z_0>$$
                      Note that this vector lies in the plane.



                      Now let $hatn$ be the normal (orthogonal) vector to the plane. Therefore:
                      $$ hatn bullet (vecP-vecP_0) = 0$$
                      Therefore:
                      $$hatn bullet vecP- hatn bullet vecP_0 = 0$$
                      Note that $-hatn bullet vecP_0$ is just a number and is equal to $b$ in our case, whereas $hatn$ is just $w$ and $vecP$ is $x$. So by definition, $w$ is orthogonal to the hyperplane.






                      share|improve this answer









                      $endgroup$



                      The reason why $w$ is normal to the hyper-plane is because we define it to be that way:



                      Suppose that we have a (hyper)plane in 3d space. Let $P_0$ be a point on this plane i.e. $P_0 = x_0, y_0, z_0$. Therefore the vector from the origin $(0,0,0)$ to this point is just $<x_0,y_0,z_0>$. Suppose that we have an arbitrary point $P (x,y,z)$ on the plane. The vector joining $P$ and $P_0$ is then given by:
                      $$ vecP - vecP_0 = <x-x_0, y-y_0, z-z_0>$$
                      Note that this vector lies in the plane.



                      Now let $hatn$ be the normal (orthogonal) vector to the plane. Therefore:
                      $$ hatn bullet (vecP-vecP_0) = 0$$
                      Therefore:
                      $$hatn bullet vecP- hatn bullet vecP_0 = 0$$
                      Note that $-hatn bullet vecP_0$ is just a number and is equal to $b$ in our case, whereas $hatn$ is just $w$ and $vecP$ is $x$. So by definition, $w$ is orthogonal to the hyperplane.







                      share|improve this answer












                      share|improve this answer



                      share|improve this answer










                      answered Sep 4 '18 at 14:09









                      Shehryar MalikShehryar Malik

                      112




                      112





















                          0












                          $begingroup$

                          Using the algebraic definition of a vector being orthogonal to a hyperplane:



                          $forall x_1, x_2$ on the separating hyperplane,



                          $$ w^T(x_1-x_2)=(w^Tx_1 + b)-(w^Tx_2 + b)=0-0=0 smallBox.$$






                          share|improve this answer









                          $endgroup$

















                            0












                            $begingroup$

                            Using the algebraic definition of a vector being orthogonal to a hyperplane:



                            $forall x_1, x_2$ on the separating hyperplane,



                            $$ w^T(x_1-x_2)=(w^Tx_1 + b)-(w^Tx_2 + b)=0-0=0 smallBox.$$






                            share|improve this answer









                            $endgroup$















                              0












                              0








                              0





                              $begingroup$

                              Using the algebraic definition of a vector being orthogonal to a hyperplane:



                              $forall x_1, x_2$ on the separating hyperplane,



                              $$ w^T(x_1-x_2)=(w^Tx_1 + b)-(w^Tx_2 + b)=0-0=0 smallBox.$$






                              share|improve this answer









                              $endgroup$



                              Using the algebraic definition of a vector being orthogonal to a hyperplane:



                              $forall x_1, x_2$ on the separating hyperplane,



                              $$ w^T(x_1-x_2)=(w^Tx_1 + b)-(w^Tx_2 + b)=0-0=0 smallBox.$$







                              share|improve this answer












                              share|improve this answer



                              share|improve this answer










                              answered Feb 17 '18 at 0:11









                              IndominusIndominus

                              1105




                              1105





















                                  0












                                  $begingroup$

                                  Let the decision boundary be defined as $w^Tx + b = 0$. Consider the points $x_a$ and $x_b$, which lie on the decision boundary. This gives us two equations:



                                  beginequation
                                  w^Tx_a + b = 0 \
                                  w^Tx_b + b = 0
                                  endequation



                                  Subtracting these two equations gives us $w^T.(x_a - x_b) = 0$. Note that the vector $x_a - x_b$ lies on the decision boundary, and it is directed from $x_b$ to $x_a$. Since the dot product $w^T.(x_a - x_b)$ is zero, $w^T$ must be orthogonal to $x_a - x_b$, and in turn, to the decision boundary.






                                  share|improve this answer








                                  New contributor




                                  adityagaydhani is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                  Check out our Code of Conduct.






                                  $endgroup$

















                                    0












                                    $begingroup$

                                    Let the decision boundary be defined as $w^Tx + b = 0$. Consider the points $x_a$ and $x_b$, which lie on the decision boundary. This gives us two equations:



                                    beginequation
                                    w^Tx_a + b = 0 \
                                    w^Tx_b + b = 0
                                    endequation



                                    Subtracting these two equations gives us $w^T.(x_a - x_b) = 0$. Note that the vector $x_a - x_b$ lies on the decision boundary, and it is directed from $x_b$ to $x_a$. Since the dot product $w^T.(x_a - x_b)$ is zero, $w^T$ must be orthogonal to $x_a - x_b$, and in turn, to the decision boundary.






                                    share|improve this answer








                                    New contributor




                                    adityagaydhani is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                    Check out our Code of Conduct.






                                    $endgroup$















                                      0












                                      0








                                      0





                                      $begingroup$

                                      Let the decision boundary be defined as $w^Tx + b = 0$. Consider the points $x_a$ and $x_b$, which lie on the decision boundary. This gives us two equations:



                                      beginequation
                                      w^Tx_a + b = 0 \
                                      w^Tx_b + b = 0
                                      endequation



                                      Subtracting these two equations gives us $w^T.(x_a - x_b) = 0$. Note that the vector $x_a - x_b$ lies on the decision boundary, and it is directed from $x_b$ to $x_a$. Since the dot product $w^T.(x_a - x_b)$ is zero, $w^T$ must be orthogonal to $x_a - x_b$, and in turn, to the decision boundary.






                                      share|improve this answer








                                      New contributor




                                      adityagaydhani is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                      Check out our Code of Conduct.






                                      $endgroup$



                                      Let the decision boundary be defined as $w^Tx + b = 0$. Consider the points $x_a$ and $x_b$, which lie on the decision boundary. This gives us two equations:



                                      beginequation
                                      w^Tx_a + b = 0 \
                                      w^Tx_b + b = 0
                                      endequation



                                      Subtracting these two equations gives us $w^T.(x_a - x_b) = 0$. Note that the vector $x_a - x_b$ lies on the decision boundary, and it is directed from $x_b$ to $x_a$. Since the dot product $w^T.(x_a - x_b)$ is zero, $w^T$ must be orthogonal to $x_a - x_b$, and in turn, to the decision boundary.







                                      share|improve this answer








                                      New contributor




                                      adityagaydhani is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                      Check out our Code of Conduct.









                                      share|improve this answer



                                      share|improve this answer






                                      New contributor




                                      adityagaydhani is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                      Check out our Code of Conduct.









                                      answered 48 mins ago









                                      adityagaydhaniadityagaydhani

                                      12




                                      12




                                      New contributor




                                      adityagaydhani is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                      Check out our Code of Conduct.





                                      New contributor





                                      adityagaydhani is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                      Check out our Code of Conduct.






                                      adityagaydhani is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                      Check out our Code of Conduct.



























                                          draft saved

                                          draft discarded
















































                                          Thanks for contributing an answer to Data Science Stack Exchange!


                                          • Please be sure to answer the question. Provide details and share your research!

                                          But avoid


                                          • Asking for help, clarification, or responding to other answers.

                                          • Making statements based on opinion; back them up with references or personal experience.

                                          Use MathJax to format equations. MathJax reference.


                                          To learn more, see our tips on writing great answers.




                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function ()
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f6054%2fin-svm-algorithm-why-vector-w-is-orthogonal-to-the-separating-hyperplane%23new-answer', 'question_page');

                                          );

                                          Post as a guest















                                          Required, but never shown





















































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown

































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown







                                          Popular posts from this blog

                                          Францішак Багушэвіч Змест Сям'я | Біяграфія | Творчасць | Мова Багушэвіча | Ацэнкі дзейнасці | Цікавыя факты | Спадчына | Выбраная бібліяграфія | Ушанаванне памяці | У філатэліі | Зноскі | Літаратура | Спасылкі | НавігацыяЛяхоўскі У. Рупіўся дзеля Бога і людзей: Жыццёвы шлях Лявона Вітан-Дубейкаўскага // Вольскі і Памідораў з песняй пра немца Адвакат, паэт, народны заступнік Ашмянскі веснікВ Минске появится площадь Богушевича и улица Сырокомли, Белорусская деловая газета, 19 июля 2001 г.Айцец беларускай нацыянальнай ідэі паўстаў у бронзе Сяргей Аляксандравіч Адашкевіч (1918, Мінск). 80-я гады. Бюст «Францішак Багушэвіч».Яўген Мікалаевіч Ціхановіч. «Партрэт Францішка Багушэвіча»Мікола Мікалаевіч Купава. «Партрэт зачынальніка новай беларускай літаратуры Францішка Багушэвіча»Уладзімір Іванавіч Мелехаў. На помніку «Змагарам за родную мову» Барэльеф «Францішак Багушэвіч»Памяць пра Багушэвіча на Віленшчыне Страчаная сталіца. Беларускія шыльды на вуліцах Вільні«Krynica». Ideologia i przywódcy białoruskiego katolicyzmuФранцішак БагушэвічТворы на knihi.comТворы Францішка Багушэвіча на bellib.byСодаль Уладзімір. Францішак Багушэвіч на Лідчыне;Луцкевіч Антон. Жыцьцё і творчасьць Фр. Багушэвіча ў успамінах ягоных сучасьнікаў // Запісы Беларускага Навуковага таварыства. Вільня, 1938. Сшытак 1. С. 16-34.Большая российская1188761710000 0000 5537 633Xn9209310021619551927869394п

                                          Беларусь Змест Назва Гісторыя Геаграфія Сімволіка Дзяржаўны лад Палітычныя партыі Міжнароднае становішча і знешняя палітыка Адміністрацыйны падзел Насельніцтва Эканоміка Культура і грамадства Сацыяльная сфера Узброеныя сілы Заўвагі Літаратура Спасылкі НавігацыяHGЯOiТоп-2011 г. (па версіі ej.by)Топ-2013 г. (па версіі ej.by)Топ-2016 г. (па версіі ej.by)Топ-2017 г. (па версіі ej.by)Нацыянальны статыстычны камітэт Рэспублікі БеларусьШчыльнасць насельніцтва па краінахhttp://naviny.by/rubrics/society/2011/09/16/ic_articles_116_175144/А. Калечыц, У. Ксяндзоў. Спробы засялення краю неандэртальскім чалавекам.І ў Менску былі мамантыА. Калечыц, У. Ксяндзоў. Старажытны каменны век (палеаліт). Першапачатковае засяленне тэрыторыіГ. Штыхаў. Балты і славяне ў VI—VIII стст.М. Клімаў. Полацкае княства ў IX—XI стст.Г. Штыхаў, В. Ляўко. Палітычная гісторыя Полацкай зямліГ. Штыхаў. Дзяржаўны лад у землях-княствахГ. Штыхаў. Дзяржаўны лад у землях-княствахБеларускія землі ў складзе Вялікага Княства ЛітоўскагаЛюблінская унія 1569 г."The Early Stages of Independence"Zapomniane prawdy25 гадоў таму было аб'яўлена, што Язэп Пілсудскі — беларус (фота)Наша вадаДакументы ЧАЭС: Забруджванне тэрыторыі Беларусі « ЧАЭС Зона адчужэнняСведения о политических партиях, зарегистрированных в Республике Беларусь // Министерство юстиции Республики БеларусьСтатыстычны бюлетэнь „Полаўзроставая структура насельніцтва Рэспублікі Беларусь на 1 студзеня 2012 года і сярэднегадовая колькасць насельніцтва за 2011 год“Индекс человеческого развития Беларуси — не было бы нижеБеларусь занимает первое место в СНГ по индексу развития с учетом гендерного факцёраНацыянальны статыстычны камітэт Рэспублікі БеларусьКанстытуцыя РБ. Артыкул 17Трансфармацыйныя задачы БеларусіВыйсце з крызісу — далейшае рэфармаванне Беларускі рубель — сусветны лідар па дэвальвацыяхПра змену коштаў у кастрычніку 2011 г.Бядней за беларусаў у СНД толькі таджыкіСярэдні заробак у верасні дасягнуў 2,26 мільёна рублёўЭканомікаГаласуем за ТОП-100 беларускай прозыСучасныя беларускія мастакіАрхитектура Беларуси BELARUS.BYА. Каханоўскі. Культура Беларусі ўсярэдзіне XVII—XVIII ст.Анталогія беларускай народнай песні, гуказапісы спеваўБеларускія Музычныя IнструментыБеларускі рок, які мы страцілі. Топ-10 гуртоў«Мясцовы час» — нязгаслая легенда беларускай рок-музыкіСЯРГЕЙ БУДКІН. МЫ НЯ ЗНАЕМ СВАЁЙ МУЗЫКІМ. А. Каладзінскі. НАРОДНЫ ТЭАТРМагнацкія культурныя цэнтрыПублічная дыскусія «Беларуская новая пьеса: без беларускай мовы ці беларуская?»Беларускія драматургі па-ранейшаму лепш ставяцца за мяжой, чым на радзіме«Працэс незалежнага кіно пайшоў, і дзяржаву турбуе яго непадкантрольнасць»Беларускія філосафы ў пошуках прасторыВсе идём в библиотекуАрхіваванаАб Нацыянальнай праграме даследавання і выкарыстання касмічнай прасторы ў мірных мэтах на 2008—2012 гадыУ космас — разам.У суседнім з Барысаўскім раёне пабудуюць Камандна-вымяральны пунктСвяты і абрады беларусаў«Мірныя бульбашы з малой краіны» — 5 непраўдзівых стэрэатыпаў пра БеларусьМ. Раманюк. Беларускае народнае адзеннеУ Беларусі скарачаецца колькасць злачынстваўЛукашэнка незадаволены мінскімі ўладамі Крадзяжы складаюць у Мінску каля 70% злачынстваў Узровень злачыннасці ў Мінскай вобласці — адзін з самых высокіх у краіне Генпракуратура аналізуе стан са злачыннасцю ў Беларусі па каэфіцыенце злачыннасці У Беларусі стабілізавалася крымінагеннае становішча, лічыць генпракурорЗамежнікі сталі здзяйсняць у Беларусі больш злачынстваўМУС Беларусі турбуе рост рэцыдыўнай злачыннасціЯ з ЖЭСа. Дазволіце вас абкрасці! Рэйтынг усіх службаў і падраздзяленняў ГУУС Мінгарвыканкама вырасАб КДБ РБГісторыя Аператыўна-аналітычнага цэнтра РБГісторыя ДКФРТаможняagentura.ruБеларусьBelarus.by — Афіцыйны сайт Рэспублікі БеларусьСайт урада БеларусіRadzima.org — Збор архітэктурных помнікаў, гісторыя Беларусі«Глобус Беларуси»Гербы и флаги БеларусиАсаблівасці каменнага веку на БеларусіА. Калечыц, У. Ксяндзоў. Старажытны каменны век (палеаліт). Першапачатковае засяленне тэрыторыіУ. Ксяндзоў. Сярэдні каменны век (мезаліт). Засяленне краю плямёнамі паляўнічых, рыбакоў і збіральнікаўА. Калечыц, М. Чарняўскі. Плямёны на тэрыторыі Беларусі ў новым каменным веку (неаліце)А. Калечыц, У. Ксяндзоў, М. Чарняўскі. Гаспадарчыя заняткі ў каменным векуЭ. Зайкоўскі. Духоўная культура ў каменным векуАсаблівасці бронзавага веку на БеларусіФарміраванне супольнасцей ранняга перыяду бронзавага векуФотографии БеларусиРоля беларускіх зямель ва ўтварэнні і ўмацаванні ВКЛВ. Фадзеева. З гісторыі развіцця беларускай народнай вышыўкіDMOZGran catalanaБольшая российскаяBritannica (анлайн)Швейцарскі гістарычны15325917611952699xDA123282154079143-90000 0001 2171 2080n9112870100577502ge128882171858027501086026362074122714179пппппп

                                          ValueError: Expected n_neighbors <= n_samples, but n_samples = 1, n_neighbors = 6 (SMOTE) The 2019 Stack Overflow Developer Survey Results Are InCan SMOTE be applied over sequence of words (sentences)?ValueError when doing validation with random forestsSMOTE and multi class oversamplingLogic behind SMOTE-NC?ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)SmoteBoost: Should SMOTE be ran individually for each iteration/tree in the boosting?solving multi-class imbalance classification using smote and OSSUsing SMOTE for Synthetic Data generation to improve performance on unbalanced dataproblem of entry format for a simple model in KerasSVM SMOTE fit_resample() function runs forever with no result