Dealing with multiple distinct-value categorical variables Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) 2019 Moderator Election Q&A - Questionnaire 2019 Community Moderator Election ResultsChoosing the right data mining method to find the effect of each parameter over the targetHow to visualise multidimensional categorical data with additional time dimensionHow can I dynamically distinguish between categorical data and numerical data?Imputation of missing values and dealing with categorical valuesOutlier detection on categorical network log dataPreparing, Scaling and Selecting from a combination of numerical and categorical featureshow does XGBoost's exact greedy split finding algorithm determine candidate split values for different feature types?ML Models: How to handle categorical feature with over 1000 unique valuesProblem with important feature having a lot of missing valueTraining NLP with multiple text input features

Are my PIs rude or am I just being too sensitive?

Complexity of many constant time steps with occasional logarithmic steps

Why is there no army of Iron-Mans in the MCU?

Fishing simulator

How should I respond to a player wanting to catch a sword between their hands?

What items from the Roman-age tech-level could be used to deter all creatures from entering a small area?

How do I automatically answer y in bash script?

How does modal jazz use chord progressions?

When is phishing education going too far?

Using "nakedly" instead of "with nothing on"

Antler Helmet: Can it work?

What do you call a plan that's an alternative plan in case your initial plan fails?

Can the prologue be the backstory of your main character?

Strange behaviour of Check

Slither Like a Snake

How is simplicity better than precision and clarity in prose?

How can players take actions together that are impossible otherwise?

What's the difference between (size_t)-1 and ~0?

What to do with post with dry rot?

How are presidential pardons supposed to be used?

Can a monk deflect thrown melee weapons?

How do I keep my slimes from escaping their pens?

Was credit for the black hole image misattributed?

Working around an AWS network ACL rule limit



Dealing with multiple distinct-value categorical variables



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)
2019 Moderator Election Q&A - Questionnaire
2019 Community Moderator Election ResultsChoosing the right data mining method to find the effect of each parameter over the targetHow to visualise multidimensional categorical data with additional time dimensionHow can I dynamically distinguish between categorical data and numerical data?Imputation of missing values and dealing with categorical valuesOutlier detection on categorical network log dataPreparing, Scaling and Selecting from a combination of numerical and categorical featureshow does XGBoost's exact greedy split finding algorithm determine candidate split values for different feature types?ML Models: How to handle categorical feature with over 1000 unique valuesProblem with important feature having a lot of missing valueTraining NLP with multiple text input features










1












$begingroup$


So, I've got a dataset with almost all of its columns are categorical variables. Problem is that most of the categorical variables have so many distinct values.



For instance, one column have more than one million unique value, it's an IP address column in case anyone is interested. Someone suggested to split it into multiple other columns using domain knowledge, so split it to Network Class type, Host type and so on. However wouldn't that make my dataset lose some information? What if I wanted to deal with IP addresses as is?



Nevertheless, the domain knowledge solution might work on the IP column, however, I've got other columns that have more than 100K distinct values, each value is a constant-length random string.



I did work with Embedding Layers before, I was dealing with max thousands of features, never worked with 10K++ features, so I'm not sure if that would work with millions.



Much Regards










share|improve this question









$endgroup$




bumped to the homepage by Community 40 mins ago


This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.














  • $begingroup$
    Can you explain more about the problem you are trying to solve?
    $endgroup$
    – Alireza Zolanvari
    Mar 14 at 11:07










  • $begingroup$
    Mainly, I'm trying to classify data according to some inputs, the inputs mainly constitute of categorical data, each categorical variable constitutes of so many distinct values. One of the independent variables is the IP address, which is essential for my classification problem. What I'm trying to do is to binary classify based on the (mostly categorical) inputs. Does that help? Let me know if you need more details.
    $endgroup$
    – Abdullah Mohamed
    Mar 14 at 11:51










  • $begingroup$
    Embedding, Domain-based-features are most promising options here. For IP, it would be subnet ID, geo-location etc. Embedding works for large number of value (Such as word embedding for 10 Million+ words)
    $endgroup$
    – Shamit Verma
    Mar 14 at 11:59










  • $begingroup$
    What kind of information you are trying to extract from the IP?
    $endgroup$
    – Alireza Zolanvari
    Mar 14 at 11:59










  • $begingroup$
    @ShamitVerma My dataset already contains countries, however, the country variable might be different than the IP country (usage of VPN's/proxies for instance). I didn't know that Embeddings work for data having millions of features actually, in that case that would be a reasonable solution for my question.
    $endgroup$
    – Abdullah Mohamed
    Mar 14 at 12:04















1












$begingroup$


So, I've got a dataset with almost all of its columns are categorical variables. Problem is that most of the categorical variables have so many distinct values.



For instance, one column have more than one million unique value, it's an IP address column in case anyone is interested. Someone suggested to split it into multiple other columns using domain knowledge, so split it to Network Class type, Host type and so on. However wouldn't that make my dataset lose some information? What if I wanted to deal with IP addresses as is?



Nevertheless, the domain knowledge solution might work on the IP column, however, I've got other columns that have more than 100K distinct values, each value is a constant-length random string.



I did work with Embedding Layers before, I was dealing with max thousands of features, never worked with 10K++ features, so I'm not sure if that would work with millions.



Much Regards










share|improve this question









$endgroup$




bumped to the homepage by Community 40 mins ago


This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.














  • $begingroup$
    Can you explain more about the problem you are trying to solve?
    $endgroup$
    – Alireza Zolanvari
    Mar 14 at 11:07










  • $begingroup$
    Mainly, I'm trying to classify data according to some inputs, the inputs mainly constitute of categorical data, each categorical variable constitutes of so many distinct values. One of the independent variables is the IP address, which is essential for my classification problem. What I'm trying to do is to binary classify based on the (mostly categorical) inputs. Does that help? Let me know if you need more details.
    $endgroup$
    – Abdullah Mohamed
    Mar 14 at 11:51










  • $begingroup$
    Embedding, Domain-based-features are most promising options here. For IP, it would be subnet ID, geo-location etc. Embedding works for large number of value (Such as word embedding for 10 Million+ words)
    $endgroup$
    – Shamit Verma
    Mar 14 at 11:59










  • $begingroup$
    What kind of information you are trying to extract from the IP?
    $endgroup$
    – Alireza Zolanvari
    Mar 14 at 11:59










  • $begingroup$
    @ShamitVerma My dataset already contains countries, however, the country variable might be different than the IP country (usage of VPN's/proxies for instance). I didn't know that Embeddings work for data having millions of features actually, in that case that would be a reasonable solution for my question.
    $endgroup$
    – Abdullah Mohamed
    Mar 14 at 12:04













1












1








1





$begingroup$


So, I've got a dataset with almost all of its columns are categorical variables. Problem is that most of the categorical variables have so many distinct values.



For instance, one column have more than one million unique value, it's an IP address column in case anyone is interested. Someone suggested to split it into multiple other columns using domain knowledge, so split it to Network Class type, Host type and so on. However wouldn't that make my dataset lose some information? What if I wanted to deal with IP addresses as is?



Nevertheless, the domain knowledge solution might work on the IP column, however, I've got other columns that have more than 100K distinct values, each value is a constant-length random string.



I did work with Embedding Layers before, I was dealing with max thousands of features, never worked with 10K++ features, so I'm not sure if that would work with millions.



Much Regards










share|improve this question









$endgroup$




So, I've got a dataset with almost all of its columns are categorical variables. Problem is that most of the categorical variables have so many distinct values.



For instance, one column have more than one million unique value, it's an IP address column in case anyone is interested. Someone suggested to split it into multiple other columns using domain knowledge, so split it to Network Class type, Host type and so on. However wouldn't that make my dataset lose some information? What if I wanted to deal with IP addresses as is?



Nevertheless, the domain knowledge solution might work on the IP column, however, I've got other columns that have more than 100K distinct values, each value is a constant-length random string.



I did work with Embedding Layers before, I was dealing with max thousands of features, never worked with 10K++ features, so I'm not sure if that would work with millions.



Much Regards







machine-learning neural-network categorical-data word-embeddings






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked Mar 14 at 11:04









Abdullah MohamedAbdullah Mohamed

62




62





bumped to the homepage by Community 40 mins ago


This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.







bumped to the homepage by Community 40 mins ago


This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.













  • $begingroup$
    Can you explain more about the problem you are trying to solve?
    $endgroup$
    – Alireza Zolanvari
    Mar 14 at 11:07










  • $begingroup$
    Mainly, I'm trying to classify data according to some inputs, the inputs mainly constitute of categorical data, each categorical variable constitutes of so many distinct values. One of the independent variables is the IP address, which is essential for my classification problem. What I'm trying to do is to binary classify based on the (mostly categorical) inputs. Does that help? Let me know if you need more details.
    $endgroup$
    – Abdullah Mohamed
    Mar 14 at 11:51










  • $begingroup$
    Embedding, Domain-based-features are most promising options here. For IP, it would be subnet ID, geo-location etc. Embedding works for large number of value (Such as word embedding for 10 Million+ words)
    $endgroup$
    – Shamit Verma
    Mar 14 at 11:59










  • $begingroup$
    What kind of information you are trying to extract from the IP?
    $endgroup$
    – Alireza Zolanvari
    Mar 14 at 11:59










  • $begingroup$
    @ShamitVerma My dataset already contains countries, however, the country variable might be different than the IP country (usage of VPN's/proxies for instance). I didn't know that Embeddings work for data having millions of features actually, in that case that would be a reasonable solution for my question.
    $endgroup$
    – Abdullah Mohamed
    Mar 14 at 12:04
















  • $begingroup$
    Can you explain more about the problem you are trying to solve?
    $endgroup$
    – Alireza Zolanvari
    Mar 14 at 11:07










  • $begingroup$
    Mainly, I'm trying to classify data according to some inputs, the inputs mainly constitute of categorical data, each categorical variable constitutes of so many distinct values. One of the independent variables is the IP address, which is essential for my classification problem. What I'm trying to do is to binary classify based on the (mostly categorical) inputs. Does that help? Let me know if you need more details.
    $endgroup$
    – Abdullah Mohamed
    Mar 14 at 11:51










  • $begingroup$
    Embedding, Domain-based-features are most promising options here. For IP, it would be subnet ID, geo-location etc. Embedding works for large number of value (Such as word embedding for 10 Million+ words)
    $endgroup$
    – Shamit Verma
    Mar 14 at 11:59










  • $begingroup$
    What kind of information you are trying to extract from the IP?
    $endgroup$
    – Alireza Zolanvari
    Mar 14 at 11:59










  • $begingroup$
    @ShamitVerma My dataset already contains countries, however, the country variable might be different than the IP country (usage of VPN's/proxies for instance). I didn't know that Embeddings work for data having millions of features actually, in that case that would be a reasonable solution for my question.
    $endgroup$
    – Abdullah Mohamed
    Mar 14 at 12:04















$begingroup$
Can you explain more about the problem you are trying to solve?
$endgroup$
– Alireza Zolanvari
Mar 14 at 11:07




$begingroup$
Can you explain more about the problem you are trying to solve?
$endgroup$
– Alireza Zolanvari
Mar 14 at 11:07












$begingroup$
Mainly, I'm trying to classify data according to some inputs, the inputs mainly constitute of categorical data, each categorical variable constitutes of so many distinct values. One of the independent variables is the IP address, which is essential for my classification problem. What I'm trying to do is to binary classify based on the (mostly categorical) inputs. Does that help? Let me know if you need more details.
$endgroup$
– Abdullah Mohamed
Mar 14 at 11:51




$begingroup$
Mainly, I'm trying to classify data according to some inputs, the inputs mainly constitute of categorical data, each categorical variable constitutes of so many distinct values. One of the independent variables is the IP address, which is essential for my classification problem. What I'm trying to do is to binary classify based on the (mostly categorical) inputs. Does that help? Let me know if you need more details.
$endgroup$
– Abdullah Mohamed
Mar 14 at 11:51












$begingroup$
Embedding, Domain-based-features are most promising options here. For IP, it would be subnet ID, geo-location etc. Embedding works for large number of value (Such as word embedding for 10 Million+ words)
$endgroup$
– Shamit Verma
Mar 14 at 11:59




$begingroup$
Embedding, Domain-based-features are most promising options here. For IP, it would be subnet ID, geo-location etc. Embedding works for large number of value (Such as word embedding for 10 Million+ words)
$endgroup$
– Shamit Verma
Mar 14 at 11:59












$begingroup$
What kind of information you are trying to extract from the IP?
$endgroup$
– Alireza Zolanvari
Mar 14 at 11:59




$begingroup$
What kind of information you are trying to extract from the IP?
$endgroup$
– Alireza Zolanvari
Mar 14 at 11:59












$begingroup$
@ShamitVerma My dataset already contains countries, however, the country variable might be different than the IP country (usage of VPN's/proxies for instance). I didn't know that Embeddings work for data having millions of features actually, in that case that would be a reasonable solution for my question.
$endgroup$
– Abdullah Mohamed
Mar 14 at 12:04




$begingroup$
@ShamitVerma My dataset already contains countries, however, the country variable might be different than the IP country (usage of VPN's/proxies for instance). I didn't know that Embeddings work for data having millions of features actually, in that case that would be a reasonable solution for my question.
$endgroup$
– Abdullah Mohamed
Mar 14 at 12:04










1 Answer
1






active

oldest

votes


















0












$begingroup$

Have you heard of CatBoostClassifier?



https://tech.yandex.com/catboost/doc/dg/concepts/python-reference_catboostclassifier-docpage/



It is type of Boosting classifier developed to deal specifically with categorical features. It has achieved state of the art results and the package developed by the authors have excellent support and even GPU portability. Take a look, this can be your solution.






share|improve this answer









$endgroup$













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "557"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f47295%2fdealing-with-multiple-distinct-value-categorical-variables%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    Have you heard of CatBoostClassifier?



    https://tech.yandex.com/catboost/doc/dg/concepts/python-reference_catboostclassifier-docpage/



    It is type of Boosting classifier developed to deal specifically with categorical features. It has achieved state of the art results and the package developed by the authors have excellent support and even GPU portability. Take a look, this can be your solution.






    share|improve this answer









    $endgroup$

















      0












      $begingroup$

      Have you heard of CatBoostClassifier?



      https://tech.yandex.com/catboost/doc/dg/concepts/python-reference_catboostclassifier-docpage/



      It is type of Boosting classifier developed to deal specifically with categorical features. It has achieved state of the art results and the package developed by the authors have excellent support and even GPU portability. Take a look, this can be your solution.






      share|improve this answer









      $endgroup$















        0












        0








        0





        $begingroup$

        Have you heard of CatBoostClassifier?



        https://tech.yandex.com/catboost/doc/dg/concepts/python-reference_catboostclassifier-docpage/



        It is type of Boosting classifier developed to deal specifically with categorical features. It has achieved state of the art results and the package developed by the authors have excellent support and even GPU portability. Take a look, this can be your solution.






        share|improve this answer









        $endgroup$



        Have you heard of CatBoostClassifier?



        https://tech.yandex.com/catboost/doc/dg/concepts/python-reference_catboostclassifier-docpage/



        It is type of Boosting classifier developed to deal specifically with categorical features. It has achieved state of the art results and the package developed by the authors have excellent support and even GPU portability. Take a look, this can be your solution.







        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered Mar 14 at 12:51









        Victor OliveiraVictor Oliveira

        3657




        3657



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Data Science Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f47295%2fdealing-with-multiple-distinct-value-categorical-variables%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Францішак Багушэвіч Змест Сям'я | Біяграфія | Творчасць | Мова Багушэвіча | Ацэнкі дзейнасці | Цікавыя факты | Спадчына | Выбраная бібліяграфія | Ушанаванне памяці | У філатэліі | Зноскі | Літаратура | Спасылкі | НавігацыяЛяхоўскі У. Рупіўся дзеля Бога і людзей: Жыццёвы шлях Лявона Вітан-Дубейкаўскага // Вольскі і Памідораў з песняй пра немца Адвакат, паэт, народны заступнік Ашмянскі веснікВ Минске появится площадь Богушевича и улица Сырокомли, Белорусская деловая газета, 19 июля 2001 г.Айцец беларускай нацыянальнай ідэі паўстаў у бронзе Сяргей Аляксандравіч Адашкевіч (1918, Мінск). 80-я гады. Бюст «Францішак Багушэвіч».Яўген Мікалаевіч Ціхановіч. «Партрэт Францішка Багушэвіча»Мікола Мікалаевіч Купава. «Партрэт зачынальніка новай беларускай літаратуры Францішка Багушэвіча»Уладзімір Іванавіч Мелехаў. На помніку «Змагарам за родную мову» Барэльеф «Францішак Багушэвіч»Памяць пра Багушэвіча на Віленшчыне Страчаная сталіца. Беларускія шыльды на вуліцах Вільні«Krynica». Ideologia i przywódcy białoruskiego katolicyzmuФранцішак БагушэвічТворы на knihi.comТворы Францішка Багушэвіча на bellib.byСодаль Уладзімір. Францішак Багушэвіч на Лідчыне;Луцкевіч Антон. Жыцьцё і творчасьць Фр. Багушэвіча ў успамінах ягоных сучасьнікаў // Запісы Беларускага Навуковага таварыства. Вільня, 1938. Сшытак 1. С. 16-34.Большая российская1188761710000 0000 5537 633Xn9209310021619551927869394п

            Беларусь Змест Назва Гісторыя Геаграфія Сімволіка Дзяржаўны лад Палітычныя партыі Міжнароднае становішча і знешняя палітыка Адміністрацыйны падзел Насельніцтва Эканоміка Культура і грамадства Сацыяльная сфера Узброеныя сілы Заўвагі Літаратура Спасылкі НавігацыяHGЯOiТоп-2011 г. (па версіі ej.by)Топ-2013 г. (па версіі ej.by)Топ-2016 г. (па версіі ej.by)Топ-2017 г. (па версіі ej.by)Нацыянальны статыстычны камітэт Рэспублікі БеларусьШчыльнасць насельніцтва па краінахhttp://naviny.by/rubrics/society/2011/09/16/ic_articles_116_175144/А. Калечыц, У. Ксяндзоў. Спробы засялення краю неандэртальскім чалавекам.І ў Менску былі мамантыА. Калечыц, У. Ксяндзоў. Старажытны каменны век (палеаліт). Першапачатковае засяленне тэрыторыіГ. Штыхаў. Балты і славяне ў VI—VIII стст.М. Клімаў. Полацкае княства ў IX—XI стст.Г. Штыхаў, В. Ляўко. Палітычная гісторыя Полацкай зямліГ. Штыхаў. Дзяржаўны лад у землях-княствахГ. Штыхаў. Дзяржаўны лад у землях-княствахБеларускія землі ў складзе Вялікага Княства ЛітоўскагаЛюблінская унія 1569 г."The Early Stages of Independence"Zapomniane prawdy25 гадоў таму было аб'яўлена, што Язэп Пілсудскі — беларус (фота)Наша вадаДакументы ЧАЭС: Забруджванне тэрыторыі Беларусі « ЧАЭС Зона адчужэнняСведения о политических партиях, зарегистрированных в Республике Беларусь // Министерство юстиции Республики БеларусьСтатыстычны бюлетэнь „Полаўзроставая структура насельніцтва Рэспублікі Беларусь на 1 студзеня 2012 года і сярэднегадовая колькасць насельніцтва за 2011 год“Индекс человеческого развития Беларуси — не было бы нижеБеларусь занимает первое место в СНГ по индексу развития с учетом гендерного факцёраНацыянальны статыстычны камітэт Рэспублікі БеларусьКанстытуцыя РБ. Артыкул 17Трансфармацыйныя задачы БеларусіВыйсце з крызісу — далейшае рэфармаванне Беларускі рубель — сусветны лідар па дэвальвацыяхПра змену коштаў у кастрычніку 2011 г.Бядней за беларусаў у СНД толькі таджыкіСярэдні заробак у верасні дасягнуў 2,26 мільёна рублёўЭканомікаГаласуем за ТОП-100 беларускай прозыСучасныя беларускія мастакіАрхитектура Беларуси BELARUS.BYА. Каханоўскі. Культура Беларусі ўсярэдзіне XVII—XVIII ст.Анталогія беларускай народнай песні, гуказапісы спеваўБеларускія Музычныя IнструментыБеларускі рок, які мы страцілі. Топ-10 гуртоў«Мясцовы час» — нязгаслая легенда беларускай рок-музыкіСЯРГЕЙ БУДКІН. МЫ НЯ ЗНАЕМ СВАЁЙ МУЗЫКІМ. А. Каладзінскі. НАРОДНЫ ТЭАТРМагнацкія культурныя цэнтрыПублічная дыскусія «Беларуская новая пьеса: без беларускай мовы ці беларуская?»Беларускія драматургі па-ранейшаму лепш ставяцца за мяжой, чым на радзіме«Працэс незалежнага кіно пайшоў, і дзяржаву турбуе яго непадкантрольнасць»Беларускія філосафы ў пошуках прасторыВсе идём в библиотекуАрхіваванаАб Нацыянальнай праграме даследавання і выкарыстання касмічнай прасторы ў мірных мэтах на 2008—2012 гадыУ космас — разам.У суседнім з Барысаўскім раёне пабудуюць Камандна-вымяральны пунктСвяты і абрады беларусаў«Мірныя бульбашы з малой краіны» — 5 непраўдзівых стэрэатыпаў пра БеларусьМ. Раманюк. Беларускае народнае адзеннеУ Беларусі скарачаецца колькасць злачынстваўЛукашэнка незадаволены мінскімі ўладамі Крадзяжы складаюць у Мінску каля 70% злачынстваў Узровень злачыннасці ў Мінскай вобласці — адзін з самых высокіх у краіне Генпракуратура аналізуе стан са злачыннасцю ў Беларусі па каэфіцыенце злачыннасці У Беларусі стабілізавалася крымінагеннае становішча, лічыць генпракурорЗамежнікі сталі здзяйсняць у Беларусі больш злачынстваўМУС Беларусі турбуе рост рэцыдыўнай злачыннасціЯ з ЖЭСа. Дазволіце вас абкрасці! Рэйтынг усіх службаў і падраздзяленняў ГУУС Мінгарвыканкама вырасАб КДБ РБГісторыя Аператыўна-аналітычнага цэнтра РБГісторыя ДКФРТаможняagentura.ruБеларусьBelarus.by — Афіцыйны сайт Рэспублікі БеларусьСайт урада БеларусіRadzima.org — Збор архітэктурных помнікаў, гісторыя Беларусі«Глобус Беларуси»Гербы и флаги БеларусиАсаблівасці каменнага веку на БеларусіА. Калечыц, У. Ксяндзоў. Старажытны каменны век (палеаліт). Першапачатковае засяленне тэрыторыіУ. Ксяндзоў. Сярэдні каменны век (мезаліт). Засяленне краю плямёнамі паляўнічых, рыбакоў і збіральнікаўА. Калечыц, М. Чарняўскі. Плямёны на тэрыторыі Беларусі ў новым каменным веку (неаліце)А. Калечыц, У. Ксяндзоў, М. Чарняўскі. Гаспадарчыя заняткі ў каменным векуЭ. Зайкоўскі. Духоўная культура ў каменным векуАсаблівасці бронзавага веку на БеларусіФарміраванне супольнасцей ранняга перыяду бронзавага векуФотографии БеларусиРоля беларускіх зямель ва ўтварэнні і ўмацаванні ВКЛВ. Фадзеева. З гісторыі развіцця беларускай народнай вышыўкіDMOZGran catalanaБольшая российскаяBritannica (анлайн)Швейцарскі гістарычны15325917611952699xDA123282154079143-90000 0001 2171 2080n9112870100577502ge128882171858027501086026362074122714179пппппп

            ValueError: Expected n_neighbors <= n_samples, but n_samples = 1, n_neighbors = 6 (SMOTE) The 2019 Stack Overflow Developer Survey Results Are InCan SMOTE be applied over sequence of words (sentences)?ValueError when doing validation with random forestsSMOTE and multi class oversamplingLogic behind SMOTE-NC?ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)SmoteBoost: Should SMOTE be ran individually for each iteration/tree in the boosting?solving multi-class imbalance classification using smote and OSSUsing SMOTE for Synthetic Data generation to improve performance on unbalanced dataproblem of entry format for a simple model in KerasSVM SMOTE fit_resample() function runs forever with no result